Probing Neutrinos by DSNB(Diffuse Supernova Neutrino Background) Observation

Size: px
Start display at page:

Download "Probing Neutrinos by DSNB(Diffuse Supernova Neutrino Background) Observation"

Transcription

1 Probing Neutrinos by DSNB(Diffuse Supernova Neutrino Background) Observation Sovan Chakraborty Saha Institute of Nuclear Physics, Kolkata JCAP09(2008)013 (S C, Sandhya Choubey, Basudeb Dasgupta, Kamales Kar) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.1

2 Plan of the Talk: Core Collapse Supernova and Neutrino Emission Neutrino Mixing in Supernova Diffuse Supernova Neutrino Background(DSNB) Collective Neutrino Process and DSNB Remarks and Future Direction Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.2

3 Core Collapse Supernova and Neutrino Emission Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.3

4 Core Collapse SN and Neutrino Supernova Explosions are accompanied by Neutrinos These Neutrinos may play a crucial role in SN explosion. Neutrinos cross SN mantle and envelope Neutrinos may get affected by earth matter. Interaction with matter constituent particles are very crucial Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.4

5 Neutrino Mixing in Supernova: Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.5

6 Neutrino Mixing in Supernova: ρ L (10 1 g/cc) In Neutrino channel only. ρ H (10 4 g/cc) In Neutrino(antineutrino) channel for NH(IH). Flavor conversion depends on Flip Probability P J. (A.S.Dighe, A.Yu.Smirnov, PRD 62,2000) NH IH τ µ,, H L 3m 2m 1m H e τ, µ τ,, H 2m 1m 3m H L e µ, e µ, e τ, L H n H L n n n e -n n e e e e e Sovan Chakraborty (a) NuHoRIzons09 HRI 7th-9th (b) January 2009 p.6

7 Flip Probability Flip Probability is expressed as P ij = e ( γ sin2 θ ij ) Adiabaticity : γ = π m2 ji E dlnn e dr 1 r=r mva Adiabatic limit dlnn e dr Small = P ij 0 Non-Adiabatic limit dlnn e dr large / θ ij small = P ij 1 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.7

8 Flip Probability for SN P 12 (P L ) 0 ; P12 ( P L ) 0 P 13 (P H ) depends on sin 2 θ 13 (A.Bandyopadhyay et al, hep-ph/ ) P L tan 2 θ 12 = 0.42 tan 2 θ 12 = 0.28 tan 2 θ 12 = 0.72 P L P H m 2 21 /ev tan 2 θ 12 = tan 2 θ 12 = tan 2 θ 12 = m 2 21 / ev2 1 Atm range tan 2 θ 13 = 10-6 tan 2 θ 13 = tan 2 θ 13 = tan 2 θ 13 = m 2 31 /ev2 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.8

9 Flux at the detector SN neutrino flux in the detector F β = α F 0 αp αβ P αβ = i P M αi P L iβ ; P M αi = j U m αj 2 P ij ; P ij = i m j 2 where i,j = 1,2,3 ; α,β = e,µ,τ Earth Matter effect not considered Piβ = U iβ 2 L P αβ = i P M αi U iβ 2 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.9

10 TABLE The Probabilities P M ei and P M xi for three Anti-Neutrinos: Mass hierarchy i Pei M Pxi M NORMAL(NH) INVERTED(IH) 1 P 13 1-P P 13 P 13 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.10

11 FLUX NH Flux of Electron Antineutrino in Detector for NH F e = P ee F 0 e + (1 P ee )F 0 x P ee = U e1 2 F e = U e1 2 F 0 e + (1 U e1 2 )F 0 x Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.11

12 FLUX IH Flux of Electron Antineutrino in Detector for IH F e = P ee F 0 e + (1 P ee )F 0 x P ee = P 13 U e1 2 + (1 P 13 ) U e3 2 F e = P 13 U e1 2 F 0 e + (1 P 13 U e1 2 )F 0 x Can be written as F e = (1 U e1 2 ) F 0 x + U e1 2 ( P 13 F 0 e + (1 P 13 ) F 0 x) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.12

13 FLUX IH F e = (1 U e1 2 ) Fx 0 + U e1 2 ( P 13 Fe 0 + (1 P 13 ) Fx) 0 In the Non Adiabatic limit P 13 = 1 Electron Antineutrino flux in the Detector for IH F e = U e1 2 F 0 e + (1 U e1 2 )F 0 x Same as NH Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.13

14 FLUX IH F e = (1 U e1 2 ) F 0 x + U e1 2 ( P 13 F 0 e + (1 P 13 ) F 0 x) In the Adiabatic limit P 13 = 0 Electron Antineutrino Flux for IH F e = F 0 x Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.14

15 NEUTRINO FLUX(NH) F e = U e1 2 F 0 x + (1 U e1 2 )( P 13 F 0 e + (1 P 13 ) F 0 x) In the Non-Adiabatic limit : P 13 = 1 F e = U e1 2 F 0 x + (1 U e1 2 )F 0 e In the Adiabatic limit : P 13 = 0 F e = F 0 x Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.15

16 NEUTRINO FLUX(IH) INVERTED HIERARCHY : F e = U e1 2 F 0 x + (1 U e1 2 ) F 0 e Same as NH with P 13 = 1 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.16

17 Flux in both neutrino and antineutrino channel can not distinguish between NH and IH for small θ 13 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.17

18 Diffuse Supernova Neutrino Background(DSNB) : Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.18

19 Diffuse SN Neutrino Background(DSNB) Neutrinos emitted from all past SN explosions fill the universe as a diffuse background,ie (DSNB). To estimate DSNB,model of neutrino spectrum from each SN(F 0 ) and SN Formation Rate(R SN ) are required. R SN is taken to be proportional to R SF,DSNB will give information on R SF DSNB may also be able to decide the Hierarchy. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.19

