Interval Estimation for the Ratio of Percentiles from Two Independent Populations.

Size: px
Start display at page:

Download "Interval Estimation for the Ratio of Percentiles from Two Independent Populations."

Transcription

1 Est Teessee Stte Uiversity Digitl Est Teessee Stte Uiversity Electroic Theses d Disserttios Itervl Estimtio for the Rtio of Percetiles from Two Idepedet Popultios. Pius Mthek Muidi Est Teessee Stte Uiversity Follow this d dditiol works t: Recommeded Cittio Muidi, Pius Mthek, "Itervl Estimtio for the Rtio of Percetiles from Two Idepedet Popultios." (008). Electroic Theses d Disserttios. Pper This Thesis - Ope Access is brought to you for free d ope ccess by Digitl Est Teessee Stte Uiversity. It hs bee ccepted for iclusio i Electroic Theses d Disserttios by uthorized dmiistrtor of Digitl Est Teessee Stte Uiversity. For more iformtio, plese cotct dcdmi@etsu.edu.

2 Itervl Estimtio for the Rtio of Percetiles from Two Idepedet Popultios A thesis preseted to the fculty of the Deprtmet of Mthemtics Est Teessee Stte Uiversity I prtil fulfillmet of the requiremets for the degree Mster of Sciece i Mthemticl Scieces by Pius Muidi August 008 Robert Price, Ph.D., Chir Robert Grder, Ph.D. Edith Seier, Ph.D. Yli Liu, Ph.D Keywords: cofidece itervls (CI), rtio of percetiles, percetiles.

3 ABSTRACT Itervl Estimtio for the Rtio of Percetiles from two Idepedet Popultios by Pius Muidi Percetiles re used everydy i descriptive sttistics d dt lysis. I rel life, my qutities re ormlly distributed d orml percetiles re ofte used to describe those qutities. I life scieces, distributios like expoetil, uiform, Weibull d my others re used to model rtes, clims, pesios etc. The eed to compre two or more idepedet popultios c rise i dt lysis. The rtio of percetiles is just oe of the my wys of comprig popultios. This thesis costructs lrge smple cofidece itervl for the rtio of percetiles whose uderlyig distributios re kow. A simultio study is coducted to evlute the coverge probbility of the proposed itervl method. The distributios tht re cosidered i this thesis re the orml, uiform d expoetil distributios.

4 Copyright by Pius Muidi 008 3

5 DEDICATION To my wife Sus. 4

6 ACKNOWLEDGMENTS I wish to ckowledge ll the grdute studets d stff members of the Deprtmet of Mthemtics t Est Teessee Stte Uiversity. I would like to thk Dr. Edith Seier d Dr. Yli Liu for their iput d support. Specil thks goes to Dr. Robert Grder who hs mde my study t ETSU successful d ejoyble. Most importtly I wish to ckowledge Dr. Robert Price, my dvisor, who hs gretly cotributed to my iterest d kowledge i sttistics d without whom this project would hve bee lmost impossible. Lstly I wish to thk my wife d my fmily for their morl d ficil support. 5

7 CONTENTS ABSTRACT DEDICATION ACKNOWLEDGMENTS LIST OF TABLES LIST OF FIGURES INTRODUCTION Mximum Likelihood Estimtors (MLEs) NORMAL DISTRIBUTION Ubised Estimtors of µ d σ Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Norml Distributios Simultio Results EXPONENTIAL DISTRIBUTION Ubised Estimtor of θ Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Expoetil Distributios Simultio Results UNIFORM DISTRIBUTION Ubised Estimtors of d b Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Uiform Distributios Simultio Results

8 5 CONCLUSION Results Limittios BIBLIOGRAPHY APPENDICES Appedix A: R Code for the CI of Norml Percetiles Rtio Appedix B: R Code for the CI of Expoetil Percetiles Rtio.. 50 Appedix C: R Code for the CI of Uiform Percetiles Rtio VITA

9 LIST OF TABLES 1 Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Norml Popultios Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Expoetil popultios Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Uiform popultios

10 LIST OF FIGURES 1 Coverge Rtes vs Smple Size for Rtio of Norml Percetiles t p Coverge Rtes vs Smple Size for Rtio of Expoetil Percetiles t p Coverge Rtes vs Smple Size for Rtio of Uiform Percetiles t p

11 1 INTRODUCTION Percetiles or qutiles re very commo i sttistics. Percetiles re used to determie the vlue of observtio with give percetge below it. Percetiles re used s mesure of cetrl tedecy s well s mesure of spred. The medi, which is oe of the most used mesures of cetrl tedecy, refers to the 50th percetile. The lower d upper qurtiles which refer to the 5th d the 75th percetiles, respectively, re commoly used s mesures of dispersio. The five-umber summry used i mkig the fmous box plot is bsiclly summry of specific percetiles of distributio mely 1st, 5th, 50th, 75th d 100th. Qutiles re lso used i mesurig relibility by determiig the time to filure, survivl d hzrd fuctios [3]. Percetiles re lso used i hydrology d i sttisticl process cotrol [3]. The eed to compre two distributios rises d the resercher will require some prticulr prmeter s poit of compriso. I my istces reserchers re compelled to use the me s the poit of compriso with the ssumptio tht the me is the most relible prmeter for describig the popultio. This is ot lwys the cse d sometimes the medi my be more relible whe the distributio is strogly skewed [7]. The resercher my lso be iterested i other percetiles of the popultio d if there re two idepedet popultios compriso of the percetiles my be of vlue. Approximte distributio-free itervls for both the differece d rtio of medis hve bee developed [7]. We cosider itervl estimtio for the rtio of percetiles whe the uderlyig distributios re kow. 10

12 We begi by defiig few of the termiologies used i this thesis. A percetile or qutile is the vlue of vrible below which certi percetge of observtios fll. A percetile c lso be defied s oe of the 99 poit scores tht divide rked distributio ito groups, ech of which coti 1/100 of the scores. A Prmeter is umber tht describes the popultio. I sttisticl prctice, the vlue of prmeter is usully ot kow becuse it is difficult to exmie the etire popultio. A Sttistic is umber tht c be computed from smple without mkig use of y ukow prmeters. I prctice, we ofte use sttistic to estimte ukow prmeter. If the rdom vribles X 1, X,..., X re rrged i scedig order of mgitude d the writte s X (1), X (),..., X (), we cll X (i) the ith order sttistic [] (i 1,,..., ). If E[u(X 1, X,..., X )] θ, the sttistic u(x 1, X,..., X ) is clled ubised estimtor of θ [5]. Theorem 1.1 [6] Drw simple rdom smple of size from y popultio with me µ d stdrd devitio σ. Whe is lrge, the smplig distributio of the smple me x is pproximtely orml with me µ d stdrd devitio σ/. This is referred to s the cetrl limit theorem. Theorem 1. [4] Let X be sequece of rdom vribles such tht (X θ) D N(0, σ ). Suppose the fuctio f(x) is differetible t θ d f (θ) 0. The (f(x ) f(θ)) D N(0, σ (f (θ)) ) where D deotes coverge i distributio. This is referred to s the Delt Method. 11

