The basic structure of the L-channel QMF bank is shown below

Size: px
Start display at page:

Download "The basic structure of the L-channel QMF bank is shown below"

Transcription

1 -Channel QMF Bans The basic structure of the -channel QMF ban is shown below The expressions for the -transforms of various intermediate signals in the above structure are given by Copyright, S. K. Mitra

2 Copyright, S. K. Mitra -Channel QMF Bans -Channel QMF Bans where Define the vector of down-sampled subband signals as X V W X W U l l l / / U V ^ [ ] T U U U... u

3 Copyright, S. K. Mitra 3 -Channel QMF Bans -Channel QMF Bans Define the modulation vector of the input signals as Define the analysis filter ban modulation matrix as T m W X W X X ]... [ x m W W W W W W......

4 Copyright, S. K. Mitra 4 -Channel QMF Bans -Channel QMF Bans Then we can write the set of equations as The output of the QMF ban is given by W X W U l l l / / ] [ / / m T m x u V G Y ^

5 -Channel QMF Bans In matrix form we can write Y g where T u [ G G... G ] T g 5 Copyright, S. K. Mitra

6 Alias-Free -Channel QMF Bans From the output equation Y gt u the modulated versions of the output signal are given by Y W T g W u W g T W u, 6 Copyright, S. K. Mitra

7 Copyright, S. K. Mitra 7 Alias-Free Alias-Free -Channel QMF -Channel QMF Bans Bans Define the modulation vector of the output signal as Define the synthesis filter ban modulation matrix as T m W Y W Y Y ]... [ y m W G W G W G W G W G W G G G G G......

8 Copyright, S. K. Mitra 8 Alias-Free Alias-Free -Channel QMF -Channel QMF Bans Bans Then the modulation vector of the output signal can be expressed as Combining the above and we arrive at m m u y G ] [ / / m T m x u ] [ m T m m m x G y

9 Alias-Free -Channel QMF Bans 9 Using the notation we can write m m T G [ ] m m y T x T is called the transfer matrix relating the input signal X and its modulated versions X W with the output signal Y and its modulated versions Y W T Copyright, S. K. Mitra

10 Alias-Free -Channel QMF Bans The filter ban is alias-free if the transfer matrix T is a diagonal matrix of the form... T diag[ T T W T W ] The first element T of the above diagonal matrix is called the distortion transfer function of the -channel filter ban Copyright, S. K. Mitra

11 Copyright, S. K. Mitra Alias-Free Alias-Free -Channel QMF -Channel QMF Bans Bans Substituting in X V W X W U l l l / / U V ^ V G Y ^

12 Alias-Free -Channel QMF Bans we arrive at l Y l al X W where a l l W G, l l On the unit circle the term X W becomes jω l j ωπl / X e W X e Copyright, S. K. Mitra

13 Alias-Free -Channel QMF Bans Thus, from l Y l al X W jω we observe that the output spectrum Y e jω is a weighted sum of X e and its j ωπl / uniformly shifted versions X e for l,,..., which are caused by the sampling rate alteration operations 3 Copyright, S. K. Mitra

14 Alias-Free -Channel QMF 4 l Bans The term X W is called the l-th aliasing term, with a l representing its gain at the output In general, the -channel QMF ban is a linear, time-varying system with a period It follows from l Y l al X W that the aliasing effect at the output can be completely eliminated if and only if a l l, Copyright, S. K. Mitra

15 Alias-Free -Channel QMF Bans Note: The aliasing cancellation condition given above must hold for all possible inputs If the aliasing cancellation condition holds then the -channel QMF ban becomes a linear, time-invariant system with an inputoutput relation given by Y TX 5 Copyright, S. K. Mitra

16 Alias-Free -Channel QMF Bans 6 The distortion transfer function T is given by T a G If T has a constant magnitude, then the - channel QMF ban is magnitude-preserving If T has a linear phase, then the -channel QMF ban is phase-preserving If T is a pure delay, then it is a perfect reconstruction filter ban Copyright, S. K. Mitra