20 DSNB: Present Number density of DSN( e ) in E and E + de from redshift z to z+dz is dn = R SN (z)(1 + z) 3 dt dz dzdn (E ) de de (1 + z) 3 = R SN (z) dt dz dzdn (E ) de (1 + z) de E =E (1+z) is the energy at redshift z,observed as E. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.20

21 DSNB: Present Number density of DSN( e ) in E and E + de from redshift z to z+dz is dn = R SN (z)(1 + z) 3 dt dz dzdn (E ) de de (1 + z) 3 = R SN (z) dt dz dzdn (E ) de (1 + z) de R SN (z) is the supernova rate per comoving volume at z. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.21

22 DSNB: Present Number density of DSN( e ) in E and E + de from redshift z to z+dz is dn = R SN (z)(1 + z) 3 dt dz dzdn (E ) de de (1 + z) 3 = R SN (z) dt dz dzdn (E ) de (1 + z) de R SN (z)(1 + z) 3 is the supernova rate per physical volume at z. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.22

23 DSNB: Present Number density of DSN( e ) in E and E + de from redshift z to z+dz is dn = R SN (z)(1 + z) 3 dt dz dzdn (E ) de de (1 + z) 3 = R SN (z) dt dz dzdn (E ) de (1 + z) de dn (E )/de number spectrum of in one SN explosion. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.23

24 DSNB: Present Number density of DSN( e ) in E and E + de from redshift z to z+dz is dn = R SN (z)(1 + z) 3 dt dz dzdn (E ) de de (1 + z) 3 = R SN (z) dt dz dzdn (E ) de (1 + z) de (1 + z) 3 For expansion of universe. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.24

25 DSNB Flux: Thus the differential number flux of DSN df de = c dn de = c H 0 Zmax 0 R SN (z) dn (E ) de dz (Ω m (1 + z) 3 + Ω λ ) 1/2 As from Friedmann equation dz dt = H 0(1 + z)(ω m (1 + z) 3 + Ω λ ) 1/2 Ω m = 0.3 ; Ω λ = 0.7 ; H 0 = 70 h 70 km s 1 Mpc 1 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.25

26 DSNB Flux: Thus the differential number flux of DSN df de = c H 0 Zmax 0 R SN (z) dn (E ) de dz (Ω m (1 + z) 3 + Ω λ ) 1/2 Ω m = 0.3 ; Ω λ = 0.7 ; H 0 = 70 h 70 km s 1 Mpc 1 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.26

27 SN Rate and IMF: R SN (z) is obtained from SFR and IMF(ϕ(m)). 125M 8M R SN (z) = R SF (z) ϕ(m)dm 125M ϕ(m)mdm 0 BG IMF { m 2.15 (m > 0.5M J ) ϕ(m) m 1.50 (0.08M J < m < 0.5M J ) [I.K.Baldry, K.Glazebrook, ApJ (2003)] For BG IMF R SN (z) = R SF (z)m 1 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.27

28 Star Formation Rate: R SF (z) (rate per comoving volume) is taken as R SF (z) = { R SF (0)(1 + z) 3.44 z < 0.97 R SF (0)(1.97) 3.70 (1 + z) < z < 4.48 R SF (0)(1.97) 3.70 (5.48) 7.54 (1 + z) 7.8 z < 4.48 R SF (0) = M yr 1 Mpc 3 [A.M.Hopkins, J.F.Beacom, ApJ (2006)] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.28

29 SN Number Spectrum: The initial differential number Spectrum: dn 0 α de α ) 1+β α = (1 + β α Γ(β α + 1) Φ α Ē α ( Eα Ē α ) β α exp ( (1 + β α Ē α α ) E ) [Keil et al, ApJ.590,971(2003)] Fitting parameter for SN neutrino spectrum: Model Ē e Ē e Ē x β e β x Φ e /Φ x Φ /Φ x (Mev) (Mev) (MeV) (erg) (erg) LL G G Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.29

30 DSNB Flux Vs E : 2.5 Number Flux[cm -2 sec -1 MeV -1 ] Without Collective Effects e IH(P 13 = 0) NH IH (P 13 = 1) Antineutrino Energy [MeV] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.30

31 DSNB Flux Vs E : Number Flux [cm -2 sec -1 Mev -1 ] Without Collective Effects NH (P 13= 1) NH (P 13 = 0) e IH Neutrino Energy [MeV] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.31

32 Collective Neutrino Flavor Transformation and DSNB Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.32

33 Collective Neutrino Flavor transition Neutrino-Neutrino interaction inside SN is not negligible. neutrino-neutrino interactions can lead to conversion of neutrinos and antineutrinos of different energies with same frequency = Collective Oscillation After a few hundred kilometers these interaction effects become smaller and eventually ends with Swapping of e and τ above a critical Energy(E c ) in IH Complete swapping of the e and τ IH No effect on flux if the Hierarchy is Normal (NH). Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.33

34 Inside Supernovae Collective Flavor transitions dominates at about 400 km. MSW resonances happens at about 10 4 km. Thus MSW and Collective neutrino resonances in Supernovae happen independently. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.34

35 Level Crossing in Supernova: With out Collective Conversion NH IH τ µ,, H L 3m 2m 1m H e τ, µ τ,, H 2m 1m 3m H L e µ, e µ, e τ, L n e H n e n e H -n e L n e n e (a) (b) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.35

36 µ e τ Collective Neutrino Flavor transition,, H 2m 1m 3m H L τ µ e,, H L -n n e e n e (d) IH Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.36

37 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type Antineutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )F 0 x + U e1 2 (P 13 F 0 e + (1 P 13 )F 0 x) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.37