13 Theorem 1.3 [4] Let {X }be sequece of p-dimesiol vectors. Suppose (X µ 0 ) D N p (0, Σ). Let g be trsformtio g(x) (g 1 (x),..., g k (x)) such tht 1 k p d the k p mtrix of prtil derivtives, [ ] dgi B dµ j i 1,..., k; j 1,..., p, re cotiuous d do ot vish i eighborhood of µ 0. Let B 0 B t µ 0. The (g(x ) g(µ 0 )) D N k (0, B 0 ΣB 0 ). This is extesio of the Delt Method. 1.1 Mximum Likelihood Estimtors (MLEs) Let X 1, X,..., X be rdom smple from distributio tht depeds o oe or more ukow prmeters θ 1, θ,..., θ m with p.m.f. or p.d.f. deoted by f(x; θ 1, θ,..., θ m ). Suppose tht θ 1, θ,..., θ m is restricted to give prmeter spce Ω. The the joit p.m.f. or p.d.f. of X 1, X,..., X mely L(θ 1, θ,..., θm) f(x 1 ; θ 1,..., θm)f(x ; θ 1,..., θ m )... f(x ; θ 1,..., θ m ), (θ 1, θ,..., θ m ) Ω, whe regrded s fuctio of θ 1, θ,..., θ m is clled the likelihood fuctio. Sy [u 1 (X 1, X,..., X ), u (X 1, X,..., X ),... u m (X 1, X,..., X )] is tht m-tuple i Ω tht mximizes L(θ 1, θ,..., θ m ). The 1

14 ˆθ 1 u 1 (X 1, X,..., X ) ˆθ u (X 1, X,..., X ). ˆθ m u 1 (X 1, X,..., X ) re mximum likelihood estimtors of θ 1, θ,..., θ m respectively; d the correspodig vlues of these sttistics, mely u 1 (X 1, X,..., X ), u (X 1, X,..., X ),... u m (X 1, X,..., X ) re clled mximum likelihood estimtes [5]. I my prcticl cses these estimtors (d estimtes) re uique. For my pplictios there is just oe ukow prmeter. I these cses, the likelihood fuctio is give by L(θ) f(x i ; θ). i1 Let X 1, X,..., X be cotiuous rdom vribles from popultio whose uderlyig distributio is kow d prmeters ukow. Let k p deote the 100pth percetile. k p c be expressed i terms of the popultio prmeters. By wy of mximum likelihood estimtio, we c pproximte the ukow popultio prmeters usig sttistics obtied from smple drw from the popultio whose uderlyig distributio is kow. The k p c be pproximted usig those estimtes. 13

15 Let k p,x be the 100pth percetile from the first popultio (X) d let k p,y be the 100pth percetile from the secod popultio (Y ). Deote the percetile rtio s k p rtio. The k p rtio is give by k p,x /k p,y. We ext discuss pproximte (1 α)100% cofidece itervl for the k p rtio. To costruct cofidece itervl for k p rtio we will estimte the turl log of k p rtio d the vrice of the estimted turl log of k p rtio d the expoetite the ed poits of the itervl. This is bsed o the delt method. 14

16 NORMAL DISTRIBUTION Let X 1, X,..., X be rdom smple from orml popultio with me µ d vrice σ. The the p.d.f. of X is give by f(x) 1 σ π e (x µ) /σ, < x <. (1) Let k p deote the 100pth percetile, the k p µ + Z p σ () where Z p deotes the 100pth percetile of the stdrd orml distributio N(0, 1) [1]. Sice µ d σ re ukow, we eed to estimte k p. This c be doe usig the miimum vrice ubised estimtors of µ d σ..1 Ubised Estimtors of µ d σ Let X 1, X,..., X be rdom smple from orml popultio N(µ, σ ) d let X deote the smple me d S deote the smple vrice where X 1 X i, (3) i1 S 1 1 (X i X), (4) i1 d S 1 1 (X i X) (i 1,,..., ). (5) i1 X is the mximum likelihood estimtor of µ d by the cetrl limit theorem X is ubised estimtor of µ d E( X) µ. 15

17 Lemm.1 [5] Let X 1, X,..., X be rdom smple of size from orml distributio N(µ, σ ). The the distributio of ( 1)S /σ is χ ( 1), where χ ( 1) is Chi-squre distributio with -1 degrees of freedom. Propositio. S is ubised estimtor of σ. Proof We c use Lemm.1 to show tht S is ubised estimtor of σ. By Lemm.1, the distributio of ( 1)S /σ is χ ( 1). Therefore ( ) ( 1)S E σ E ( χ ( 1) ) 1 σ E(S ) 1 E(S ) σ. However, S is ot ubised estimtor of σ. Thus, we eed to fid costt C tht c be used to remove the bisess such tht E(CS) CE(S) σ. We kow from Lemm.1 ( 1)S σ χ ( 1). So, 1S σ χ ( 1). Next we eed to fid the p.d.f. of Y χ ( 1). Suppose f(x) d g(y) re p.d.f. s of χ ( 1) d χ ( 1) respectively. The f(x) 1 Γ( 1 1 ) x 1 1 e x, 0 x <. (6) By chge of vrible techique we hve y x x y d dx dy y. Thus g(y) 1 Γ( 1 1 ) (y ) 1 1 e (y ) y, 0 y <. (7) 16

18 Now, E(Y ) y 1 Γ( 1 (y ) 1 1 ) 1 Γ( 1 1 Γ( 1 1 ) Lettig t y, dt ydy d we obti, (y ) 1 1 e y ydy 1 ) (y ) 3 e y ydy (y ) e y ydy. Hece, E(Y ) Γ( 1 1 Γ( 1 1 Γ( 1 1 ) Γ( ) Γ( 1 1 ) 1 ) 1 ) 0 t e t dt t 1 e t dt t 1 e t dt t 1 e t 0 Γ( ) dt. }{{} 1 Sice Y χ ( 1) 1S, E(Y ) 1E(S) σ σ E(Y ) Γ( ) Γ( 1 ). (8) E(S) σe(y ) 1 d therefore, σ Γ( ) 1 σ 1 σ Γ( 1) Γ( ) Γ( 1 ) 1. 1 Γ( ) Γ( ) 17 (9)

19 Hece, we hve 1 1 Γ( ) Γ( ) E(S) σ C 1 1 Γ( ) Γ( ) (10) d E(CS) σ. (11) Thus ubised estimtor of k p is ˆk p X + Z p CS [1]. (1) To compute cofidece itervls we eed the vrice d the estimted vrice of the sttistic of iterest. I this cse we require the vrice of ˆk p. Therefore V r(ˆk p ) V r( X + Z p CS) V r( X) + (CZ p ) V r(s) σ + [ C Zp E(S ) (E(S)) ] ] σ + C Zp [σ σ by propositio. d (11) C σ σ (1 + C Z p(1 1C ) ) Thus the estimted vrice of ˆk p deoted ( 1 + Z p (C 1) ) [1]. (13) V r(ˆk p ) is ( V S ( r(ˆk p ) 1 + Z p (C 1) )). (14) 18

