Organizing Teacher Education In German Universities

Size: px
Start display at page:

Download "Organizing Teacher Education In German Universities"

Transcription

1 An Operatons Research Approach Bob Grün Unversty of Kaserslautern Department of Mathematcs AG Optmzaton Research Semnar OptALI: Optmzaton and ts Applcatons n Learnng and Industry

2 Outlne 1 Introducton European Unversty System Study Plans for Teacher Tranng n Germany 2 Varables Constrants IP Relaxaton Computatonal Results 3 Current Problems and Further Research 2 / 32

3 Introducton European Unversty System European Unversty System (Bologna Accords) 3 years DOCTORAL STUDIES 2 years MASTER 3 years BACHELOR SECONDARY EDUCATION 3 / 32

4 Introducton Study Plans for Teacher Tranng n Germany General Bachelor Structure for Teacher Tranng educatonal scences 50 credts 1st subject 60 credts 2nd subject 60 credts practcal tranng bachelor thess 10 credts 4 / 32

5 Introducton Study Plans for Teacher Tranng n Germany Man Task The unversty of Kaserslautern wants to provde a study plan to the students: at the begnnng of ther studes durng ther studes f they have already taken some courses f they have preferences on dfferent lectures 5 / 32

6 Introducton Study Plans for Teacher Tranng n Germany Advantages: students don t loose a semester due to plannng mstakes free tme slots can be computed for new lectures Constructon Strateges untl 2008 manual constructon constructon by heurstcs wth a frst verson of StuPlan from 2012 constructon wth the computaton of an nteger program 6 / 32

7 Introducton Study Plans for Teacher Tranng n Germany 6 / 32

8 Introducton Study Plans for Teacher Tranng n Germany 6 / 32

9 Introducton Study Plans for Teacher Tranng n Germany 6 / 32

10 Introducton Study Plans for Teacher Tranng n Germany 6 / 32

11 Introducton Study Plans for Teacher Tranng n Germany Advantages: students don t loose a semester due to plannng mstakes free tme slots can be computed for new lectures Constructon Strateges untl 2008 manual constructon constructon by heurstcs wth a frst verson of StuPlan from 2012 constructon wth the computaton of an nteger program 6 / 32

12 Introducton Study Plans for Teacher Tranng n Germany Lecture data: current semester (WS 11/12) prevous semester (SS 11) assumpton that lecture tmetable does not change n the next semesters Sem 1 WS 11/12 Sem 2 Sem 3 Sem 4 Sem 5 Sem 6 SS 11 WS 11/12 SS 11 WS 11/12 SS 11 7 / 32

13 Introducton Study Plans for Teacher Tranng n Germany 8 / 32

14 Introducton Study Plans for Teacher Tranng n Germany 9 / 32

15 Varables Varables { 1 f course c s planned - course varables c C x c = 0 f course c s not planned { 1 f date d s planned - date varables d D x d = 0 f date d s not planned 10 / 32

16 Varables Course 1 (2 oblgatory lectures), offered n each semester (1...6) has: one course varable x1 c 12 date varables: xc1,s1,1 d, x c1,s1,2 d,..., x c1,s6,1 d, x c1,s6,2 d, where xc,sj,k d s the kth date of lecture n the jth semester Sem 1 Sem 6 Course 1 x d c1,s1,1 Course 1 x d c1,s6,1 8AM Course 6 Course 6 10AM Course 1 x d c1,s1,2 Course 1 x d c1,s6,2 Course 4 Course 4 1PM Course 3 Course 3 Course 6 Course 6 3PM Course 4 Course 4 Course 6 Course 6 11 / 32

17 Constrants Condton 1: Relaton of course and date varables courses c C N Obl (c) x c = d D C(d)=c where N Obl s the number of oblgatory lectures Example: Course 1 x d 2x1 c = x c1,s1,1 d + x c1,s1,2 d + xc1,s2,1 d }{{} + x c1,s2,2 d xc1,s6,1 d }{{} + x c1,s6,2 d }{{} 1st semester 2nd semester 6th semester 12 / 32

18 Constrants Condton 2: Coherent dates n the same semester courses c wth at least 2 oblgatory lectures dates d 1 of course c dates d 2 of course c and Sem(d 1 ) = Sem(d 2 ), x d1 = x d2 Example: Course 1 xc1,s1,1 d = xc1,s1,2 d 1st sem. xc1,s2,1 d = xc1,s2,2 d 2nd sem. xc1,s3,1 d = xc1,s3,2 d 3rd sem.. 8AM 10AM Sem 1 Course 1 Course 6 Course 1 Course 4 x d c1,s1,1 x d c1,s1,2 Sem 2 Course 1 Course 6 Course 1 Course 4 x d c1,s2,1 x d c1,s2,2 13 / 32