38 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type Antineutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 (P 13 Fe 0 + (1 P 13 )Fx) 0 Flux with Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 ((1 P 13 )Fe 0 + P 13 Fx) 0 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.38

39 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type Antineutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 (P 13 Fe 0 + (1 P 13 )Fx) 0 Flux with Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 ((1 P 13 )Fe 0 + P 13 Fx) 0 In Non Adiabatic Limit P 13 = 1 Different than NH. F e = F 0 x Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.39

40 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type Antineutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 (P 13 Fe 0 + (1 P 13 )Fx) 0 Flux with Collective Conversion F e = (1 U e1 2 )Fx 0 + U e1 2 ((1 P 13 )Fe 0 + P 13 Fx) 0 In Adiabatic Limit P 13 = 0 F e = U e1 2 F 0 e + (1 U e1 2 )F 0 x Same as NH Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.40

41 DSNB Flux Vs E : 2.5 Number Flux[cm -2 sec -1 MeV -1 ] With Collective Effects e IH(P 13 = 1) NH IH (P 13 = 0) Antineutrino Energy [MeV] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.41

42 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type neutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )F 0 e + U e1 2 F 0 x Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.42

43 FLUX IH(COLLECTIVE EFFECT) Flux of Electron type neutrino in Detector for IH Flux without Collective Conversion F e = (1 U e1 2 )F 0 e + U e1 2 F 0 x Flux with Collective Conversion F e = { (1 Ue1 2 )F 0 e + U e1 2 F 0 x (E < E c ) F 0 x (E > E c ) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.43

44 DSNB Flux Vs E : 3 With Collective Effects NH(P 13 =1) Number Flux [cm -2 sec -1 Mev -1 ] e NH (P 13 =0) IH Neutrino Energy [MeV] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.44

45 Detection of DSNB : Water Cherenkov Detector: SK,HK Dominant Reaction e + p e + + n Liquid-scintillator Detector: example LENA. Dominant Reaction e + p e + + n Liquid-Argon(Ar) Detector: GLACIER. Dominant Reaction e + 40 Ar e + 40 K Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.45

46 DSNB Background in Detectors e flux (cm -2 s -1 MeV -1 ) B hep SRN atm E (MeV) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.46

47 Energy Window of Different Detectors For Different Detectors the window of detection SK GDSK LENA 19.3 MeV <E e < 30.0 MeV 10.0 MeV <E e < 30.0 MeV 10.0 MeV <E e < 25.0 MeV LIQUID Ar 20.0 MeV <E e < 40.0 MeV Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.47

48 NO OF EVENTS(per year)for DIFFERENT DETECTORS FOR DIFFERENT SPECTRUM MODELS odel Hierarchy SK GDSK HK GDHK LENA 1 NH IH(P 13 = 0) IH(P 13 = 1) NH IH(P 13 = 0) IH(P 13 = 1) L NH IH(P 13 = 0) IH(P 13 = 1) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.48

49 NO OF EVENTS(per year)for LIQUID Ar DETECTORS FOR DIFFERENT SPECTRUM MODELS Hierarchy G1 G2 LL NH(P 13 = 1) NH(P 13 = 0) IH Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.49

50 No of Events [22.5 kton.yr.mev] No of Events [1000 kton.yr.mev] No of Events [50 kton.yr.mev] NH SK NH SK NH HK IH HK GD SK LOWER LIMIT GD HK LOWER LIMIT LENA LOWER LIMIT SK LOWER LIMIT HK LOWER LIMIT LENA UPPER LIMIT SK / GDSK UPPER LIMIT HK / GDHK UPPER LIMIT NH LENA IH LENA Positron Energy (MeV) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.50

51 Liquid Argon: GLACIER No of Events [100 kton.yr.mev] Liq Ar LOWER LIMIT IH Liquid Ar NH Liquid Ar Liq Ar UPPER LIMIT Neutrino Energy [MeV] Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.51

52 P P 13 No of Events [22.5 kton.yr] (-1) No of Events [22.5 kton.yr] (-1) P P 13 No of Events [1000 kton.yr] (-1) No of Events[ 1000 kton.yr] (-1) No of Events[100 kton.yr] (-1) SK GD SK HK GD HK LENA Liq Ar P P 13 NH IH IH WOC Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.52 No of Events [50 kton.yr.] (-1)

53 CONCLUSION Neutrino-Neutrino interaction in SN generates Collective Flavor transitions Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.53

54 CONCLUSION Neutrino-Neutrino interaction in SN generates Collective Flavor transitions Collective Flavor Conversion affects the SN as well as DSN Flux Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.54

55 CONCLUSION Neutrino-Neutrino interaction in SN generates Collective Flavor transitions Collective Flavor Conversion affects the SN as well as DSN Flux It would be possible to detect DSNB in future experiments like GDSK,HK,GDHK and can be used to probe hierarchy at small θ 13. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.55

56 CONCLUSION Neutrino-Neutrino interaction in SN generates Collective Flavor transitions Collective Flavor Conversion affects the SN as well as DSN Flux It would be possible to detect DSNB in future experiments like GDSK,HK,GDHK and can be used to probe hierarchy at small θ 13. Advantage with DSNB over usual SN events is repeatability. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.56

57 THANK YOU Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.57

58 No of Events No of events in any Detector for DSNB is N = N T 0 0 df e (E e ) de e σ( e )ε( e )R(E e;t,e e;m )de e de e,m N T Number of target nucleons in the detector σ( e ) Cross section ε( e ) Efficiency of detector R(E e;t,e e;m ) Energy resolution function E e;t True Energy of positron/electron. E e;m Measured Energy of positron/electron. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.58

59 Neutrino Oscillation in Matter Scattering of Neutrino in matter = Matter density dependent Potential. V e = 2G F (N e N n /2) ; V µ = V τ = 2G F N n /2 The evolution equation in Matter in the flavor basis is i d dt e µ = 2 12 cos 2θ + 2G 4E F N e E E E sin 2θ cos 2θ e µ Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.59