20 . Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Norml Distributios I this sectio we re goig to develop method of computig the (1 α)100% cofidece itervls for the rtio of two orml percetiles. These two percetiles must come from two idepedet orml distributios d they must be the sme 100pth percetile. For exmple, if we use the 45th percetile from the first distributio the we must use the 45th percetile from the secod distributio. The mes, vrices, d smple sizes of the two smples eed ot be equl. Theorem.3 Let X 1, X,..., X be rdom smple of size from orml popultio X with me µ x d vrice σ x d let Y 1, Y,..., Y m be rdom smple of size m from other orml popultio Y with me µ y d vrice σ y where X d Y re idepedet. Let k p,x d k p,y be the 100pth percetiles from popultios X d Y, respectively. The pproximte (1 α)100% cofidece itervl for the rtio of the percetiles k p,x d k p,y is give by ˆk p,x exp ± Z V r(ˆk p,x ) (1 α ˆk ) + p,y ˆk p,x V r(ˆk p,y ) ˆk p,y. (15) Proof We kow tht k p,x µ x + Z p σ x d k p,y µ y + Z p σ y (16) d the ubised estimtors of k p,x d k p,y re ˆk p,x X + Z p C x S x d ˆkp,y Ȳ + Z pc y S y (17) 19

21 respectively, where 1 1 Γ( ) C x Γ( ) d C y The vrices of these ubised estimtors ˆk p,x d ˆk p,y re V r(ˆk p,x ) σ x m 1 m 1 Γ( ) Γ( m). (18) ( 1 + Z p (Cx 1) ) d V r(ˆk p,y ) σ y ( 1 + mz m p (Cy 1) ) (19) d their respective estimted vrices re V r(ˆk p,x ) S ( x 1 + Z p (Cx 1) ) d The estimted k p rtio deoted by ˆk p rtio is give by V r(ˆk p,y ) S y ( 1 + mz m p (Cy 1) ). (0) ˆk p rtio ˆk p,x ˆk p,y. (1) Now we eed to fid the vrice of the ˆk p rtio. This c be simplified by itroducig turl logrithms d usig the delt method to compute the vrice. ) l(ˆk p rtio) l ( ˆkp,x ˆk p,y l(ˆk p,x ) l(ˆk p,y ). () The ext few equtios employ the delt method to compute the vrice of l(ˆk p rtio). [ d l(ˆkp rtio) dˆk p,x V r(l(ˆk p rtio)) d l(ˆk p rtio) ] [ V r(ˆk p,x ) 0 dˆk p,y 0 V r(ˆk p,y ) ] d l(ˆk p rtio) dˆk p,x d l(ˆk p rtio) dˆk p,y The vrice covrice mtrix hs zero etries becuse X d Y re idepedet d their covrice is zero. [ ] [ ] [ ] 1 1 V r(l(ˆk p rtio)) ˆk 1 V r(ˆk p,x ) 0 ˆk p,x p,x ˆk p,y 0 V r(ˆk p,y ) 1. (3) ˆk p,y 0.

22 Hece V r(l(ˆk p rtio)) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y (4) d the estimted vrice of the l(ˆk p rtio) is V r l(ˆk p rtio) V r(ˆk p,x ) + ˆk p,x V r(ˆk p,y ) ˆk p,y. (5) The (1 α)100% cofidece itervl for the l(k p rtio) c be computed s l(ˆk p,x ) l(ˆk p,y ) ± Z (1 α ) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y (6) d expoetitig the expressio we hve the (1 α)100% cofidece itervl for the k p rtio s ˆk p,x exp ± Z (1 α ˆk p,y ) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y..3 Simultio Results To test this method, simultio ws doe. This simultio ivolved rdom geertio of two ormlly distributed smples usig the R sttisticl softwre [8]. The prmeters µ d σ used to geerte first smple were fixed t 30 d, respectively, d those of the secod smple were fixed t 0 d 3 respectively. The simultio process ivolved rus for ech differet set of smple sizes d the resultig empiricl coverges rtes were recorded. T ble 1 o ext pge shows some of the simultio results. The empiricl coverge c be see to coverge to 0.95 i F igure 1 1

23 Tble 1: Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Norml Popultios. percetiles m 90% 95% 99% p p p p

24 I F igure 1, the vlues 1 5 o the x xis hve bee llocted to sets of smples sizes i icresig order. O the y xis we hve the empiricl coverge rtes for 95% cofidece itervl t p For the first cse where < m we hve 1,, 3, 4 d 5 correspodig to to the (10, 50), (50, 100), (100, 00), (150, 50) d (00, 500) smple size combitios. For the secod cse where m we hve 1,, 3, 4 d 5 correspodig to the (10, 10), (50, 50), (100, 100), (00, 00) d (500, 500) smple size combitios. For the third cse where > m we hve 1,, 3, 4 d 5 correspodig to the (50, 10), (100, 50), (00, 100), (50, 150) d (500, 00) smple size combitios. Figure 1: Coverge Rtes vs Smple Size for Rtio of Norml Percetiles t p

25 3 EXPONENTIAL DISTRIBUTION Let X 1, X,..., X be rdom smple from expoetil popultio with me θ d vrice θ. The the p.d.f. of X is give by f(x) 1 θ e x/θ, 0 x <. (7) Sice this is cotiuous distributio the cumultive distributio fuctio (c.d.f) c be used to determie the vlue tht lies o give percetile F (x) P (X k p ) d solvig for k p we hve kp 0 1 x θ e θ dx 1 e kp θ p (8) k p θ l(1 p) (9) where k p is the 100pth percetile. Sice θ is ot kow we eed to fid ubised estimtor of θ tht c be used to estimte k p. 3.1 Ubised Estimtor of θ Let X 1, X,..., X be rdom smple from expoetil popultio with me θ d let X deote the smple me. X 1 X i is ubised estimtor of θ [5]. Also by the Cetrl Limit Theorem the smple me is ubised estimtor of the popultio me d E( X) θ. Therefore the estimted k p deoted ˆk p is give by i1 ˆk p X l(1 p). (30) 4

26 Next we eed to fid the vrice of ˆk p d the estimted vrice of ˆk p deoted by V r( ˆk p ). V r( ˆk p ) V r( X l(1 p)) (l(1 p)) V r( X) (l(1 p)) σ (l(1 p)) θ. (31) The bove follows from the fct tht X is ormlly distributed with me µ d vrice σ d for the expoetil distributio σ θ d so V r( ˆk p ) (l(1 p)) X. (3) 3. Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Expoetil Distributios I this sectio, we re goig to develop method of computig the (1 α)100% cofidece itervls for the rtio of two expoetil percetiles. These two percetiles must come from two idepedet expoetil distributios d they must be the sme 100pth percetile. For exmple, if we use the 45th percetile from the first distributio the we must use the 45th percetile from the secod distributio. The mes, vrices, d smple sizes of the two smples eed ot be equl. Theorem 3.1 Let X 1, X,..., X be rdom smple of size from expoetil popultio X with me θ x d vrice θx d let Y 1, Y,..., Y m be rdom smple of size m from other expoetil popultio Y with me θ y d vrice θy where 5