19 Constrants Condton 3: Mnmal module credts modules m c C Module(c)=m Example: Module 1 Credts(c) x c MnmalCredts(m) 4x c 1 + 2x c 2 }{{} +4x c 3 + 4x c 4 + 2x c 5 + 4x c 6 10 wth 2 credt ponts 14 / 32

20 Constrants Condton 4: Mnmal 1 course n each submodule submodules sm x c 1 c C SM(c)=sm Example: Submodule 1 x c 1 + x c 2 + x c / 32

21 Constrants Condton 5: Course precedence course requrements ( c pre, c after ) CPre dates d wth C( d) = c after N Obl (c pre ) x d d D C(d)=c pre Sem(d)<Sem(( d)) x d 16 / 32

22 Constrants Example: course 5 after course 1 2xc5,S1,1 d 0 2xc5,S2,1 d xc1,s1,1 d + x c1,s1,2 d 2x d c5,s3,1 }{{} course 5 n 3rd semester xc1,s1,1 d + x c1,s1,2 d + x c1,s2,1 d + x c1,s2,2 d }{{}. course 1 n 2nd semester 8AM 10AM 1PM Sem 1 Course 1 Course 6 Course 1 Course 4 x d c1,s1,1 x d c1,s1,2 Sem 2 Course 1 Course 6 Course 1 Course 4 Course 3 Course 3 Course 5 xc5,s1,1 d Course 5 { }} { Date of course 5 n 1st semester x d c1,s2,1 x d c1,s2,2 x d c5,s2,1 Sem 3 Course 1 Course 6 Course 1 Course 4 Course 3 Course 5 x d c5,s3,1 17 / 32

23 Constrants Condton 6: Submodule precedence submodule requrements ( sm pre dates d wth C( d) = c after x d d D SM(d)=sm pre Sem(d)<Sem( d) x d, c after ) SMPre 18 / 32

24 Constrants Condton 7: Module precedence module requrements ( m pre dates d wth C( d) = c after MnCr(m pre ) x d, c after ) MPre d D M(d)=m pre Sem(d)<Sem( d) Cr(d) x d 19 / 32

25 Constrants Condton 8: No overlappngs of dates semesters s tme blocks b = 1,..., 49 x d 1 d D,Sem(d)=s B S (d) b B E (d) Sem 1 Example: 1st semester, 8AM x d c1,s1,1 }{{} course 1 + xc2,s1,1 d }{{} course 2 + xc6,s1,1 d 1 }{{} course 6 8AM Course 1 Course 6 x d c1,s1,1 xc2,s1,1 d xc6,s1,1 d 20 / 32

26 Constrants Condton 9: Course accompanment accompanyng courses ( c, c Accom ) CAccom semesters s N Obl (c Accom ) d D C(d)=c Sem(d)=s x d N Obl (c ) Example: Course 5 accompaned by course 4 x d d D C(d)=c Accom Sem(d)=s 1st semester : 2xc5,S1,1 d 1xc4,S1,1 d + 1x c4,s1,2 d 2nd semester : 2xc5,S2,1 d 1xc4,S2,1 d + 1x c4,s2,2 d.e. c5 c4. }{{} course 5 } {{. } course 4 21 / 32

27 Constrants Condton 10: Dstrbuton of lectures semesters s S d D Sem(d)=s Example: 1st semester Cr(d) x d MnCr(m) m M S 8AM 10AM 1PM 3PM 2xc1,S1,1 d + 2x c1,s1,2 d xc6,S1,1 d }{{} + 2x c6,s1,2 d }{{} course 1 course 6 Sem 1 Course 1 Course 6 Course 1 Course 4 Course 3 Course 5 Course 4 Course 6 x d c1,s1,1 x d c2,s1,1 x d c6,s1,1 x d c1,s1,2 x d c2,s1,2 x d c4,s1,1 x d c2,s1,3 x d c3,s1,1 x d c5,s1,1 x d c2,s1,4 x d c4,s1,2 x d c6,s1,2 22 / 32