60 Neutrino Oscillation in Matter: Consider states where effective Hamiltonian is Diagonal A = e cosφ + µ sin φ B = e sin φ + µ cosφ where, the mixing angle φ is given by tan2φ = 2 H 12 H 22 H = 11 ( 2 12/2E) sin 2θ ( 2 12/2E) cos 2θ 2G F N e Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.60

61 Neutrino Oscillation in Matter: The conversion probability becomes where, P l, l (X) = sin 2 2φ sin 2 ( π X L mat ) L mat = 2π E A E B = 2π ( 2 12 cos 2θ ) 2 ( 2 2G 2E F N e E ) 2 sin 2 2θ sin 2 2φ = E sin2 2θ (E A E B ) 2 Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.61

62 Neutrino Oscillation in Matter: ( P l, l (X) = sin 2 2φ sin 2 π X ) L mat sin 2 2φ = E sin2 2θ ( 2 12 cos 2θ ) 2 ( ) 2 2 2G 2E F N e E sin 2 2θ At the density N e = E cos 2θ 2 2G F E = Maximal Mixing MSW Matter enhanced resonance condition( 2 m > 0) Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.62

63 Varying Density: Mass eigenstates in matter A = e cosφ + µ sin φ ; B = e sin φ + µ cosφ E B e µ A N e Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.63

64 Matter Effect in Antineutrino: For oscillation between two antineutrinos i d e = 2 12 cos 2θ 2G 4E F N 2 12 e 4E dt µ 2 12 sin 2θ E 4E sin 2θ cos 2θ e µ Mixing angle in matter for antineutrinos tan2φ = ( 2 12/2E) sin 2θ ( 2 12/2E) cos 2θ + 2G F N e E cos 2θ N e = 2 2G F E = Maximal Mixing MSW Matter enhanced resonance for Antineutrino ( 2 m < 0 ). Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.64

65 TYPE II SN AND NEUTRINO : Onion Shell like structure with Iron core at the center and burning of Si,S,O,C,He,H. Photodisintegration of Fe and Neutronisation reduce pressure support = Rapid Core Collapse Neutrino Trapping at a core density gm/cc. Density of core ρ nuclmatter More contraction = Shock wave. Thermal from pair production revitalize stalled shock = SUPERNOVA Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.65

66 Vacuum Oscillation Solar and Atmospheric Neutrino experiments indicate Neutrinos are Massive. Mixing is the most sensitive probe of mass Mass eigenstate m is different than flavor eigenstate l. l = u lm m u lm =Mixing Matrix At time t l (t) = u lm m e ie mt Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.66

67 Vacuum Oscillation The conversion probability P l l (t) = l l (t) 2 = α,β u lα u l αu lβu l β cos[ 2πx L αβ φ ll αβ] (1) [c = 1, = 1;x t] where, φ ll αβ = arg(u lα u l α u lβ u l β) Oscillation length L αβ = 4π p m 2 α m 2 β = 4π p 2 αβ Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.67

68 Two Flavor vacuum Oscillation For 2 flavor the mixing matrix is U = cosθ sinθ sin θ cos θ Here U is a real unitary matrix. Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.68

69 Two Flavor vacuum Oscillation For 2 flavor the mixing matrix is U = cosθ sinθ sin θ cos θ Here U is real unitary matrix. Therefore, ( ) P l l (X) = sin 2 2θ sin x 4E Sovan Chakraborty NuHoRIzons09 HRI 7th-9th January 2009 p.69

Galactic Supernova for neutrino mixing and SN astrophysics

Galactic Supernova for neutrino mixing and SN astrophysics Galactic Supernova for neutrino mixing and SN astrophysics Amol Dighe Tata Institute of Fundamental Research Mumbai NNN05, Aussois, France, April 7-9, 2005 Galactic Supernova forneutrino mixing and SN

More information

Supernova neutrinos for neutrino mixing and SN astrophysics

Supernova neutrinos for neutrino mixing and SN astrophysics Supernova neutrinos for neutrino mixing and SN astrophysics Amol Dighe Tata Institute of Fundamental Research TPSC Seminar, IMSc, Chennai, 23 February 2005 Supernova neutrinos forneutrino mixing and SN

More information

Diffuse SN Neutrino Background (DSNB)

Diffuse SN Neutrino Background (DSNB) Diffuse SN Neutrino Background (DSNB) What can we learn? Ideas under construction Cecilia Lunardini Arizona State University RIKEN BNL Research Center O introduction: motivation and facts O detection potential

More information

Diffuse Supernova Neutrino Background (DSNB): status and updates

Diffuse Supernova Neutrino Background (DSNB): status and updates Diffuse Supernova Neutrino Background (DSNB): status and updates Cecilia Lunardini 1 Department of Physics May 15, 2013 1 Cecilia.Lunardini@asu.edu Table of contents Introduction: the question of detectability

More information

Sovan Chakraborty. MPI for Physics, Munich

Sovan Chakraborty. MPI for Physics, Munich Neutrino Mass Hierarchy from Supernova Neutrinos Sovan Chakraborty MPI for Physics, Munich Outline Supernova (SN) as Neutrino Source Oscillation of SN Neutrinos Signatures of Neutrino Mass Hierarchy Conclusions

More information

Neutrinos and Supernovae

Neutrinos and Supernovae Neutrinos and Supernovae Introduction, basic characteristics of a SN. Detection of SN neutrinos: How to determine, for all three flavors, the flux and temperatures. Other issues: Oscillations, neutronization

More information

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Invisible13 Workshop Lumley Castle, 15-19 July 2013 PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS Alessandro MIRIZZI (Hamburg University) OUTLINE Supernova neutrino flavor oscillations Observables