27 X d Y re idepedet. Let k p,x d k p,y be the 100pth percetiles from popultios X d Y respectively. The pproximte (1 α)100% cofidece itervl for the rtio of the percetiles k p,x d k p,y is give by ( ) ˆk p,x 1 exp ± Z (1 α ˆk ) p,y + 1 m. (33) Proof We kow tht k p,x θ x l(1 p) d k p,y θ y l(1 p) (34) d the ubised estimtors of k p,x d k p,y re ˆk p,x X l(1 p) d ˆkp,y Ȳ l(1 p). (35) respectively. The ubised estimtor of k p rtio deoted by ˆk p rtio is give by ˆk p rtio ˆk p,x ˆk p,y X l(1 p) Ȳ l(1 p) X Ȳ. (36) Now we eed to fid the vrice of the ˆk p rtio. This c be doe by itroducig turl logrithms d usig the delt method to compute the vrice. l(ˆk p rtio) l ( ) X Ȳ l( X) l(ȳ ). (37) The ext few equtios employ the delt method to compute the vrice of l(ˆk p rtio). V r(l(ˆk p rtio)) 6

28 [ d l(ˆk p rtio) d X ] [ d l(ˆk p rtio) V r( X) 0 dȳ 0 V r(ȳ ) ] [ ] d l(ˆk p rtio). d X d l(ˆk p rtio) dȳ The vrice covrice mtrix hs zero etries becuse X d Y re idepedet d their covrice is zero. Hece V r(l(ˆk p rtio)) [ 1 X 1 Ȳ ] [ σ x 0 σy 0 m ] [ 1 X 1 Ȳ ]. (38) V r(l(ˆk p rtio)) σ x X + σ y mȳ, (39) V r(l(ˆk p rtio)) d the estimted vrice of the l(ˆk p rtio) is θ x X + θ y (40) mȳ V r(l(ˆk p rtio)) X X + Ȳ mȳ, (41) V r l(ˆk p rtio) m. (4) The (1 α)100% cofidece itervl for the l(k p rtio) c be computed s l( X) l(ȳ ) ± Z (1 α ) m (43) d expoetitig the expressio we hve the (1 α)100% cofidece itervl for the k p rtio s ( ) X 1 Ȳ exp ± Z (1 α ) + 1 m. 7

29 3.3 Simultio Results To test this method, simultios were doe. Two rdom smples were geerted usig the R sttisticl softwre [8]. The first smple ws geerted from expoetil distributio with me fixed t 0.1 d the secod smple ws geerted from expoetil distributio with me fixed t The simultio process ivolved rus for ech differet set of smple sizes d the resultig empiricl coverge rtes were recorded. T ble o the followig pge shows the empiricl coverge rtes for few sets of smple sizes. The empiricl coverge c be see to coverge to 0.95 i F igure. 8

30 Tble : Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Expoetil popultios. percetiles m 90% 95% 99% p p p p

31 I F igure, the vlues 1 5 o the x xis hve bee llocted to sets of smples sizes i icresig order. O the y xis we hve the empiricl coverge rtes for 95% cofidece itervl t p For the first cse where < m we hve 1,, 3, 4 d 5 correspodig to to the (10, 50), (50, 100), (100, 00), (150, 50) d (00, 500) smple size combitios. For the secod cse where m we hve 1,, 3, 4 d 5 correspodig to to the (10, 10), (50, 50), (100, 100), (00, 00) d (500, 500) smple size combitios. For the third cse where > m we hve 1,, 3, 4 d 5 correspodig to to the (50, 10), (100, 50), (00, 100), (50, 150) d (500, 00) smple size combitios. Figure : Coverge Rtes vs Smple Size for Rtio of Expoetil Percetiles t p

32 4 UNIFORM DISTRIBUTION Let X 1, X,..., X be rdom smple from uiform popultio with miimum d mximum b. The the p.d.f. of X is give by f(x) 1 b x b. (44) Just like y other cotiuous distributio, the cumultive distributio fuctio (c.d.f) c be esily mipulted to come up with formul for computig the percetiles F (x) P (X k p ) kp 1 b dx k p b p. (45) Solvig for k p we hve k p + (b )p (46) where k p deotes the 100pth percetile. For us to estimte the ukow prmeters d b, we eed to fid ubised estimtors of both prmeters. 4.1 Ubised Estimtors of d b Sice d b re the popultio miimum d popultio mximum, the first d lst order sttistics re the most likelihood estimtors of d b respectively. Order sttistics re observtios of rdom smple rrged, or ordered i mgitude from the smllest to the lrgest [5]. Let X 1, X,..., X be rdom smple from uiform popultio with miimum d mximum b d let X (1), X (),..., X () be the order sttistics ssocited with the rdom smple where X (1) d X () re the 31

33 miimum d mximum of X i, respectively. The X (1) d X () re the mximum likelihood estimtors of d b, respectively. Though X (1) d X () re ot exctly ubised estimtors of d b they re symptotic ubised estimtors. Tht is lim E(X (1) ) d lim E(X () ) b. This is show below. The p.d.f. of the rth order sttistics deoted f r (x) is give by f r (x)! (r 1)!1!( 1)! [F (x)]r 1 [1 F (x)] r f(x) < x < b 1 r [5].(47) Substitutig r1 d r for the first d lst order sttistics we hve f 1 (x) [1 F (x)] 1 f(x) (b x) 1 (b ) < x < b (48) d f (x) [F (x)] 1 f(x) (x ) 1 (b ) < x < b [5]. (49) Now we eed to fid E(X (1) ) d E(X () ). E(X (1) ) b (b x) 1 x dx (b ) (b ) b x(b x) 1 dx. Applyig itegrtio by prts we hve u x, du dx, dv (b x) 1, v (b x) E(X (1) ) [ x(b x) (b ) [ x(b x) (b x) (b x)+1 (b ) ( + 1) [ ] x(b x) b (b x)+1 (b ) (b ) ( + 1) ] b ] b dx + b + 1. (50) 3

34 E(X () ) b (x ) 1 x dx (b ) (b ) b x(x ) 1 dx. Applyig itegrtio by prts we hve u x, du dx, dv (x ) 1, v (x ) E(X () ) [ x(x ) (b ) [ x(x ) (b ) [ x(x ) (x ) (x )+1 ( + 1) (x )+1 (b ) (b ) ( + 1) ] b dx b b + 1. (51) From bove lim E(X (1) ) d lim E(X () ) b d the two re the best miimum vrice ubised estimtors of d b respectively. Now we c estimte k p deoted ˆk p s follows, ] b ] b ˆk p X (1) + (X () X (1) )p (1 p)x (1) + px (). (5) Sice we re buildig cofidece itervls we eed the vrice of ˆk p. V r( ˆk p ) (1 p) V r(x (1) ) + p V r(x () ) + p(1 p)cov(x (1) X () ). (53) The lst term of (53) exists becuse X (1) d X () re ot idepedet. We begi by computig the vrice of X (1) s V r(x (1) ) E(X (1)) (E(X (1) )) 33

35 where E(X (1)) b (b x) 1 x dx (itegrtio by prts) (b ) (b ) b x (b x) 1 dx u x, du xdx, dv (b x) 1, v (b x) E(X (1)) [ x (b x) (b ) x(b x) ] b dx s x, ds, dt (b x), t (b x) E(X (1)) [ x (b x) + 1 [ x(b x) +1 + (b ) ]] b (b x) +1 dx E(X (1)) [ [ 1 x(b x) x (b x) +1 (b ) (b ) (b ) ( + 1)( + ) (b x)+ ]] b ( + 1)( + ) (54) d therefore ( V r(x (1) ) (b ) (b ) ( + 1)( + ) + b ) + 1 (b ) ( + 1) ( + ). (55) Next we compute the vrice of X () s V r(x () ) E(X ()) (E(X () )) 34

