Math 3c Solutions: Exam 2 Fall 2017

Size: px
Start display at page:

Download "Math 3c Solutions: Exam 2 Fall 2017"

Transcription

1 Math 3c Solutions: Exam Fall points) The graph of a smooth vector-valued function is shown below except that your irresponsible teacher forgot to include the orientation!) Several points are indicated on the graph; they are shown as points, but you should: Draw all vectors below as arrows. When you are asked to sketch a vector in translated position, determine where to draw it so that its geometric significance becomes clear. Draw your vectors to approximately the right scale; each tick mark on the graph represents one unit. Everything should be drawn on the graph provided; if your picture gets too crowded, you may recopy the graph as needed. c) r0) r) d) e) r) b) is the circle a) Explain how you know that this graph was not parametrized using arc length. The distance between r0) and r) is more than, as is the distance between r) and r). Also, it appears that the distance between r) and r) is greater that that between r0) and r). If we use an arc length parametrization, the arc length between two points whose inputs are unit apart will always be. b) Sketch the osculating circle when t. The circle should touch the curve at r) and then align with the curve as closely as possible for as long as possible. c) Given that r 0), sketch r 0) in translated position. Note that: the tail of the vector is at r0) the length of the vector is approximately) the vector is tangent to the curve Page of

2 Math 3c Solutions: Exam Fall 07 the vector points left and down; this makes it consistent with the orientation. While the orientation was not shown, we know the orientation is the direction of increasing t, so we can determine the orientation by moving from r0) to r). d) Put a d on the graph at all points where you can see by inspection that the unit normal vector will not exist. We know that N always points to the concave side of the curve; this means that N will fail to exist at any point where the curve changes concavity. There is one such point on the curve above. e) Sketch 0 r t) dt in translated position. This is just r) r0), which is the vector that points from r0) to r). ; t 0. Find the arc length parametrization for this. 0 points) Let rt) t, t 6 6 curve that uses t 0 as its reference point and preserves the orientation. Introduce a dummy variable and calculate for r u). It s ok if you wait to introduce the dummy variable until the next step, when we integrate.) ru) r u) r u) u, u 6 6, u 0 u 3, u 5 u 3 ) + u 5 ) u 6 + u 0 u 6 + u ) u 6 + u u 3 + u }{{} u 0, so u 3 0 so we can drop the absolute value u 3 + u Page of

3 Math 3c Solutions: Exam Fall 07 Integrate to express s in terms of t. s }{{} multiply by in the form anticipating the w-sub below }{{} w + u dw u 3 dw t 0 t u 3 + u du 0 u 3 + u du +t w dw ) w t ) 3 6 +t ) Solve for t in terms of s. s 6s 6s + + t ) ) t ) 3 + t ) 3 6s + ) 3 + t 6s + ) 3 t 6s + ) 3 t 6s + ) 3 t 6s + ) 3 }{{} t t 0 so we can drop the absolute value Plug in this expression for t to get r in terms of s: Page 3 of

4 Math 3c Solutions: Exam Fall 07 rs) r ts)) 6s+) 3, ) 6 6s+) 3 6 Note that we could combine the th root and the 6th power in the y-component to write a fractional exponent of 6 3. Finally, record the restrictions on s. Since we preserved the orientation and t0 is our reference point and the s-value at the reference point is always 0), t 0 s 0. rs) 6s+) 3, ) 6 6s+) 3 6 ; s points) Suppose the acceleration of a particle is given by the function at) e t, e t. If the velocity at time t 0 is, and the position at time t 0 is 3,, find a formula for the position of the object as a function of time. at) vt) v0) }{{} e t, e t at) dt e t, e t dt e t, e t + c, + c, plug in 0 for t }{{}, + c set equal to the given value,, c 3, c vt) e t, e t + 3, Page of