More information

Identifying the neutrino mass hierarchy with supernova neutrinos

Identifying the neutrino mass hierarchy with supernova neutrinos Identifying the neutrino mass hierarchy with supernova neutrinos Ricard Tomàs AHEP Group - Institut de Física Corpuscular (CSIC - Universitat de València) IPM School & Conference on Lepton & Hadron Physics

More information

Physics Potential of Future Supernova Neutrino Observations

Physics Potential of Future Supernova Neutrino Observations Physics Potential of Future Supernova Neutrino Observations Amol Dighe Tata Institute of Fundamental Research Mumbai, India Neutrino 2008 May 25-31, 2008, Christchurch, New Zealand Supernova for neutrino

More information

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Recent advances in neutrino astrophysics Cristina VOLPE (AstroParticule et Cosmologie APC, Paris) Flux (cm -2 s -1 MeV -1 ) 10 24 10 20 10 16 10 12 10 8 10 4 10 0 10-4 10-8 Neutrinos in Nature Cosmological

More information

Solar neutrinos and the MSW effect

Solar neutrinos and the MSW effect Chapter 12 Solar neutrinos and the MSW effect The vacuum neutrino oscillations described in the previous section could in principle account for the depressed flux of solar neutrinos detected on Earth.

More information

Diffuse Supernova Neutrinos

Diffuse Supernova Neutrinos Diffuse Supernova Neutrinos Irene Tamborra von Humboldt Research Fellow at the MPI for Physics, Munich INT 2-2a, Nuclear and Neutrino Physics in Stellar Core Collapse University of Washington, Seattle

More information

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo Neutrino Workshop@ICRR June 29 th 2005 Neutrino Probes of Extragalactic Supernovae Shin ichiro Ando University of Tokyo 1. Introduction Core-Collapse Supernova and Neutrino Burst Gravitational binding

More information

Neutrinos and explosive nucleosynthesis

Neutrinos and explosive nucleosynthesis Neutrinos and explosive nucleosynthesis Gabriel Martínez-Pinedo Microphysics in computational relativistic astrophysics June 22, 2011 Outline 1 Introduction 2 Neutrino-matter interactions 3 Nucleosynthesis

More information

Neutrinos in Supernova Evolution and Nucleosynthesis

Neutrinos in Supernova Evolution and Nucleosynthesis Neutrinos in Supernova Evolution and Nucleosynthesis Gabriel Martínez Pinedo The origin of cosmic elements: Past and Present Achievements, Future Challenges, Barcelona, June 12 15, 2013 M.-R. Wu, T. Fischer,

More information

Supernova neutrinos and their implications for supernova physics

Supernova neutrinos and their implications for supernova physics Supernova neutrinos and their implications for supernova physics Ken ichiro Nakazato (Tokyo University of Science) in collaboration with H. Suzuki(Tokyo U of Sci.), T. Totani, H. Umeda(U of Tokyo), K.

More information

Neutrinos from Black Hole Accretion Disks

Neutrinos from Black Hole Accretion Disks Neutrinos from Black Hole Accretion Disks Gail McLaughlin North Carolina State University General remarks about black hole accretion disks Neutrinos and nucleosynthesis - winds Neutrino flavor transformation

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Observation of flavor swap process in supernova II neutrino spectra

Observation of flavor swap process in supernova II neutrino spectra Observation of flavor swap process in supernova II neutrino spectra David B. Cline and George Fuller Abstract. We review the concept of quantum flavor swap in a SNII explosion. There will be a specific

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Neutrino Oscillation Tomography

Neutrino Oscillation Tomography 1 Neutrino Oscillation Tomography (and Neutrino Absorption Tomography) (and Neutrino Parametric-Refraction Tomography) Sanshiro Enomoto University of Washington CIDER Geoneutrino Working Group Meeting,

More information

Spectrum of the Supernova Relic Neutrino Background

Spectrum of the Supernova Relic Neutrino Background Spectrum of the Supernova Relic Neutrino Background Ken ichiro Nakazato (Tokyo University of Science) Numazu Workshop 2015, Sep. 1, 2015 Outline 1. Introduction Neutrino signal from supernovae Supernova

More information

Distinguishing supernova-ν flavour equalisation from a pure MSW effect

Distinguishing supernova-ν flavour equalisation from a pure MSW effect Distinguishing supernova-ν flavour equalisation from a pure MSW effect based on arxiv:1807.00840 (accepted on PRD), with B. Dasgupta and A. Mirizzi FRANCESCO CAPOZZI Outer layer Accretion phase (t < 0.5

More information

Collective Neutrino Oscillations in Supernovae. Huaiyu Duan

Collective Neutrino Oscillations in Supernovae. Huaiyu Duan Collective Neutrino Oscillations in Supernovae Huaiyu Duan INFO Workshop @ Santa Fe, July, 2011 Outline Neutrino mixing and self-coupling Why do collective oscillations occur? Where do collective oscillations

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 3: Neutrinos in astrophysics and cosmology Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER

More information

Neutrino Oscillations in Core-Collapse Supernovae

Neutrino Oscillations in Core-Collapse Supernovae Neutrino Oscillations in Core-Collapse Supernovae Meng-Ru Wu, Technische Universität Darmstadt Supernovae and Gamma-Ray Bursts 2013 10/14/2013-11/15/2013 Neutrino Oscillations in Core-Collapse Supernovae

More information

Prospects of Reactor ν Oscillation Experiments

Prospects of Reactor ν Oscillation Experiments Prospects of Reactor ν Oscillation Experiments F.Suekane RCNS, Tohoku Univ. Erice School 3/09/009 1 Contents * Motivation * Physics of Neutrino Oscillation * Accessible Parameters of Reactor Neutrinos