36 where E(X ()) b (x ) 1 x dx (itegrtio by prts) (b ) (b ) b x (x ) 1 dx u x, du xdx, dv (x ) 1, v (x ) E(X ()) [ x (x ) (b ) x(x ) ] b dx s x, ds, dt (x ), t (x ) E(X ()) [ x (x ) 1 [ x(x ) +1 1 (b ) ]] b (x ) +1 dx E(X ()) [ [ 1 x(x ) x (x ) +1 + (b ) + 1 b b(b ) (b ) ( + 1)( + ) (x )+ ]] b ( + 1)( + ) (56) d so ( V r(x () ) b b(b ) (b ) ( + 1)( + ) b b ) + 1 (b ) ( + 1) ( + ). (57) Lstly we eed to compute the covrice of X (1) d X () s Cov(X (1) X () ) E(X (1) X () ) E(X (1) )E(X () ). (58) 35

37 The joit p.d.f of X (1) d X () is give by f 1, (x (1), x () ) Let X (1) x d X () y 1 (b ) ( 1)(x () x (1) ) < x (1) x () < b []. (59) E(X (1) X () ) 1 (b ) ( 1) (b ) ( 1) (b ) b y b y b [ y y xy( 1)(y x) dxdy xy(y x) dxdy ] x(y x) dx } {{ } 1 dy. First we itegrte 1 usig itegrtio by prts (1) y x(y x) dx x(y x) [ x(y x) 1 1 (y ) y u x, du dx, dv (y x), v (y x) 1 dx 1 (y x) ( 1) (y ) ( 1). ] y (y x) 1 1 Pluggig (1) bck to our equtio d usig itegrtio by prts we hve E(X (1) X () ) ( 1) (b ) b [ ] (y ) 1 (y ) y + dy 1 ( 1) 1 b (b ) y(y ) 1 dy + y(y ) dy }{{}}{{} b 3 36

38 where () b y(y ) 1 dy, [ y(y ) ] (y ) b dy [ ] y(y ) b (y )+1 ( + 1) b(b ) (b ) u y, du dy, dv (y ) 1, v (y ) d (3) b y(y ) dy, [ y(y ) +1 ] (y ) +1 b dx [ ] y(y ) +1 b (y )+ + 1 ( + 1)( + ) b(b ) u y, du dy, dv (y ), v (b )+ ( + 1)( + ). (y ) Puttig () d (3) together we hve 1 [([b(b ) (b ) hece E(X (1) X () ) ] [ (b )+1 b(b ) E(X (1) X () ) ])] (b )+ ( + 1)( + ) )] 1 [(b(b ) (b )+1 b(b )+1 (b )+ + (b ) ( + 1)( + ) (b ) E(X (1) X () ) b + 1 b + + b(b ) + 1 (b ) ( + 1)( + ) (b ) + 1 (b ) ( + 1)( + ). (60) 37

39 Now we hve d Cov(X (1) X () ) E(X (1) X () ) E(X (1) )E(X () ) (b ) b (b ) ( + 1)( + ) (b ) ( + 1) ( + ) ( + b ) ( b b ) (61) V r( ˆk p ) (1 p) V r(x (1) ) + p V r(x () ) + p(1 p)cov(x (1) X () ) ( ) ( ) (b ) (1 p) (b ) + p ( + 1) ( + ) ( + 1) ( + ) ( ) (b ) +p(1 p) ( + 1) ( + ) V r( ˆk p ) ( ) (b ) ((1 p) + p + p(1 p) ) (6) ( + 1) ( + ) d the estimted vrice of ˆk p deoted V r( ˆk p ) is ( ) V r( ˆk (X() X (1) ) ((1 p ) p) + p + p(1 p) ). (63) ( + 1) ( + ) 4. Approximte Cofidece Itervl for the Rtio of Percetiles from Two Idepedet Uiform Distributios I this sectio, we re goig to develop method of computig the (1 α)100% cofidece itervls for the rtio of two uiform percetiles. Just like the previous two cses, these two percetiles must come from two idepedet expoetil distributios d they must be the sme 100pth percetile. For exmple, if we use the 45th percetile from the first distributio the we must use the 45th percetile from the 38

40 secod distributio. The popultio prmeters d smple sizes of the two smples eed ot be equl. Theorem 4.1 Let X 1, X,..., X be rdom smple of size from uiform popultio X with miimum d mximum b d let Y 1, Y,..., Y m be other rdom smple of size m from other expoetil popultio Y with miimum c d mximum d where X d Y re idepedet. Let k p,x d k p,y be the 100pth percetiles from popultios X d Y respectively. The pproximte (1 α)100% cofidece itervl for the rtio of the percetiles k p,x d k p,y deoted kp,x k p,y ˆk p,x exp ± Z (1 α ˆk ) p,y V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y is give by. (64) Proof We kow tht k p,x + (b )p d k p,y c + (d c)p (65) d the respective ubised estimtors of k p,x d k p,y re ˆk p,x (1 p)x (1) + px () d ˆk p,y (1 p)y (1) + py (m). (66) The vrices of these ubised estimtors ˆk p,x d ˆk p,y re ( ) (b ) ((1 V r(ˆk p,x ) p) + p + p(1 p) ) ( + 1) ( + ) d ( ) (d c) (m(1 V r(ˆk p,y ) p) + mp + p(1 p) ) (67) (m + 1) (m + ) 39

41 d their estimted vrices re d ( ) V r(ˆk (X() X (1) ) ((1 p,x ) p) + p + p(1 p) ) ( + 1) ( + ) ( ) V r(ˆk (Y() Y (1) ) (m(1 p,y ) p) + mp + p(1 p) ). (68) (m + 1) (m + ) The estimted k p rtio deoted by ˆk p rtio is give by ˆk p rtio ˆk p,x ˆk p,y. (69) Now we eed to fid the vrice of the ˆk p rtio. This c be simplified by itroducig turl logrithms d usig the delt method to compute the vrice. ) l(ˆk p rtio) l ( ˆkp,x ˆk p,y l(ˆk p,x ) l(ˆk p,y ). (70) The ext few equtios employ the delt method to compute the vrice of l(ˆk p rtio). [ d l(ˆkp rtio) dˆk p,x V r(l(ˆk p rtio)) d l(ˆk p rtio) ] [ V r(ˆk p,x ) 0 dˆk p,y 0 V r(ˆk p,y ) ] d l(ˆk p rtio) dˆk p,x d l(ˆk p rtio) dˆk p,y The vrice covrice mtrix hs zero etries becuse X d Y re idepedet. d their covrice is zero. [ ] [ ] [ ] 1 1 V r(l(ˆk p rtio)) ˆk 1 V r(ˆk p,x ) 0 dˆk p,x p,x dˆk p,y 0 V r(ˆk p,y ) 1 dˆk p,y. (71) Hece V r(l(ˆk p rtio)) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y (7) 40

42 d the estimted vrice of the l(ˆk p rtio) is V r l(ˆk p rtio) V r(ˆk p,x ) + ˆk p,x V r(ˆk p,y ) ˆk p,y. (73) The (1 α)100% cofidece itervl for the l(k p rtio) c be computed s l(ˆk p,x ) l(ˆk p,y ) ± Z (1 α ) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y (74) d expoetitig the expressio we hve the (1 α)100% cofidece itervl for the k p rtio s ˆk p,x exp ± Z (1 α ˆk p,y ) V r(ˆk p,x ) ˆk p,x + V r(ˆk p,y ) ˆk p,y. 41