5 Math 3c Solutions: Exam Fall 07 pt) vt) dt p0) }{{} et, e t + 3, ) dt e t, e t + 3 t, t + c, + 0, 0 + c 3, plug in 0 for t }{{}, + c set equal to the given value 3,, c 5, c pt) e t, e t + 3 t, t + 5, Note: it would also be fine to do the vector addition and write the position as a single vector.. 0 points) The following questions are grouped together because they are the same type: short answer. They are not necessarily related in topic. a) State the Extreme Value Theorem for functions of variables. If fx,y) is continuous on a region D that is closed and bounded, then f achieves an absolute max and an absolute min on D. b) Suppose we have a curve rt). If radius of curvature when t 0 is 5, what is κ0)? κ0) 5 The radius of curvature and the curvature are reciproacalls of each other.) c) Sketch the domain of f x, y) x y We need x y 0 x y Page 5 of

6 Math 3c Solutions: Exam Fall 07 Note that the boundary parabola is included, so it is drawn as a solid curve. 5. Evaluate each limit or show it does not exist. If you use paths, be sure to explicitly write the paths you are using. a) lim x,y), ) xy+ y+ Hmmm. Top and bottom both go to 0. I don t see a promising substitution and we are not approaching the origin so that switching to polar is unlikely to help. I will hope the limit doesn t exist and try paths. path : r t), t lim x, y), ) along r t) xy + y + lim t t + t + t + ) lim t t + Path : r t) t, t Note: we can t use the path parallel to the x-axis holding y constant at ) since this path is not in the domain of r. lim x, y), ) alongr t) xy + y t + lim t t + t + )t ) lim t t ) lim t + ) t ) so the limit does not exist. b) lim x,y),) tanxy ) sinxy )+xy Hmmmm. Top and bottom both go to 0. The same expression, xy, appears in 3 places. I ll try a substitution, letting u xy. Note that as x, y), ), u 0. Page 6 of

7 Math 3c Solutions: Exam Fall 07 lim x,y),) tanxy ) sinxy ) + xy tan u lim u 0 sin u + u }{{} LH lim u 0 sec u cos u + sec 0 cos points) Let f x, y, z) e xyz x sin z. a) Find an equation for the local linear approximation to f at the point P 0,, 0). Lx, y, z) 3z Lx, y, z) f P 0 ) + f P 0 ) x, y +, z f P 0 ) e 0 sin 0 0 f yze xyz sin z, xze xyz, xye xyz x cos z f P 0 ) 0, 0, 3 Lx, y, z) + 0, 0, 3 x, y +, z b) Circle the correct words from the underlined options : The graph of Lx,y,z) is a line/plane/ hyperplane in R, R, R 3, R. c) Write an equation for the level surface of f that contains the point P 0. The level surface will be the set of all points in the domain of f that map to the same w-value as P 0. Since f P 0 ), this makes the equation for the level surface: e xyz x sin z d) Find an equation for the plane that is tangent to the level surface in part c). For this, we use point-normal form. point: P 0,, 0) normal: n f P 0 ) 0, 0, 3 point-normal form: If Qx,y,z) represents an arbitrary point on the plane, then P 0 Q x, y, z will be parallel to the plane and thus orthogonal to the plane s normal. Page 7 of

8 Math 3c Solutions: Exam Fall 07 n P0 Q 0 0, 0, 3 x, y, z 0 3z 0 z points) Let z f x, y) xy + y Use the chain rule for functions of more than one variable to receive credit, you must do it this way!) to find a formula for θ z where θ is a polar coordinate. Your answer should be given in polar coordinates. The paths in red below show how the value of θ influences the value of z. x z x x θ z z y y y θ r θ r θ z xy + y ) z x z y x r cos θ x θ r sin θ y r sin θ y θ r cos θ z θ }{{} chain rule, see diagram above xy + y ) y) xy + y ) x + y) z x x θ + z y y θ }{{} combine as one fraction and write in terms of r and θ xy + y ) y) r sin θ) + xy + y ) x + y)r cos θ) y r sin θ) x + y)r cos θ) + xy + y xy + y r sin θ + r cos θ + r sin θ)r cos θ) r cos θ sin θ + r sin θ Page 8 of