More information

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Supernova Neutrinos in Future Liquid-Scintillator Detectors Supernova Neutrinos in Future Liquid-Scintillator Detectors Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 9, China E-mail: liyufeng@ihep.ac.cn A high-statistics measurement of

More information

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

What If U e3 2 < 10 4? Neutrino Factories and Other Matters What If U e3 < 0 4? Neutrino Factories and Other Matters André de Gouvêa University DUSEL Theory Workshop Ohio State University, April 4 6, 008 April 5, 008 tiny U e3 : now what? Outline. What are We Aiming

More information

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Searching for Supernova Relic Neutrinos Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011 Outline Introduction: A Brief History of Neutrinos Theory Supernova Neutrino Emission Supernova

More information

Fossil Records of Star Formation: John Beacom, The Ohio State University

Fossil Records of Star Formation: John Beacom, The Ohio State University Fossil Records of Star Formation: Supernova Neutrinos and Gamma Rays Basic Pitch Supernovae are of broad and fundamental interest Neutrinos and gamma rays are direct messengers Recent results show that

More information

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010 Supernova neutrinos Ane Anema November 12, 2010 Outline 1 Introduction 2 Core-collapse 3 SN1987A 4 Prospects 5 Conclusions Types of supernovae Figure: Classification (figure 15.1, Giunti) Supernova rates

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 2: Neutrino mixing and oscillations Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER Bhubaneswar,

More information

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Neutrino Signatures from 3D Models of Core-Collapse Supernovae Neutrino Signatures from 3D Models of Core-Collapse Supernovae Irene Tamborra Niels Bohr Institute, University of Copenhagen nueclipse Knoxville, August 20, 2017 Outline Supernova explosion mechanism Hydrodynamical

More information

The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions. Tokyo Metropolitan University.

The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions. Tokyo Metropolitan University. The KTY formalism and the neutrino oscillation probability including nonadiabatic contributions Tokyo Metropolitan niversity Osamu Yasuda Based on Phys.Rev. D89 (2014) 093023 21 December 2014@Miami2014

More information

Outline. (1) Physics motivations. (2) Project status

Outline. (1) Physics motivations. (2) Project status Yu-Feng Li Institute of High Energy Physics, Beijing On behalf of the JUNO collaboration 2014-10-10, Hsinchu/Fo-Guang-Shan 2nd International Workshop on Particle Physics and Cosmology after Higgs and Planck

More information

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with spiral arms in spiral galaxies Supernova in M75 Type

More information

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University 1 Outline 2 Lecture 1: Experimental Neutrino Physics Neutrino Physics and Interactions Neutrino Mass Experiments Neutrino Sources/Beams and

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH

The Solar Neutrino Day-Night Effect. Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH The Solar Neutrino Day-Night Effect Master of Science Thesis Mattias Blennow Division of Mathematical Physics Department of Physics KTH 1 Why This Interest in Neutrinos? Massless in SM of particle physics

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1 Neutrino Phenomenology Boris Kayser ISAPP July, 2011 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Searching for non-standard interactions at the future long baseline experiments

Searching for non-standard interactions at the future long baseline experiments Searching for non-standard interactions at the future long baseline experiments Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 015 1/34 1. Introduction. New Physics in propagation 3. Sensitivity

More information

The NOνA Experiment and the Future of Neutrino Oscillations

The NOνA Experiment and the Future of Neutrino Oscillations f Axis The NOνA Experiment and the Future of Neutrino Oscillations NOνA SLAC 26 January 2006 Gary Feldman Why are Neutrinos Particularly Interesting? Masses are anomalously low From CMB data m ν < 0.2

More information

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech Mass hierarchy ν e FLAVOR FLAVOR ν µ ν τ ν 3 ν 2 ν 1 m 2 21 MASS

More information

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1 Neutrino Phenomenology Boris Kayser INSS August, 2013 Part 1 1 What Are Neutrinos Good For? Energy generation in the sun starts with the reaction Spin: p + p "d + e + +# 1 2 1 2 1 1 2 1 2 Without the neutrino,

More information

Neutrino Pendulum. A mechanical model for 3-flavor Neutrino Oscillations. Michael Kobel (TU Dresden) PSI,

Neutrino Pendulum. A mechanical model for 3-flavor Neutrino Oscillations. Michael Kobel (TU Dresden) PSI, Neutrino Pendulum A mechanical model for 3-flavor Neutrino Oscillations Michael Kobel (TU Dresden) PSI,.6.016 Class. Mechanics: Coupled Pendulums pendulums with same length l, mass m coupled by spring

More information

arxiv: v3 [hep-ph] 23 Jan 2017

arxiv: v3 [hep-ph] 23 Jan 2017 Effects of Matter in Neutrino Oscillations and Determination of Neutrino Mass Hierarchy at Long-baseline Experiments T. Nosek Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics,

More information

Neutrino Anomalies & CEνNS

Neutrino Anomalies & CEνNS Neutrino Anomalies & CEνNS André de Gouvêa University PIRE Workshop, COFI February 6 7, 2017 Something Funny Happened on the Way to the 21st Century ν Flavor Oscillations Neutrino oscillation experiments

More information

The Hyper-Kamiokande project

The Hyper-Kamiokande project 22-July-2017 @Quy Nhon The Hyper-Kamiokande project Yasuo Takeuchi Kobe University Hyper-Kamiokande detector & current R&Ds Current status of the project Physics/Observation targets in HK Summary 1 Hyper-Kamiokande

More information

Recent results from Super-Kamiokande

Recent results from Super-Kamiokande Recent results from Super-Kamiokande ~ atmospheric neutrino ~ Yoshinari Hayato ( Kamioka, ICRR, U-Tokyo ) for the Super-Kamiokande collaboration 1 41.4m Super-Kamiokande detector 50000 tons Ring imaging

More information

arxiv: v4 [hep-ph] 17 Jun 2015

arxiv: v4 [hep-ph] 17 Jun 2015 Signatures of the neutrino mass hierarchy in supernova neutrinos S. H. Chiu 1, Chu-Ching Huang 2, and Kwang-Chang Lai 1,3 1 Physics and 2 Mathematics Groups, CGE, Chang Gung University, Kwei-Shan 333,

More information

Neutrinos and Nucleosynthesis

Neutrinos and Nucleosynthesis Neutrinos and Nucleosynthesis The effect of neutrinos on nucleosynthesis in core-collapse supernovae Franziska Treffert (Matrikelnummer: 2044556) Seminar zur Kernstruktur und nuklearen Astrophysik Prof.