28 Constrants Intal Integer Program mn 0x d + 0x c s.t. condtons 1-10 are fulflled x c, x d {0, 1} 23 / 32

29 IP Relaxaton Relaxaton of constrants (e.g. constrant 3) modules m c C Module(c)=m Credts(c) x c MnmalCredts(m) 3 (m) 24 / 32

30 IP Relaxaton Objectve functon mnmze all relaxaton terms 3,..., 10 multobjectve scalarzaton method 25 / 32

31 IP Relaxaton mn m M (sm pre (sm pre (m pre s.t. 3 (m) +,c after ) SM Pre,c after ) SM Pre,c after ) M Pre 49 s S b=1 4 (sm) sm SM 8 (s, b) (c,c Accom ) C Accom s S semesters 10 (s) d D C(d)=c pre d D C(d)=c after d D C(d)=c after 5 (c pre, d) 6 (sm pre, d) 7 (m pre, d) 9 (c, c Accom, s) relaxed condtons 1-10 are fulflled x c, x d {0, 1} 26 / 32

32 Computatonal Results Gven data: ± 150 bnary course varables ± 1200 bnary date varables ± 1400 constrants ± 1300 nteger constrant relaxaton varables ± non zero coeffcents 27 / 32

33 Computatonal Results CPLEX computatonal results: average computaton tme 3sec ±200 dual smplex operatons (wthout presolvng) ±100 dual smplex operatons (wth presolvng) 28 / 32

34 Current Problems and Further Research Problems the tmetable nput entered by the dfferent departments s often wrong no regstraton to the lectures number of students n each lecture s NOT known 29 / 32

35 Current Problems and Further Research Further research fnd out why CPLEX s so fast multcrtera approach parametrc nteger approach (mn cx s.t. Ax b + α) 30 / 32

36 Current Problems and Further Research Overcredts Overlappngs 31 / 32

37 Thank you for your attenton!

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition

Single-Facility Scheduling over Long Time Horizons by Logic-based Benders Decomposition Sngle-Faclty Schedulng over Long Tme Horzons by Logc-based Benders Decomposton Elvn Coban and J. N. Hooker Tepper School of Busness, Carnege Mellon Unversty ecoban@andrew.cmu.edu, john@hooker.tepper.cmu.edu

More information

A Simple Inventory System

A Simple Inventory System A Smple Inventory System Lawrence M. Leems and Stephen K. Park, Dscrete-Event Smulaton: A Frst Course, Prentce Hall, 2006 Hu Chen Computer Scence Vrgna State Unversty Petersburg, Vrgna February 8, 2017

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 ) Kangweon-Kyungk Math. Jour. 4 1996), No. 1, pp. 7 16 AN ITERATIVE ROW-ACTION METHOD FOR MULTICOMMODITY TRANSPORTATION PROBLEMS Yong Joon Ryang Abstract. The optmzaton problems wth quadratc constrants often

More information

The Minimum Universal Cost Flow in an Infeasible Flow Network

The Minimum Universal Cost Flow in an Infeasible Flow Network Journal of Scences, Islamc Republc of Iran 17(2): 175-180 (2006) Unversty of Tehran, ISSN 1016-1104 http://jscencesutacr The Mnmum Unversal Cost Flow n an Infeasble Flow Network H Saleh Fathabad * M Bagheran

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Computing Correlated Equilibria in Multi-Player Games

Computing Correlated Equilibria in Multi-Player Games Computng Correlated Equlbra n Mult-Player Games Chrstos H. Papadmtrou Presented by Zhanxang Huang December 7th, 2005 1 The Author Dr. Chrstos H. Papadmtrou CS professor at UC Berkley (taught at Harvard,

More information

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals

Simultaneous Optimization of Berth Allocation, Quay Crane Assignment and Quay Crane Scheduling Problems in Container Terminals Smultaneous Optmzaton of Berth Allocaton, Quay Crane Assgnment and Quay Crane Schedulng Problems n Contaner Termnals Necat Aras, Yavuz Türkoğulları, Z. Caner Taşkın, Kuban Altınel Abstract In ths work,

More information

Lecture 20: November 7

Lecture 20: November 7 0-725/36-725: Convex Optmzaton Fall 205 Lecturer: Ryan Tbshran Lecture 20: November 7 Scrbes: Varsha Chnnaobreddy, Joon Sk Km, Lngyao Zhang Note: LaTeX template courtesy of UC Berkeley EECS dept. Dsclamer:

More information

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES

VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES VARIATION OF CONSTANT SUM CONSTRAINT FOR INTEGER MODEL WITH NON UNIFORM VARIABLES BÂRZĂ, Slvu Faculty of Mathematcs-Informatcs Spru Haret Unversty barza_slvu@yahoo.com Abstract Ths paper wants to contnue

More information

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin

LOW BIAS INTEGRATED PATH ESTIMATORS. James M. Calvin Proceedngs of the 007 Wnter Smulaton Conference S G Henderson, B Bller, M-H Hseh, J Shortle, J D Tew, and R R Barton, eds LOW BIAS INTEGRATED PATH ESTIMATORS James M Calvn Department of Computer Scence

More information

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1

Global Optimization of Truss. Structure Design INFORMS J. N. Hooker. Tallys Yunes. Slide 1 Slde 1 Global Optmzaton of Truss Structure Desgn J. N. Hooker Tallys Yunes INFORMS 2010 Truss Structure Desgn Select sze of each bar (possbly zero) to support the load whle mnmzng weght. Bar szes are dscrete.

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

On the Multicriteria Integer Network Flow Problem

On the Multicriteria Integer Network Flow Problem BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 5, No 2 Sofa 2005 On the Multcrtera Integer Network Flow Problem Vassl Vasslev, Marana Nkolova, Maryana Vassleva Insttute of

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem

Interactive Bi-Level Multi-Objective Integer. Non-linear Programming Problem Appled Mathematcal Scences Vol 5 0 no 65 3 33 Interactve B-Level Mult-Objectve Integer Non-lnear Programmng Problem O E Emam Department of Informaton Systems aculty of Computer Scence and nformaton Helwan

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Polynomial Regression Models

Polynomial Regression Models LINEAR REGRESSION ANALYSIS MODULE XII Lecture - 6 Polynomal Regresson Models Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Test of sgnfcance To test the sgnfcance

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem

Integrated approach in solving parallel machine scheduling and location (ScheLoc) problem Internatonal Journal of Industral Engneerng Computatons 7 (2016) 573 584 Contents lsts avalable at GrowngScence Internatonal Journal of Industral Engneerng Computatons homepage: www.growngscence.com/ec

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Mean Field / Variational Approximations

Mean Field / Variational Approximations Mean Feld / Varatonal Appromatons resented by Jose Nuñez 0/24/05 Outlne Introducton Mean Feld Appromaton Structured Mean Feld Weghted Mean Feld Varatonal Methods Introducton roblem: We have dstrbuton but

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Assessing inter-annual and seasonal variability Least square fitting with Matlab: Application to SSTs in the vicinity of Cape Town

Assessing inter-annual and seasonal variability Least square fitting with Matlab: Application to SSTs in the vicinity of Cape Town Assessng nter-annual and seasonal varablty Least square fttng wth Matlab: Applcaton to SSTs n the vcnty of Cape Town Francos Dufos Department of Oceanography/ MARE nsttute Unversty of Cape Town Introducton

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS HCMC Unversty of Pedagogy Thong Nguyen Huu et al. A PROBABILITY-DRIVEN SEARCH ALGORITHM FOR SOLVING MULTI-OBJECTIVE OPTIMIZATION PROBLEMS Thong Nguyen Huu and Hao Tran Van Department of mathematcs-nformaton,

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

A Link Transmission Model for Air Traffic Flow Prediction and Optimization

A Link Transmission Model for Air Traffic Flow Prediction and Optimization School of Aeronautcs and Astronautcs A Ln Transmsson Model for Ar Traffc Flow Predcton and Optmzaton Y Cao and Dengfeng Sun School of Aeronautcs and Astronautcs Purdue Unversty cao20@purdue.edu Aerospace

More information

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ

xp(x µ) = 0 p(x = 0 µ) + 1 p(x = 1 µ) = µ CSE 455/555 Sprng 2013 Homework 7: Parametrc Technques Jason J. Corso Computer Scence and Engneerng SUY at Buffalo jcorso@buffalo.edu Solutons by Yngbo Zhou Ths assgnment does not need to be submtted and

More information

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia

SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Kim Gaik Universiti Tun Hussein Onn Malaysia SOLVING NON-LINEAR SYSTEMS BY NEWTON s METHOD USING SPREADSHEET EXCEL Tay Km Gak Unverst Tun Hussen Onn Malaysa Kek Se Long Unverst Tun Hussen Onn Malaysa Rosmla Abdul-Kahar

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements

CS 2750 Machine Learning. Lecture 5. Density estimation. CS 2750 Machine Learning. Announcements CS 750 Machne Learnng Lecture 5 Densty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square CS 750 Machne Learnng Announcements Homework Due on Wednesday before the class Reports: hand n before

More information

Marginal Models for categorical data.