9 Math 3c Solutions: Exam Fall points) Let f x, y) x y. a) Sketch the level curve that passes through the point,). f, ) so the level curve in question is x y x y; y 0 y x ; y 0 c),) b) Find the unit vector that points in the direction in which f decreases most rapidly at,). The direction in which f decreases most rapidly at a point is the opposite direction of the gradient at that point. So we start by finding f, ). f f x, f y y, xy y, x y f, ),, Since we are asked for a unit vector, we need to normalize: Page 9 of

10 Math 3c Solutions: Exam Fall 07 f, ) ) + ) f, ) f, ) 5 5, 5, 5 5 5, 5 5 c) Draw the vector from part b) in translated position put it where its geometric significance becomes clear) on the graph from part a). See graph. Note that the vector is perpendicular to the level curve at,). d) What is the rate of f at,) in the direction you found in part b)? The rate is f, ) 5 Note that the norm of the gradient is the same as the norm of its opposite, which we calculated above.) e) Calculate the directional derivative of f at,) in the direction of v i 3j. We need to find the unit vector in the direction of v: v + 3) 3 u ˆv v 3, , Now we can find the directional derivative using the dot product: Page 0 of

11 Math 3c Solutions: Exam Fall 07 D u f, ) f, ) 3 3, 3 3 3, 3 3, points) Let f x, y) x x + y y and let D be the triangular region shown below the boundary is included). Find the location and value of the absolute max and the absolute min of f on D.,) 3,0) We know an absolute max and an absolute min occur by the Extreme Value Theorem. We need to check critical points and boundary points. A master table is given at the end of this problem, in which I record all the points we find below. Critical points: f f x, f y x, y f is always defined. f 0 x 0 }{{} x and y 0 }{{} y ) Since the point, is in D, we put this critical point on our master table. Boundary, part : r t) t, 0 ; 0 t f r t)) t t d dt f r t))) t Page of

12 Math 3c Solutions: Exam Fall 07 t is always defined, and it is equal to 0 when t. This is in the domain, so it is our only critical point on the boundary, part. Applying the Extreme Value Theorem for functions of one variable to f, restricted to this part of the boundary, we check this critical point and the endpoints. { t x, y) ) f x, y) critical point, 0 { min 0 0, 0) 0 endpoints, 0) max ) We add the points, 0 and,0) to our master table. Boundary, part : r t), t ; 0 t f r t)) + t t t t + d dt f r t))) t + t is always defined, and it is equal to 0 when t. This is in the domain, so it is our only critical point on the boundary, part. Applying the Extreme Value Theorem for functions of one variable to f, restricted to this part of the boundary, we check this critical point and the endpoints. We add the point Boundary, part 3: { t x, y) f x, y) critical point, ) 7 min { 0, 0) endpoints, ) max ), to our master table;,) is already there. r 3 t) t, t ; 0 t f r 3 t)) t t + t t t t d dt f r 3t))) t t is always defined, and it is 0 when t. This is in the domain, so it is our only critical point on the boundary, part 3. Page of

13 Math 3c Solutions: Exam Fall 07 Applying the Extreme Value Theorem for functions of one variable to f, restricted to this part of the boundary, we check this critical point and the endpoints. Both the points nothing new to add to it. { t x, y) ) f x, y) critical point, { min 0 0, 0) 0 endpoints, ) max, ) and,) are already on the master table, so there is Master Table { x, y) ) f x, y) critical points, min, 0) boundary points, 0) ),, ) 7 max The absolute max is ; it occurs ) at,). The absolute min is ; it occurs at, points) Let f x, y) x y and let D be the unit disk. That is, D { x, y) x + y } Find the location and value of the absolute max and absolute min of f on D. Use the method of Lagrange multipliers on the boundary. critical points: f is always defined. f 0 x 0 and y 0 0, 0) is a critical point. f f x, f y x, y boundary points: The boundary is x + y }{{} gx,y) g g x, g y x, y Page 3 of