More information

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia Jarek Nowak University of Minnesota High Energy seminar, University of Virginia Properties of massive neutrinos in the Standard Model. Electromagnetic properties of neutrinos. Neutrino magnetic moment.

More information

Andrey Formozov The University of Milan INFN Milan

Andrey Formozov The University of Milan INFN Milan T h e i nv e s t i g a t i o n of l i q u i d s c i n t i l l a t o r p ro p e r t i e s, e n e r g y a n d s p a t i a l re s o l u t i o n fo r JUNO re a c t o r n e u t r i n o e x p e r i m e n t Andrey

More information

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda

T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda T2K and other long baseline experiments (bonus: reactor experiments) Justyna Łagoda Neutrino mixing and oscillations mixing of flavor and mass eigenstates PMNS matrix parametrized as ( )( cxy = cosθxy

More information

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11 Neutrino astronomy introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 11.1 The standard solar model As we discussed in stellar evolution III, to obtain a reliable model for the sun, we

More information

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology

reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology reνolution Three Neutrino Oscillation Lecture Two Lindley Winslow Massachusetts Institute of Technology 1 The neutrino is neutral. The neutrino only interacts weakly. The neutrino has a small non-zero

More information

Solar and atmospheric ν s

Solar and atmospheric ν s Solar and atmospheric ν s Masato SHIOZAWA Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI),

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Heidi Schellman June 6, 2000 Lots of help from Janet Conrad Charge mass,mev tandard Model of Elementary Particles 3 Generations of Fermions Force Carriers Q u a r k s u d 2/3 2/3

More information

NEUTRINO OSCILLOMETRY- Neutrinos in a box

NEUTRINO OSCILLOMETRY- Neutrinos in a box NEUTRINO OSCILLOMETRY- Neutrinos in a box J.D. Vergados*, Y. Giomataris* and Yu.N. Novikov** *for the STPC (NOSTOS) Collaboration: (Saclay, APC-Paris, Saragoza, Ioannina, Thessaloniki, Demokritos, Dortmund,

More information

Is nonstandard interaction a solution to the three neutrino tensions?

Is nonstandard interaction a solution to the three neutrino tensions? 1/28 Is nonstandard interaction a solution to the three neutrino tensions? Osamu Yasuda Tokyo Metropolitan University Dec. 18 @Miami 2016 Based on arxiv:1609.04204 [hep-ph] Shinya Fukasawa, Monojit Ghosh,OY

More information

Neutrino Probes of Galactic and Extragalactic Supernovae

Neutrino Probes of Galactic and Extragalactic Supernovae Neutrino Probes of Galactic and Extragalactic Supernovae Shin'ichiro Ando California Institute of Technology, Mail Code 130-33, Pasadena, CA 91125 Abstract. Neutrinos are a messenger of extreme condition

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 Supernovae and supernova neutrinos 4.1 4 Supernovae and supernova neutrinos 4.1 Supernova

More information

Sinergie fra ricerche con neutrini da acceleratore e atmosferici

Sinergie fra ricerche con neutrini da acceleratore e atmosferici Sinergie fra ricerche con neutrini da acceleratore e atmosferici Michele Maltoni International Centre for Theoretical Physics IFAE 26, Pavia 2 Aprile 26 I. Parameter degeneracies and neutrino data II.

More information

( Some of the ) Lateset results from Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande 1 ( Some of the ) Lateset results from Super-Kamiokande Yoshinari Hayato ( Kamioka, ICRR ) for the SK collaboration 1. About Super-Kamiokande 2. Solar neutrino studies in SK 3. Atmospheric neutrino studies

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3 Core collapse triggered by Collapse (only core inner ~1.5 MO) Free-fall K-captures, photodissociation 1000 km 1010 g cm-3 30 km nuclear dens. ~ 1014 g cm-3 Bounce Shock wave Nuclear repulsion Collapse

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

Recent Discoveries in Neutrino Physics

Recent Discoveries in Neutrino Physics Recent Discoveries in Neutrino Physics Experiments with Reactor Antineutrinos Karsten Heeger http://neutrino.physics.wisc.edu/ Karsten Heeger, Univ. of Wisconsin NUSS, July 13, 2009 Standard Model and

More information

Gadolinium Doped Water Cherenkov Detectors

Gadolinium Doped Water Cherenkov Detectors Gadolinium Doped Water Cherenkov Detectors David Hadley University of Warwick NuInt-UK Workshop 20th July 2015 Water Cherenkov Detector Super-Kamiokande 22.5 kt fiducial mass 2 Physics with Large Scale

More information

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande.