Marginal Models for categorical data. Margnal Models for categorcal data Applcaton to condtonal ndependence and graphcal models Wcher Bergsma 1 Marcel Croon 2 Jacques Hagenaars 2 Tamas Rudas 3 1 London School of Economcs and Poltcal Scence

More information

Valuated Binary Tree: A New Approach in Study of Integers

Valuated Binary Tree: A New Approach in Study of Integers Internatonal Journal of Scentfc Innovatve Mathematcal Research (IJSIMR) Volume 4, Issue 3, March 6, PP 63-67 ISS 347-37X (Prnt) & ISS 347-34 (Onlne) wwwarcournalsorg Valuated Bnary Tree: A ew Approach

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016

CS : Algorithms and Uncertainty Lecture 17 Date: October 26, 2016 CS 29-128: Algorthms and Uncertanty Lecture 17 Date: October 26, 2016 Instructor: Nkhl Bansal Scrbe: Mchael Denns 1 Introducton In ths lecture we wll be lookng nto the secretary problem, and an nterestng

More information

Lecture 14: Bandits with Budget Constraints

Lecture 14: Bandits with Budget Constraints IEOR 8100-001: Learnng and Optmzaton for Sequental Decson Makng 03/07/16 Lecture 14: andts wth udget Constrants Instructor: Shpra Agrawal Scrbed by: Zhpeng Lu 1 Problem defnton In the regular Mult-armed

More information

An Admission Control Algorithm in Cloud Computing Systems

An Admission Control Algorithm in Cloud Computing Systems An Admsson Control Algorthm n Cloud Computng Systems Authors: Frank Yeong-Sung Ln Department of Informaton Management Natonal Tawan Unversty Tape, Tawan, R.O.C. ysln@m.ntu.edu.tw Yngje Lan Management Scence

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

Combining Constraint Programming and Integer Programming

Combining Constraint Programming and Integer Programming Combnng Constrant Programmng and Integer Programmng GLOBAL CONSTRAINT OPTIMIZATION COMPONENT Specal Purpose Algorthm mn c T x +(x- 0 ) x( + ()) =1 x( - ()) =1 FILTERING ALGORITHM COST-BASED FILTERING ALGORITHM

More information

Communication Complexity 16:198: February Lecture 4. x ij y ij

Communication Complexity 16:198: February Lecture 4. x ij y ij Communcaton Complexty 16:198:671 09 February 2010 Lecture 4 Lecturer: Troy Lee Scrbe: Rajat Mttal 1 Homework problem : Trbes We wll solve the thrd queston n the homework. The goal s to show that the nondetermnstc

More information

Benchmarking in pig production

Benchmarking in pig production Benchmarkng n pg producton Thomas Algot Søllested Egeberg Internatonal A/S Agenda Who am I? Benchmarkng usng Data Envelopment Analyss Focus-Fnder an example of benchmarkng n pg producton 1 Who am I? M.Sc.

More information

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning

Variability-Driven Module Selection with Joint Design Time Optimization and Post-Silicon Tuning Asa and South Pacfc Desgn Automaton Conference 2008 Varablty-Drven Module Selecton wth Jont Desgn Tme Optmzaton and Post-Slcon Tunng Feng Wang, Xaoxa Wu, Yuan Xe The Pennsylvana State Unversty Department

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003

Tornado and Luby Transform Codes. Ashish Khisti Presentation October 22, 2003 Tornado and Luby Transform Codes Ashsh Khst 6.454 Presentaton October 22, 2003 Background: Erasure Channel Elas[956] studed the Erasure Channel β x x β β x 2 m x 2 k? Capacty of Noseless Erasure Channel

More information

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

COMPLEX NUMBERS AND QUADRATIC EQUATIONS COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s non-negatve Hence the equatons x, x, x + 7 0 etc are not

More information

Quantum and Classical Information Theory with Disentropy

Quantum and Classical Information Theory with Disentropy Quantum and Classcal Informaton Theory wth Dsentropy R V Ramos rubensramos@ufcbr Lab of Quantum Informaton Technology, Department of Telenformatc Engneerng Federal Unversty of Ceara - DETI/UFC, CP 6007