14 Math 3c Solutions: Exam Fall 07 g 0 on the boundary, so we can proceed. We are looking for points where f λ g x, y λ x, y We set up the following systerm of equations: st components equal : x λx) ) nd components equal : y λy) ) constraint : x + y 3) Case : x 0 This would prevent us from solving for λ in ). ) ) 0 0 3) 0 + y y y ± ) λ See note below.) If y ±, then y 0 so we can divide by it to get λ. Thus we have found two solutions to our system: x 0, y ±, λ Case : y This would prevent us from solving for λ in ). ) 0 0 3) x + 0 x As in case, since we know x 0 we can x ± ) λ See note below.) divide by it to solve for λ. We have two more solutions to our system: x ±, y 0, λ Case 3: x 0, y 0 In this case we are free to divide by either of these variables. ) λ x x ) λ y y λ λ }{{} contradiction Thus we get no points from case 3. x, y) f x, y) critical point {0, 0) 0 0, ) min 0, ) min boundary points, 0) max, 0) max The absolute max is ; it occurs at,0) and, 0). The absolute min is ; it occurs at 0,) and 0, ). Page of

MA 351 Fall 2007 Exam #1 Review Solutions 1

MA 351 Fall 2007 Exam #1 Review Solutions 1 MA 35 Fall 27 Exam # Review Solutions THERE MAY BE TYPOS in these solutions. Please let me know if you find any.. Consider the two surfaces ρ 3 csc θ in spherical coordinates and r 3 in cylindrical coordinates.

More information

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. Math c Solutions: Exam 1 Fall 16 1. Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter. x tan t x tan t y sec t y sec t t π 4 To eliminate the parameter,

More information

Math 10C - Fall Final Exam

Math 10C - Fall Final Exam Math 1C - Fall 217 - Final Exam Problem 1. Consider the function f(x, y) = 1 x 2 (y 1) 2. (i) Draw the level curve through the point P (1, 2). Find the gradient of f at the point P and draw the gradient

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29

Practice problems for Exam 1. a b = (2) 2 + (4) 2 + ( 3) 2 = 29 Practice problems for Exam.. Given a = and b =. Find the area of the parallelogram with adjacent sides a and b. A = a b a ı j k b = = ı j + k = ı + 4 j 3 k Thus, A = 9. a b = () + (4) + ( 3)

More information

2015 Math Camp Calculus Exam Solution

2015 Math Camp Calculus Exam Solution 015 Math Camp Calculus Exam Solution Problem 1: x = x x +5 4+5 = 9 = 3 1. lim We also accepted ±3, even though it is not according to the prevailing convention 1. x x 4 x+4 =. lim 4 4+4 = 4 0 = 4 0 = We

More information

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true. Math 210-101 Test #1 Sept. 16 th, 2016 Name: Answer Key Be sure to show your work! 1. (20 points) Vector Basics: Let v = 1, 2,, w = 1, 2, 2, and u = 2, 1, 1. (a) Find the area of a parallelogram spanned

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

MATH Final Review

MATH Final Review MATH 1592 - Final Review 1 Chapter 7 1.1 Main Topics 1. Integration techniques: Fitting integrands to basic rules on page 485. Integration by parts, Theorem 7.1 on page 488. Guidelines for trigonometric

More information

Parametric Functions and Vector Functions (BC Only)

Parametric Functions and Vector Functions (BC Only) Parametric Functions and Vector Functions (BC Only) Parametric Functions Parametric functions are another way of viewing functions. This time, the values of x and y are both dependent on another independent