43 4.3 Simultio Results To test this method of buildig cofidece itervls for the rtio of uiform percetiles, simultios were doe. Two rdom rdom smples were geerted usig the R sttisticl softwre [8]. The first rdom smple ws geerted from uiform distributio with miimum d mximum fixed t 1 d 3 respectively d the secod smple ws geerted from uiform distributio with miimum d mximum fixed t d 5 respectively. The simultio process ivolved rus for ech set of smple sizes d the resultig empiricl coverge rtes were recorded. T ble 3 shows some of the empiricl coverges rtes from the simultios. The empiricl coverge c be see to coverge to 0.95 i F igure 3. 4

44 Tble 3: Empiricl Coverge Rtes of 90%, 95% d 99% Cofidece Itervls for the Rtio of Percetiles from Two Uiform popultios. percetiles m 90% 95% 99% p p p p

45 I F igure 3, the vlues 1 5 o the x xis hve bee llocted to sets of smples sizes i icresig order. O the y xis we hve the empiricl coverge rtes for 95% cofidece itervl t p For the first cse where < m we hve 1,, 3, 4 d 5 correspodig to to the (10, 50), (50, 100), (100, 00), (150, 50) d (00, 500) smple size combitios. For the secod cse where m we hve 1,, 3, 4 d 5 correspodig to to the (10, 10), (50, 50), (100, 100), (00, 00) d (500, 500) smple size combitios. For the third cse where > m we hve 1,, 3, 4 d 5 correspodig to to the (50, 10), (100, 50), (00, 100), (50, 150) d (500, 00) smple size combitios. Figure 3: Coverge Rtes vs Smple Size for Rtio of Uiform Percetiles t p

46 5 CONCLUSION The method used to compute pproximte cofidece itervl for rtio of percetiles from the three distributios c be exteded to other distributios. Typiclly, the pproximte coverge probbility for rtio c be improved by first pplyig the delt method to the turl log fuctio. The itervl for the rtio c be foud by expoetitig the ed poits of the itervl foud bsed o the turl log trsformtio. 5.1 Results From the simultios results i T bles 1 3, it c be see tht the empiricl coverge rtes re lrgely depedet o the smple sizes. Obviously, it c be see tht the lrger the smple size the better the coverge. There re few vritios which correspod to whether the smples sizes i questio re equl or ot equl d other vritios my occur s result of chgig the popultio prmeters. Whe the smple sizes re uequl, the coverge c be low if the lrger of the two smple sizes correspoded to the popultio tht hd the lrger vribility. For the uiform distributio, the coverge is slow to coverge to the specified level of cofidece. This my be due to the fct tht the order sttistics re bised estimtors of the prmeters or it my be cused by the kurtosis preset i the uiform distributio. 5. Limittios There re two mi limittios ssocited with this method of computig cofidece itervls. 45

47 First is the fct tht this method oly works for popultios whose uderlyig distributio is kow. If oe iteds to pply this method o y collected dt, the oe must determie wht kid of distributio the dt comes from otherwise the method cot be used. A possible distributio-free method kow s bootstrppig my be solutio. Secodly the method is depedet o smple size d my ot be relible for very smll sizes. For the uiform distributio this method my be oly relible for smple sizes greter th or equl to 50. This method lso relies o the cetrl limit theorem thus the reso for the use of the Z-sttistic. Other mior problems my rise from the difficulty to determie the mximum likelihood estimtors d the ubised estimtors for the popultio prmeters. This c be see i the cse of the uiform distributio where order sttistics were used d this mde the whole process quite legthy d cumbersome. 46

48 BIBLIOGRAPHY [1] S. Chkrborti d J. Li (007), Cofidece itervl estimtio of orml percetile, The Americ Sttistici, Volume 61, No. 4, Published by Americ Sttisticl Associtio Nov. (331). [] H. A. Dvid (1981), Order Sttistics, d editio, Published by Wiley, (10). [3] W. G. Gilchrist (000), Sttisticl Modelig with Qutile Fuctios, Published by Chpm d Hll/CRC, (37, 41, 43). [4] R. V. Hogg, J. W. Mcke d A. T. Crig (005), Itroductio to Mthemticl Sttistics, 6th editio, Published by Perso Pretice Hll, (15-30). [5] R. V. Hogg d E. A. Tis (005), Probbility d Sttisticl Iferece, 7th editio, Published by Perso Pretice Hll, (83, 337, 340, 394, 397). [6] D. S. Moore (001), The Bsic Prctice of Sttistics, 3rd editio, Published by W. H. Freem d Compy (59). [7] R. M. Price d D. G. Boett (00), Distributio free cofidece itervls for differece d rtio of medis, J. Comput. Sttist. Simul., Volume 7(), Published by Tylor d Frcis Ltd, (119). [8] R Developmet Core Tem (008), R: A Lguge d Eviromet for Sttisticl Computig, by R Foudtio for Sttisticl Computig, Vie, Austri. ISBN , URL 47

49 APPENDICES Appedix A: R Code for the CI of Norml Percetiles Rtio [8] cofidece itervl fuctio(1,,mu1,sig1,mu,sig,lph,p){ zqorm(1-lph/) zpqorm(p) #z for the pth percetile #smple1(isert smple 1 here) #smple(isert smple here) smple1rorm(1,mu1,sig1) #rdom orml smple 1 smplerorm(,mu,sig) #rdom orml smple c1 (sqrt((1-1)/)*gmm((1-1)/))/gmm(1/) #costt for removig std dev bis c (sqrt((-1)/)*gmm((-1)/))/gmm(/) #costt for removig std dev bis #lc1 log(sqrt((1-1)/)) + lgmm((1-1)/) - lgmm(1/) # if 1 is lrge (outside gmm fuctio) #c1 exp(lc1) #lc log(sqrt((-1)/)) + lgmm((-1)/) - lgmm(/) # if is lrge (outside gmm fuctio) #c exp(lc) me1me(smple1) #me of smple 1 meme(smple) #me of smple sd1sd(smple1) #stdrd devitio of smple 1 48

50 sdsd(smple) #stdrd devitio of smple kp1me1+(c1*zp*sd1) # MVUE of the pth percetile 1 kpme+(c*zp*sd) # MVUE of the pth percetile vr kp1 ht(sd1^ /1)*(1 + 1*zp^ *(c1^ - 1)) # estimted vrice of kp1 vr kp ht(sd^ /)*(1 + *zp^ *(c^ - 1)) # estimted vrice of kp kp rtiokp1/kp # estimted percetile rtio vr lrtio vr kp1 ht/kp1^ + vr kp ht/kp^ #vrice of the turl log of kp rtio lb kp rtio*exp(-z*sqrt(vr lrtio)) #lower limit of the percetile rtio cofidece itervl ub kp rtio*exp(z*sqrt(vr lrtio)) #upper limit of the percetile rtio cofidece itervl list(c1,c,me1,me,sd1,sd,kp1,kp,vr kp1 ht,vr kp ht,lb,ub) #list ll the sttistics defied bove tht you desire to compute } cofidece itervl(00,100,0,3,30,,.05,.1) # isert your vlues here 49