More information

Machine learning: Density estimation

Machine learning: Density estimation CS 70 Foundatons of AI Lecture 3 Machne learnng: ensty estmaton Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square ata: ensty estmaton {.. n} x a vector of attrbute values Objectve: estmate the model of

More information

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006

Planning and Scheduling to Minimize Makespan & Tardiness. John Hooker Carnegie Mellon University September 2006 Plannng and Schedulng to Mnmze Makespan & ardness John Hooker Carnege Mellon Unversty September 2006 he Problem Gven a set of tasks, each wth a deadlne 2 he Problem Gven a set of tasks, each wth a deadlne

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Nodal analysis of finite square resistive grids and the teaching effectiveness of students projects

Nodal analysis of finite square resistive grids and the teaching effectiveness of students projects 2 nd World Conference on Technology and Engneerng Educaton 2 WIETE Lublana Slovena 5-8 September 2 Nodal analyss of fnte square resstve grds and the teachng effectveness of students proects P. Zegarmstrz

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

Kristin P. Bennett. Rensselaer Polytechnic Institute

Kristin P. Bennett. Rensselaer Polytechnic Institute Support Vector Machnes and Other Kernel Methods Krstn P. Bennett Mathematcal Scences Department Rensselaer Polytechnc Insttute Support Vector Machnes (SVM) A methodology for nference based on Statstcal

More information

1 The Mistake Bound Model

1 The Mistake Bound Model 5-850: Advanced Algorthms CMU, Sprng 07 Lecture #: Onlne Learnng and Multplcatve Weghts February 7, 07 Lecturer: Anupam Gupta Scrbe: Bryan Lee,Albert Gu, Eugene Cho he Mstake Bound Model Suppose there

More information

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore

8/25/17. Data Modeling. Data Modeling. Data Modeling. Patrice Koehl Department of Biological Sciences National University of Singapore 8/5/17 Data Modelng Patrce Koehl Department of Bologcal Scences atonal Unversty of Sngapore http://www.cs.ucdavs.edu/~koehl/teachng/bl59 koehl@cs.ucdavs.edu Data Modelng Ø Data Modelng: least squares Ø

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information

Singular Value Decomposition: Theory and Applications

Singular Value Decomposition: Theory and Applications Sngular Value Decomposton: Theory and Applcatons Danel Khashab Sprng 2015 Last Update: March 2, 2015 1 Introducton A = UDV where columns of U and V are orthonormal and matrx D s dagonal wth postve real

More information

A Linear Programming Approach to the Train Timetabling Problem

A Linear Programming Approach to the Train Timetabling Problem A Lnear Programmng Aroach to the Tran Tmetablng Problem V. Cacchan, A. Carara, P. Toth DEIS, Unversty of Bologna (Italy) e-mal (vcacchan, acarara, toth @des.unbo.t) The Tran Tmetablng Problem (on a sngle

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Multiobjective Course Scheduling with Mathematical Programming and Analytic Network Process. Müjgân Sağır.

Multiobjective Course Scheduling with Mathematical Programming and Analytic Network Process. Müjgân Sağır. Multobjectve Course Schedulng wth Mathematcal Programmng and Analytc Network Process Müjgân Sağır msagr@ogu.edu.tr Eskşehr Osmangaz Unversty Industral Engneerng Department, Bademlk 600 Eskşehr, Türkye

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

By Dr. Erkan KARACABEY 1 Dr. Cem BALTACIOĞLU 2 and Dr. Erdoğan KÜÇÜÖNER 1

By Dr. Erkan KARACABEY 1 Dr. Cem BALTACIOĞLU 2 and Dr. Erdoğan KÜÇÜÖNER 1 Optmzaton of ol uptake of predred and deep-fat-fred fred carrot slces as a functon of process condtons By Dr. Erkan KARACABEY 1 Dr. Cem BALTACIOĞLU 2 and Dr. Erdoğan KÜÇÜÖNER 1 1 Food Engneerng Deparment,

More information

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud

Resource Allocation with a Budget Constraint for Computing Independent Tasks in the Cloud Resource Allocaton wth a Budget Constrant for Computng Independent Tasks n the Cloud Wemng Sh and Bo Hong School of Electrcal and Computer Engneerng Georga Insttute of Technology, USA 2nd IEEE Internatonal

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., 6( (0, pp. 5-3 Internatonal Journal of Pure and Appled Scences and Technology ISS 9-607 Avalable onlne at www.jopaasat.n Research Paper Goal Programmng Approach to Lnear

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information