More information

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003

SOLUTIONS TO SECOND PRACTICE EXAM Math 21a, Spring 2003 SOLUTIONS TO SECOND PRACTICE EXAM Math a, Spring 3 Problem ) ( points) Circle for each of the questions the correct letter. No justifications are needed. Your score will be C W where C is the number of

More information

Faculty of Engineering, Mathematics and Science School of Mathematics

Faculty of Engineering, Mathematics and Science School of Mathematics Faculty of Engineering, Mathematics and Science School of Mathematics GROUPS Trinity Term 06 MA3: Advanced Calculus SAMPLE EXAM, Solutions DAY PLACE TIME Prof. Larry Rolen Instructions to Candidates: Attempt

More information

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS. MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 2018 DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF MASSACHUSETTS MATH 233 SOME SOLUTIONS TO EXAM 2 Fall 208 Version A refers to the regular exam and Version B to the make-up. Version A. A particle

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use.

CALCULUS: Math 21C, Fall 2010 Final Exam: Solutions. 1. [25 pts] Do the following series converge or diverge? State clearly which test you use. CALCULUS: Math 2C, Fall 200 Final Exam: Solutions. [25 pts] Do the following series converge or diverge? State clearly which test you use. (a) (d) n(n + ) ( ) cos n n= n= (e) (b) n= n= [ cos ( ) n n (c)

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

Exercises for Multivariable Differential Calculus XM521

Exercises for Multivariable Differential Calculus XM521 This document lists all the exercises for XM521. The Type I (True/False) exercises will be given, and should be answered, online immediately following each lecture. The Type III exercises are to be done

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4

Topic 2-2: Derivatives of Vector Functions. Textbook: Section 13.2, 13.4 Topic 2-2: Derivatives of Vector Functions Textbook: Section 13.2, 13.4 Warm-Up: Parametrization of Circles Each of the following vector functions describe the position of an object traveling around the

More information

WORKSHEET #13 MATH 1260 FALL 2014

WORKSHEET #13 MATH 1260 FALL 2014 WORKSHEET #3 MATH 26 FALL 24 NOT DUE. Short answer: (a) Find the equation of the tangent plane to z = x 2 + y 2 at the point,, 2. z x (, ) = 2x = 2, z y (, ) = 2y = 2. So then the tangent plane equation

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday September 26, 6:00pm 7:30pm, 2018 APPM 2350 Section Exam 1 140 points Wednesday September 26, 6:00pm 7:30pm, 2018 ON THE FRONT OF YOUR BLUEBOOK write: (1) your name, (2) your student ID number, (3) lecture section/time (4) your instructor

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

FINAL EXAM STUDY GUIDE

FINAL EXAM STUDY GUIDE FINAL EXAM STUDY GUIDE The Final Exam takes place on Wednesday, June 13, 2018, from 10:30 AM to 12:30 PM in 1100 Donald Bren Hall (not the usual lecture room!!!) NO books/notes/calculators/cheat sheets

More information

Math 222 Spring 2013 Exam 3 Review Problem Answers

Math 222 Spring 2013 Exam 3 Review Problem Answers . (a) By the Chain ule, Math Spring 3 Exam 3 eview Problem Answers w s w x x s + w y y s (y xy)() + (xy x )( ) (( s + 4t) (s 3t)( s + 4t)) ((s 3t)( s + 4t) (s 3t) ) 8s 94st + 3t (b) By the Chain ule, w

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text.

This exam will be over material covered in class from Monday 14 February through Tuesday 8 March, corresponding to sections in the text. Math 275, section 002 (Ultman) Spring 2011 MIDTERM 2 REVIEW The second midterm will be held in class (1:40 2:30pm) on Friday 11 March. You will be allowed one half of one side of an 8.5 11 sheet of paper

More information

MATH 12 CLASS 5 NOTES, SEP

MATH 12 CLASS 5 NOTES, SEP MATH 12 CLASS 5 NOTES, SEP 30 2011 Contents 1. Vector-valued functions 1 2. Differentiating and integrating vector-valued functions 3 3. Velocity and Acceleration 4 Over the past two weeks we have developed