51 Appedix B: R Code for the CI of Expoetil Percetiles Rtio[8] cofidece itervl fuctio(1,,mu1,mu,lph,p){ zqorm(1-lph/) #100pth percetile of the stdrd orml N(0,1) #smple1(isert smple 1) #smple(isert smple ) smple1rexp(1,mu1) #rdomly geerted expoetil smple 1 smplerexp(,mu) #rdomly geerted expoetil smple me1me(smple1) #me of smple 1 meme(smple) #me of smple kp1 -me1*log(1-p) #100pth percetile of smple 1 kp1 -me*log(1-p) #100pth percetile of smple rtio htkp1/kp #rtio of the two 100pth percetiles vr lrtio 1/1 + 1/ #vrice of the turl log of rtio ht lb rtio ht*exp(-z*sqrt(vr lrtio)) #lower boud of cofidece itervl ub rtio ht*exp(z*sqrt(vr lrtio)) #upper boud of cofidece itervl list(me1,me,kp1,kp,rtio ht,lb,ub) #list ll the sttistics required } cofidece itervl(100,00,1/10,1/0,.05,.1) #Isert your vlues here 50

52 Appedix C: R Code for the CI of Uiform Percetiles Rtio [8] cofidece itervl fuctio(1,,,b,c,d,lph,p){ zqorm(1-lph/) #smple1(isert smple 1 here) #smple(isert smple here) smple1ruif(1,,b) #rdom uiform smple 1 smpleruif(,c,d) #rdom uiform smple xsort(smple1) # sort smple 1 scedig ysort(smple) # sort smple scedig kp1x[1]+(x[1]-x[1])*p # MVUE of the 100pth percetile 1 kpy[1]+(y[]-y[1])*p # MVUE of the 100pth percetile vr kp1(((x[1]-x[1])^ )*((1*(1-p)^ )+(1*p^ )+(*p*(1-p))))/ ((((1+1)^ )* (1+))*(kp1^ )) #vrice of kp1 vr kp(((y[]-y[1])^ )*((*(1-p)^ )+(*p^ )+(*p*(1-p))))/ ((((+1)^ )* (+))*(kp^ )) #vrice of kp kp rtiokp1/kp #estimted percetile rtio vr lrtio (vr kp1)+(vr kp) #vrice of turl log of percetile rtio lb kp rtio*exp(-z*sqrt(vr lrtio)) #lower limit of percetile rtio cofidece itervl ub kp rtio*exp(z*sqrt(vr lrtio)) #upper limit of percetile 51

53 rtio cofidece itervl list(me(smple1),me(smple),kp1,kp,kp rtio,lb,ub) #list desired sttistics } cofidece itervl(00,100,1,3,,5,.05,.1) # isert your vlues here 5

54 VITA PIUS MUINDI Persol Dt: Eductio: Professiol Experiece: Plce of Birth: Mchkos, Key Mritl Sttus: Mrried M.S. Mthemtics (Sttistics), Est Teessee Stte Uiversity, Johso City, Teessee 008 B.A. Mthemtics d Ecoomics, Uiversity of Nirobi, Nirobi, Key 1999 Grdute Assistt, Est Teessee Stte Uiversity, Johso City, Teessee, Techer, Khls Girls Secodry School, Nirobi, Key, Reserch Assistt, Reserch Solutios, Nirobi, Key,

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0

: : 8.2. Test About a Population Mean. STT 351 Hypotheses Testing Case I: A Normal Population with Known. - null hypothesis states 0 8.2. Test About Popultio Me. Cse I: A Norml Popultio with Kow. H - ull hypothesis sttes. X1, X 2,..., X - rdom smple of size from the orml popultio. The the smple me X N, / X X Whe H is true. X 8.2.1.

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Inference on One Population Mean Hypothesis Testing

Inference on One Population Mean Hypothesis Testing Iferece o Oe Popultio Me ypothesis Testig Scerio 1. Whe the popultio is orml, d the popultio vrice is kow i. i. d. Dt : X 1, X,, X ~ N(, ypothesis test, for istce: Exmple: : : : : : 5'7" (ull hypothesis:

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

King Fahd University of Petroleum & Minerals

King Fahd University of Petroleum & Minerals Kig Fhd Uiversity of Petroleum & Mierls DEPARTMENT OF MATHEMATICAL CIENCE Techicl Report eries TR 434 April 04 A Direct Proof of the Joit Momet Geertig Fuctio of mple Me d Vrice Awr H. Jorder d A. Lrdji

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

2017/2018 SEMESTER 1 COMMON TEST

2017/2018 SEMESTER 1 COMMON TEST 07/08 SEMESTER COMMON TEST Course : Diplom i Electroics, Computer & Commuictios Egieerig Diplom i Electroic Systems Diplom i Telemtics & Medi Techology Diplom i Electricl Egieerig with Eco-Desig Diplom

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Maximum Likelihood Estimation of Two Unknown. Parameter of Beta-Weibull Distribution. under Type II Censored Samples

Maximum Likelihood Estimation of Two Unknown. Parameter of Beta-Weibull Distribution. under Type II Censored Samples Applied Mthemticl Scieces, Vol. 6, 12, o. 48, 2369-2384 Mximum Likelihood Estimtio of Two Ukow Prmeter of Bet-Weibull Distributio uder Type II Cesored Smples M. R. Mhmoud d R. M. Mdouh Istitute of Sttisticl

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

CHAPTER 6: USING MULTIPLE REGRESSION

CHAPTER 6: USING MULTIPLE REGRESSION CHAPTER 6: USING MULTIPLE REGRESSION There re my situtios i which oe wts to predict the vlue the depedet vrible from the vlue of oe or more idepedet vribles. Typiclly: idepedet vribles re esily mesurble

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Introduction to mathematical Statistics

Introduction to mathematical Statistics More ttistics tutoril t wwwdumblittledoctorcom Itroductio to mthemticl ttistics Chpter 7 ypothesis Testig Exmple (ull hypothesis) : the verge height is 5 8 or more ( : μ 5'8" ) (ltertive hypothesis) :

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Hypothesis Test We assume, calculate and conclude.