17 Alias-Free -Channel QMF Bans Define A [ a a... a ] Then l al W G, l can be expressed as A m g 7 Copyright, S. K. Mitra

18 Alias-Free -Channel QMF Bans The aliasing cancellation condition can now be rewritten as m g t where T t [ a... ] 8 Copyright, S. K. Mitra

19 Alias-Free -Channel QMF Bans 9 ence, nowing the set of analysis filters { }, we can determine the desired set of synthesis filters { G } as m g [ ] t provided [det m ] Moreover, a perfect reconstruction QMF n ban results if we set T o in the expression for t Copyright, S. K. Mitra

20 Alias-Free -Channel QMF Bans In practice, the above approach is difficult to carry out for a number of reasons A more practical solution to the design of a perfect reconstruction QMF ban is based on a polyphase representation Copyright, S. K. Mitra

21 Polyphase Representation Consider the -band Type I polyphase representation of the -th analysis filter: l l El, A matrix representation of the above set of equations is given by e h E where h [... ] T Copyright, S. K. Mitra

22 Copyright, S. K. Mitra Polyphase Polyphase Representation Representation and E is called the Type I polyphase component matrix. T ]... [ e ,,,,, E E E E E E E E E E......

23 Polyphase Representation 3 iewise, we can represent the synthesis filters in a -band Type II polyphase form: l G l Rl, In matrix form the above set of equations can be rewritten as T ~ g e R where g [ G G... G ] T Copyright, S. K. Mitra

24 Copyright, S. K. Mitra 4 Polyphase Polyphase Representation Representation and R is called the Type II polyphase component matrix ,,,,, R R R R R R R R R R ]... [ T e e

25 Polyphase Representation The polyphase representations of the - channel analysis and the -channel synthesis filter bans are shown below 5 Analysis filter ban Synthesis filter ban Copyright, S. K. Mitra

26 Polyphase Representation Substituting the polyphase representations of the analysis and synthesis filter bans in the original structure of the -channel QMF ban, and maing use of the cascade equivalences we arrive at 6 Copyright, S. K. Mitra

27 Copyright, S. K. Mitra 7 Polyphase Polyphase Representation Representation From and it can be seen that m W W W W W W T ]... [ h ]... [ ] [ T m W W h h h

28 Polyphase Representation 8 e Maing use of h E in the previous equation we get m T [ ] E [ e e W... e W T Now, from... e [ ] we have W e W. W ] Copyright, S. K. Mitra

29 Polyphase Representation 9 where we have used the notation diag[... Maing use of the above notation in m T [ ] E [ e e W... e W we arrive at D E T where D is the conjugate transpose of the DFT matrix D ] ] Copyright, S. K. Mitra

30 Condition for Perfect Reconstruction Consider the -channel QMF structure repeated below for convenience 3 Copyright, S. K. Mitra

31 Condition for Perfect Reconstruction 3 Assume that the polyphase component matrices satisfy the relation R E ci where I is an identity matrix and c is a constant Then the QMF structure on the previous slide reduces to the one shown on the next slide Copyright, S. K. Mitra

32 Condition for Perfect Reconstruction 3 Note: The structure can be considered as a special case of the most general -channel QMF ban shown earlier if we set, G, Copyright, S. K. Mitra

33 Condition for Perfect Reconstruction Substituting, G, in a W l l G, l we get l l a l W, l 33 Copyright, S. K. Mitra

34 Condition for Perfect Reconstruction Now, W l l,, l l 34 ence, from the last equation on the previous slide it follows that a, a l for l As a result, T or in other words, the simplified QMF structure satisfies the perfect reconstruction property Copyright, S. K. Mitra

35 Condition for Perfect Reconstruction The analysis and synthesis filters of the perfect reconstruction -channel QMF ban can be easily determined from nown polyphase component matrices Example - The structure shown below is by construction a perfect reconstruction filter ban 35 Copyright, S. K. Mitra