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017

HOMEWORK 3 MA1132: ADVANCED CALCULUS, HILARY 2017 HOMEWORK MA112: ADVANCED CALCULUS, HILARY 2017 (1) A particle moves along a curve in R with position function given by r(t) = (e t, t 2 + 1, t). Find the velocity v(t), the acceleration a(t), the speed

More information

MATH 2433 Homework 1

MATH 2433 Homework 1 MATH 433 Homework 1 1. The sequence (a i ) is defined recursively by a 1 = 4 a i+1 = 3a i find a closed formula for a i in terms of i.. In class we showed that the Fibonacci sequence (a i ) defined by

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 This week we want to talk about curvature and osculating circles. You might notice that these notes contain a lot of the same theory or proofs

More information

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter.

(6, 4, 0) = (3, 2, 0). Find the equation of the sphere that has the line segment from P to Q as a diameter. Solutions Review for Eam #1 Math 1260 1. Consider the points P = (2, 5, 1) and Q = (4, 1, 1). (a) Find the distance from P to Q. Solution. dist(p, Q) = (4 2) 2 + (1 + 5) 2 + (1 + 1) 2 = 4 + 36 + 4 = 44

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Math 122 Test 3. April 15, 2014

Math 122 Test 3. April 15, 2014 SI: Math 1 Test 3 April 15, 014 EF: 1 3 4 5 6 7 8 Total Name Directions: 1. No books, notes or 6 year olds with ear infections. You may use a calculator to do routine arithmetic computations. You may not

More information

Figure 10: Tangent vectors approximating a path.

Figure 10: Tangent vectors approximating a path. 3 Curvature 3.1 Curvature Now that we re parametrizing curves, it makes sense to wonder how we might measure the extent to which a curve actually curves. That is, how much does our path deviate from being

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON. a b. Name: Problem 1 BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Calculus III: Practice Final

Calculus III: Practice Final Calculus III: Practice Final Name: Circle one: Section 6 Section 7. Read the problems carefully. Show your work unless asked otherwise. Partial credit will be given for incomplete work. The exam contains

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

MATHEMATICS 317 December 2010 Final Exam Solutions

MATHEMATICS 317 December 2010 Final Exam Solutions MATHEMATI 317 December 1 Final Eam olutions 1. Let r(t) = ( 3 cos t, 3 sin t, 4t ) be the position vector of a particle as a function of time t. (a) Find the velocity of the particle as a function of time

More information

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. Multiple Choice.(6 pts) Find smmetric equations of the line L passing through the point (, 5, ) and perpendicular to the plane x + 3 z = 9. (a) x = + 5 3 = z (c) (x ) + 3( 3) (z ) = 9 (d) (e) x = 3 5 =

More information

Review for the First Midterm Exam

Review for the First Midterm Exam Review for the First Midterm Exam Thomas Morrell 5 pm, Sunday, 4 April 9 B9 Van Vleck Hall For the purpose of creating questions for this review session, I did not make an effort to make any of the numbers

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Study Guide/Practice Exam 2 Solution. This study guide/practice exam is longer and harder than the actual exam. Problem A: Power Series. x 2i /i!

Study Guide/Practice Exam 2 Solution. This study guide/practice exam is longer and harder than the actual exam. Problem A: Power Series. x 2i /i! Study Guide/Practice Exam 2 Solution This study guide/practice exam is longer and harder than the actual exam Problem A: Power Series (1) Find a series representation of f(x) = e x2 Explain why the series

More information

II. Unit Speed Curves

II. Unit Speed Curves The Geometry of Curves, Part I Rob Donnelly From Murray State University s Calculus III, Fall 2001 note: This material supplements Sections 13.3 and 13.4 of the text Calculus with Early Transcendentals,