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: Hypothesis Test We assume, calculate and conclude. Hypothesis Test We ssume, clculte d coclude. VIII. HYPOTHESIS TEST 8.. P-Vlue, Test Sttistic d Hypothesis Test [MATH] Terms for the mkig hypothesis test. Assume tht the uderlyig distributios re either

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Mtemtisk sttistik TENTAMEN I SF94 SANNOLIKHETSTEORI/EAM IN SF94 PROBABILITY THE- ORY WEDNESDAY 8th OCTOBER 5, 8-3 hrs Exmitor : Timo Koski, tel. 7 3747, emil: tjtkoski@kth.se Tillåt hjälpmedel Mes

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

2015/2016 SEMESTER 2 SEMESTRAL EXAMINATION

2015/2016 SEMESTER 2 SEMESTRAL EXAMINATION 05/06 SEMESTER SEMESTRA EXAMINATION Course : Diplom i Electroics, Computer & Commuictios Egieerig Diplom i Aerospce Systems & Mgemet Diplom i Electricl Egieerig with Eco-Desig Diplom i Mechtroics Egieerig

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

9.1 Sequences & Series: Convergence & Divergence

9.1 Sequences & Series: Convergence & Divergence Notes 9.: Cov & Div of Seq & Ser 9. Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers,

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

PEPERIKSAAN PERCUBAAN SPM TAHUN 2007 ADDITIONAL MATHEMATICS. Form Five. Paper 2. Two hours and thirty minutes

PEPERIKSAAN PERCUBAAN SPM TAHUN 2007 ADDITIONAL MATHEMATICS. Form Five. Paper 2. Two hours and thirty minutes SULIT 347/ 347/ Form Five Additiol Mthemtics Pper September 007 ½ hours PEPERIKSAAN PERCUBAAN SPM TAHUN 007 ADDITIONAL MATHEMATICS Form Five Pper Two hours d thirty miutes DO NOT OPEN THIS QUESTION PAPER

More information

ELEG 3143 Probability & Stochastic Process Ch. 5 Elements of Statistics

ELEG 3143 Probability & Stochastic Process Ch. 5 Elements of Statistics Deprtet of Electricl Egieerig Uiversity of Arkss ELEG 3143 Probbility & Stochstic Process Ch. 5 Eleets of Sttistics Dr. Jigxi Wu wuj@urk.edu OUTLINE Itroductio: wht is sttistics? Sple e d sple vrice Cofidece

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

Asymptotic Theory Greene Ch. 4, App. D, Kennedy App. C, R scripts: module3s1a, module3s1b, module3s1c, module3s1d

Asymptotic Theory Greene Ch. 4, App. D, Kennedy App. C, R scripts: module3s1a, module3s1b, module3s1c, module3s1d Asymptotic Theory Greee Ch. 4, App. D, Keey App. C, R scripts: moule3s, moule3sb, moule3sc, moule3s Overview of key cocepts Cosier rom vrible x tht itself is fuctio of other rom vribles smple size (e.g

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists. ANALYSIS HW 3 CLAY SHONKWILER () Fid ll smooth fuctios f : R R with the property f(x + y) = f(x) + f(y) for ll rel x, y. Demostrtio: Let f be such fuctio. Sice f is smooth, f exists. The The f f(x + h)

More information

Background 1. Cramer-Rao inequality

Background 1. Cramer-Rao inequality Bro-06, Lecture, 60506 D/Stt/Bro-06/tex wwwmstqueesuc/ blevit/ Observtio vector, dt: Bckgroud Crmer-Ro iequlity X (X,, X X R Here dt c be rel- or vector vlued, compoets of the dt c be idepedet or depedet,

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17 CS 70 Discrete Mthemtics d Proility Theory Sprig 206 Ro d Wlrd Lecture 7 Vrice We hve see i the previous ote tht if we toss coi times with is p, the the expected umer of heds is p. Wht this mes is tht

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

INTEGRATION IN THEORY

INTEGRATION IN THEORY CHATER 5 INTEGRATION IN THEORY 5.1 AREA AROXIMATION 5.1.1 SUMMATION NOTATION Fibocci Sequece First, exmple of fmous sequece of umbers. This is commoly ttributed to the mthemtici Fibocci of is, lthough

More information

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization

Uncertainty Analysis for Uncorrelated Input Quantities and a Generalization WHITE PAPER Ucertity Alysis for Ucorrelted Iput Qutities d Geerliztio Welch-Stterthwite Formul Abstrct The Guide to the Expressio of Ucertity i Mesuremet (GUM) hs bee widely dopted i the differet fields

More information

8.3 Sequences & Series: Convergence & Divergence

8.3 Sequences & Series: Convergence & Divergence 8.3 Sequeces & Series: Covergece & Divergece A sequece is simply list of thigs geerted by rule More formlly, sequece is fuctio whose domi is the set of positive itegers, or turl umbers,,,3,. The rge of

More information

Closed Newton-Cotes Integration

Closed Newton-Cotes Integration Closed Newto-Cotes Itegrtio Jmes Keeslig This documet will discuss Newto-Cotes Itegrtio. Other methods of umericl itegrtio will be discussed i other posts. The other methods will iclude the Trpezoidl Rule,

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

lecture 24: Gaussian quadrature rules: fundamentals

lecture 24: Gaussian quadrature rules: fundamentals 133 lecture 24: Gussi qudrture rules: fudmetls 3.4 Gussi qudrture It is cler tht the trpezoid rule, b 2 f ()+ f (b), exctly itegrtes lier polyomils, but ot ll qudrtics. I fct, oe c show tht o qudrture

More information

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise

Particle in a Box. and the state function is. In this case, the Hermitian operator. The b.c. restrict us to 0 x a. x A sin for 0 x a, and 0 otherwise Prticle i Box We must hve me where = 1,,3 Solvig for E, π h E = = where = 1,,3, m 8m d the stte fuctio is x A si for 0 x, d 0 otherwise x ˆ d KE V. m dx I this cse, the Hermiti opertor 0iside the box The

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Chapter 10. U-statistics Statistical Functionals and V-Statistics

Chapter 10. U-statistics Statistical Functionals and V-Statistics , respectively. Chpter 0 U-sttistics Whe oe is willig to ssume the existece of simple rdom smple X,...,X, U- sttistics geerlize commo otios of ubised estimtio such s the smple me d the ubised smple vrice

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

b a 2 ((g(x))2 (f(x)) 2 dx

b a 2 ((g(x))2 (f(x)) 2 dx Clc II Fll 005 MATH Nme: T3 Istructios: Write swers to problems o seprte pper. You my NOT use clcultors or y electroic devices or otes of y kid. Ech st rred problem is extr credit d ech is worth 5 poits.

More information

Lesson-2 PROGRESSIONS AND SERIES

Lesson-2 PROGRESSIONS AND SERIES Lesso- PROGRESSIONS AND SERIES Arithmetic Progressio: A sequece of terms is sid to be i rithmetic progressio (A.P) whe the differece betwee y term d its preceedig term is fixed costt. This costt is clled

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n. Sclrs-9.0-ADV- Algebric Tricks d Where Tylor Polyomils Come From 207.04.07 A.docx Pge of Algebric tricks ivolvig x. You c use lgebric tricks to simplify workig with the Tylor polyomils of certi fuctios..

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

ENGINEERING PROBABILITY AND STATISTICS

ENGINEERING PROBABILITY AND STATISTICS ENGINEERING PROBABILITY AND STATISTICS DISPERSION, MEAN, MEDIAN, AND MODE VALUES If X, X,, X represet the vlues of rdom smple of items or oservtios, the rithmetic me of these items or oservtios, deoted

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property

=> PARALLEL INTERCONNECTION. Basic Properties LTI Systems. The Commutative Property. Convolution. The Commutative Property. The Distributive Property Lier Time-Ivrit Bsic Properties LTI The Commuttive Property The Distributive Property The Associtive Property Ti -6.4 / Chpter Covolutio y ] x ] ] x ]* ] x ] ] y] y ( t ) + x( τ ) h( t τ ) dτ x( t) * h(

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 SUTCLIFFE S NOTES: CALCULUS SWOKOWSKI S CHAPTER Ifiite Series.5 Altertig Series d Absolute Covergece Next, let us cosider series with both positive d egtive terms. The simplest d most useful is ltertig

More information