This is a repository copy of Astroparticle Physics in Hyper-Kamiokande. This is a repository copy of Astroparticle Physics in Hyper-Kamiokande. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1304/ Version: Submitted Version Article: Migenda,

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics II. Core-collapse supernovae Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

The Physics of Neutrino Oscillation

The Physics of Neutrino Oscillation The Physics of Neutrino Oscillation Boris Kayser PASI March, 2012 1 Neutrino Flavor Change (Oscillation) in Vacuum + l α (e.g. µ) ( ) Approach of B.K. & Stodolsky - l β (e.g. τ) Amp W (ν α ) (ν β ) ν W

More information

Neutrino Experiments with Reactors

Neutrino Experiments with Reactors Neutrino Experiments with Reactors 1 Ed Blucher, Chicago Lecture 2 Reactors as antineutrino sources Antineutrino detection Reines-Cowan experiment Oscillation Experiments Solar Δm 2 (KAMLAND) Atmospheric

More information

Neutrino Oscillations

Neutrino Oscillations 1. Introduction 2. Status and Prospects A. Solar Neutrinos B. Atmospheric Neutrinos C. LSND Experiment D. High-Mass Neutrinos 3. Conclusions Plenary talk given at DPF 99 UCLA, January 9, 1999 Introduction

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Supernova Neutrinos. Alexander Friedland

Supernova Neutrinos. Alexander Friedland Supernova Neutrinos Alexander Friedland Los Alamos National Lab Hanohano workshop Hawaii, March 24, 2007 1 Acknowledgments Evgeny Akhmedov (Munich), Sterling Colgate (LANL), Chris Fryer (LANL), George

More information

A study on different configurations of Long Baseline Neutrino Experiment

A study on different configurations of Long Baseline Neutrino Experiment A study on different configurations of Long Baseline Neutrino Experiment Mehedi Masud HRI, Allahabad (With V.Barger, A.Bhattacharya, A.Chatterjee, R.Gandhi and D.Marfatia Phys.Rev. D89 (2014) 1, 011302

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010

DAEδALUS. Janet Conrad LNS Seminar March 16, 2010 DAEδALUS Janet Conrad LNS Seminar March 16, 2010 Decay At rest Experiment for δ cp studies At the Laboratory for Underground Science Use decay-at-rest neutrino beams, and the planned 300 kton H 2 O detector

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M.

LENA. Investigation of Optical Scintillation Properties and the Detection of Supernovae Relic Neutrinos. M. Wurm. January 18, 2006 LENA. M. Spectrum Investigation of Scintillation and the Detection of Supernovae Relic Neutrinos January 18, 2006 Outline Spectrum 1 2 3 Spectrum 4 The Spectrum Spectrum about 50 kt of liquid scintillator, so:

More information

The Physics of Neutrino Oscillation. Boris Kayser INSS August, 2013

The Physics of Neutrino Oscillation. Boris Kayser INSS August, 2013 The Physics of Neutrino Oscillation Boris Kayser INSS August, 2013 1 Neutrino Flavor Change (Oscillation) in + l α (e.g. µ) Vacuum ( Approach of ) B.K. & Stodolsky - l β (e.g. τ) Amp ν W (ν α ) (ν β )

More information

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are

The Solar Neutrino Problem. There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are The Solar Neutrino Problem There are 6 major and 2 minor neutrino producing reactions in the sun. The major reactions are 1 H + 1 H 2 H + e + + ν e (PP I) 7 Be + e 7 Li + ν e + γ (PP II) 8 B 8 Be + e +

More information

Supernova Neutrino Directionality

Supernova Neutrino Directionality Supernova Neutrino Directionality Fan Zhang April 25, 2016 Subject: Senior Thesis Date Performed: Jan 2015 to Apr 2016 Instructor: Prof. Kate Scholberg Defense Committee: Prof. Kate Scholberg Prof. Roxanne

More information

GADZOOKS! project at Super-Kamiokande

GADZOOKS! project at Super-Kamiokande GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 2015,6,9@WIN2015 Contents GADZOOKS! project Supernova Relic Neutrino search R&D status and Plan Summary

More information

The LENA Neutrino Observatory

The LENA Neutrino Observatory The LENA Neutrino Observatory for the LENA Collaboration 1 Consortium of European science institutions and industry partners Design studies funded by the European Community (FP7) LAGUNA: detector site,

More information

Neutrino Mass Hierarchy

Neutrino Mass Hierarchy Neutrino Mass Hierarchy X. Qian 1 and P. Vogel 1 Physics Department, Brookhaven National Laboratory, Upton, NY, USA Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA, USA arxiv:155.1891v3

More information

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012

Supernovae SN1987A OPERA Constraints on neutrino parameters. Supernova neutrinos. Ly Duong. January 25, 2012 January 25, 2012 Overview Supernovae Supernovae Supernova types Core collapse model Neutrino properties Detection of neutrinos Data and analysis Experiment results Comparison with results Possible neutrino

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

Past, Present, and Future of Solar Neutrino Physics

Past, Present, and Future of Solar Neutrino Physics Past, Present, and Future of Solar Neutrino Physics A.B. Balantekin University of Wisconsin SMU ebubble Workshop January 22, 2008 ...to see into the interior of a star and thus verify directly the hypothesis

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Camillo Mariani Center for Neutrino Physics, Virginia Tech

Camillo Mariani Center for Neutrino Physics, Virginia Tech Camillo Mariani Center for Neutrino Physics, Virginia Tech Motivation and Contents Determination of neutrino oscillation parameters requires knowledge of neutrino energy Modern experiments use complicated

More information

He-Burning in massive Stars

He-Burning in massive Stars He-Burning in massive Stars He-burning is ignited on the He and ashes of the preceding hydrogen burning phase! Most important reaction -triple alpha process 3 + 7.6 MeV Red Giant Evolution in HR diagram

More information

Neutrinos From The Sky and Through the Earth

Neutrinos From The Sky and Through the Earth Neutrinos From The Sky and Through the Earth Kate Scholberg, Duke University DNP Meeting, October 2016 Neutrino Oscillation Nobel Prize! The fourth Nobel for neutrinos: 1988: neutrino flavor 1995: discovery

More information