More information

MTH 234 Solutions to Exam 1 Feb. 22nd 2016

MTH 234 Solutions to Exam 1 Feb. 22nd 2016 MTH 34 Solutions to Exam 1 Feb. nd 016 Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic

More information

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2 MATH 3A: MIDTERM REVIEW JOE HUGHES 1. Curvature 1. Consider the curve r(t) = x(t), y(t), z(t), where x(t) = t Find the curvature κ(t). 0 cos(u) sin(u) du y(t) = Solution: The formula for curvature is t

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

32 +( 2) ( 4) ( 2)

32 +( 2) ( 4) ( 2) Math 241 Exam 1 Sample 2 Solutions 1. (a) If ā = 3î 2ĵ+1ˆk and b = 4î+0ĵ 2ˆk, find the sine and cosine of the angle θ between [10 pts] ā and b. We know that ā b = ā b cosθ and so cosθ = ā b ā b = (3)(

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors K. Behrend January 31, 008 Abstract An introduction to vectors in R and R 3. Lines and planes in R 3. Linear dependence. 1 Contents Introduction 3 1 Vectors 4 1.1 Plane vectors...............................

More information

MTH 132 Solutions to Exam 2 Apr. 13th 2015

MTH 132 Solutions to Exam 2 Apr. 13th 2015 MTH 13 Solutions to Exam Apr. 13th 015 Name: Section: Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices

More information

Chapter 14: Vector Calculus

Chapter 14: Vector Calculus Chapter 14: Vector Calculus Introduction to Vector Functions Section 14.1 Limits, Continuity, Vector Derivatives a. Limit of a Vector Function b. Limit Rules c. Component By Component Limits d. Continuity

More information

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x.

EXAM 3 MAT 167 Calculus I Spring is a composite function of two functions y = e u and u = 4 x + x 2. By the. dy dx = dy du = e u x + 2x. EXAM MAT 67 Calculus I Spring 20 Name: Section: I Each answer must include either supporting work or an explanation of your reasoning. These elements are considered to be the main part of each answer and

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

APPM 2350, Summer 2018: Exam 1 June 15, 2018

APPM 2350, Summer 2018: Exam 1 June 15, 2018 APPM 2350, Summer 2018: Exam 1 June 15, 2018 Instructions: Please show all of your work and make your methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit

More information

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON

BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON BROWN UNIVERSITY MATH 0350 MIDTERM 19 OCTOBER 2017 INSTRUCTOR: SAMUEL S. WATSON Name: Problem 1 In this problem, we will use vectors to show that an angle formed by connecting a point on a circle to two

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017 Math 2 Lesieutre; 9: Polar coordinates; November 22, 207 Plot the point 2, 2 in the plane If you were trying to describe this point to a friend, how could you do it? One option would be coordinates, but

More information

Unit #24 - Lagrange Multipliers Section 15.3

Unit #24 - Lagrange Multipliers Section 15.3 Unit #24 - Lagrange Multipliers Section 1.3 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 200 by John Wiley & Sons, Inc. This material is

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Math 223 Final. July 24, 2014

Math 223 Final. July 24, 2014 Math 223 Final July 24, 2014 Name Directions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 1. No books, notes, or evil looks. You may use a calculator to do routine arithmetic computations. You may not use your

More information

MAT 211 Final Exam. Fall Jennings.

MAT 211 Final Exam. Fall Jennings. MAT 211 Final Exam. Fall 218. Jennings. Useful formulas polar coordinates spherical coordinates: SHOW YOUR WORK! x = rcos(θ) y = rsin(θ) da = r dr dθ x = ρcos(θ)cos(φ) y = ρsin(θ)cos(φ) z = ρsin(φ) dv

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

MATH 2203 Exam 3 Version 2 Solutions Instructions mathematical correctness clarity of presentation complete sentences

MATH 2203 Exam 3 Version 2 Solutions Instructions mathematical correctness clarity of presentation complete sentences MATH 2203 Exam 3 (Version 2) Solutions March 6, 2015 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation.

More information

y 4x 2 4x. The velocity vector is v t i 4 8t j and the speed is

y 4x 2 4x. The velocity vector is v t i 4 8t j and the speed is MATH 2203 - Exam 2 (Version 1) Solutions September 23, 2014 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO SOME PROBLEMS YOU SHOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Math 265H: Calculus III Practice Midterm II: Fall 2014

Math 265H: Calculus III Practice Midterm II: Fall 2014 Name: Section #: Math 65H: alculus III Practice Midterm II: Fall 14 Instructions: This exam has 7 problems. The number of points awarded for each question is indicated in the problem. Answer each question

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

MATH Exam 2 (Version 2) Solutions September 23, 2014 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to

MATH Exam 2 (Version 2) Solutions September 23, 2014 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to MATH 2203 - Exam 2 (Version 2) Solutions September 23, 2014 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of

More information

M155 Exam 2 Concept Review

M155 Exam 2 Concept Review M155 Exam 2 Concept Review Mark Blumstein DERIVATIVES Product Rule Used to take the derivative of a product of two functions u and v. u v + uv Quotient Rule Used to take a derivative of the quotient of

More information

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit.

Practice Midterm Exam 1. Instructions. You have 60 minutes. No calculators allowed. Show all your work in order to receive full credit. MATH202X-F01/UX1 Spring 2015 Practice Midterm Exam 1 Name: Answer Key Instructions You have 60 minutes No calculators allowed Show all your work in order to receive full credit 1 Consider the points P

More information

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R.

mathematical objects can be described via equations, functions, graphs, parameterization in R, R, and R. Multivariable Calculus Lecture # Notes This lecture completes the discussion of the cross product in R and addresses the variety of different ways that n mathematical objects can be described via equations,

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Fall 2011 FINAL EXAM REVIEW The final exam will be held on Wednesday 14 December from 10:30am 12:30pm in our regular classroom. You will be allowed both sides of an 8.5 11

More information

Math 317 M1A, October 8th, 2010 page 1 of 7 Name:

Math 317 M1A, October 8th, 2010 page 1 of 7 Name: Math 317 M1A, October 8th, 2010 page 1 of 7 Name: Problem 1 (5 parts, 30 points): Consider the curve r(t) = 3 sin(t 2 ), 4t 2 + 7, 3 cos(t 2 ), 0 t < a) (5 points) Find the arclength function s(t) giving

More information

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit.

Fall Exam 4: 8&11-11/14/13 - Write all responses on separate paper. Show your work for credit. Math Fall - Exam : 8& - // - Write all responses on separate paper. Show your work for credit. Name (Print):. Convert the rectangular equation to polar coordinates and solve for r. (a) x + (y ) = 6 Solution:

More information

MATH Max-min Theory Fall 2016

MATH Max-min Theory Fall 2016 MATH 20550 Max-min Theory Fall 2016 1. Definitions and main theorems Max-min theory starts with a function f of a vector variable x and a subset D of the domain of f. So far when we have worked with functions

More information

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm.

MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. MATH 2083 FINAL EXAM REVIEW The final exam will be on Wednesday, May 4 from 10:00am-12:00pm. Bring a calculator and something to write with. Also, you will be allowed to bring in one 8.5 11 sheet of paper

More information

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November

MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November MATH 307 Introduction to Differential Equations Autumn 2017 Midterm Exam Monday November 6 2017 Name: Student ID Number: I understand it is against the rules to cheat or engage in other academic misconduct

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

Math 11 Fall 2018 Midterm 1

Math 11 Fall 2018 Midterm 1 Math 11 Fall 2018 Midterm 1 October 3, 2018 NAME: SECTION (check one box): Section 1 (I. Petkova 10:10) Section 2 (M. Kobayashi 11:30) Section 3 (W. Lord 12:50) Section 4 (M. Kobayashi 1:10) Instructions:

More information