36 Condition for Perfect Reconstruction 36 The output of the filter ban is simply y[ n] dx[ n ] Note: In this structure E 3 P and R 3 dp Consider P Copyright, S. K. Mitra

37 Copyright, S. K. Mitra 37 Condition for Perfect Condition for Perfect Reconstruction Reconstruction From we get ence, 3 e h E E E E E E E E E E,, + + +

38 Copyright, S. K. Mitra 38 Condition for Perfect Condition for Perfect Reconstruction Reconstruction With d 4 we have Then from we get which leads to dp 3 T R e g ~ [ ] G G G,, G G + G

39 Polyphase Representation 39 For a given -channel analysis filter ban, the polyphase component matrix E is nown E E ci, ence, a perfect reconstruction -channel QMF ban can be designed by constructing a synthesis filter ban with a polyphase component matrix R [ ] E Copyright, S. K. Mitra

40 Polyphase Representation In general, it is not easy to compute the inverse of a rational matrix An alternative elegant approach is to design the analysis filter ban with an invertible polyphase matrix E For example, E can be chosen to be a paraunitary matrix satisfying the condition ~ EE ci, for all 4 Copyright, S. K. Mitra

41 Polyphase Representation ~ Note: E is the paraconjugate of E given by the transpose of E, with each coefficient replaced by its conjugate A perfect reconstruction -channel QMF ban is then obtained by choosing ~ R E 4 Copyright, S. K. Mitra

42 Polyphase Representation 4 For the design of a perfect reconstruction - channel QMF ban, the matrix E can be expressed in a product form E ER ER... E E where E is a constant unitary matrix, and E [ *] T [ * T l I vl vl + vl vl] In the above v l is a column vector of order with unit norm, i.e., [ v * ] T l v l Copyright, S. K. Mitra

43 Polyphase Representation 43 With E expressed in the product form, one can set up an appropriate objective function that can be minimied to arrive at a set of analysis filters meeting the desired specifications To this end, a suitable objective function is given by φ ω e j th stopband dω Copyright, S. K. Mitra

44 Polyphase Representation 44 The optimiation parameters are the elements of vl and E Example- Consider the design of a 3- channel FIR perfect reconstruction QMF ban with a passband width π/3 The passband width of the lowpass filter is from to π/3, that of the bandpass filter is from π/3 to π/3, and that of the highpass filter is from π/3 to π Copyright, S. K. Mitra

45 Polyphase Representation The objective function to be minimied here is thus of the form φ π +ε π π +ε π 3 jω ε 3 jω π ε e jω dω + 3 e jω e dω + e + 3 dω The gain responses of the 3 analysis filters of length 5 are shown on the next slide π dω 45 Copyright, S. K. Mitra

46 Polyphase Representation - Gain, db ω/π The coefficients of the corresponding synthesis filters are given by g [ n] h [4 n],,,3 Copyright, S. K. Mitra

Perfect Reconstruction Two- Channel FIR Filter Banks

Perfect Reconstruction Two- Channel FIR Filter Banks Perfect Reconstruction Two- Channel FIR Filter Banks A perfect reconstruction two-channel FIR filter bank with linear-phase FIR filters can be designed if the power-complementary requirement e jω + e jω

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

Multi-rate Signal Processing 7. M-channel Maximally Decmiated Filter Banks

Multi-rate Signal Processing 7. M-channel Maximally Decmiated Filter Banks Multi-rate Signal Processing 7. M-channel Maximally Decmiated Filter Banks Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes

More information

Filter Banks II. Prof. Dr.-Ing Gerald Schuller. Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany

Filter Banks II. Prof. Dr.-Ing Gerald Schuller. Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany Filter Banks II Prof. Dr.-Ing Gerald Schuller Fraunhofer IDMT & Ilmenau Technical University Ilmenau, Germany Prof. Dr.-Ing. G. Schuller, shl@idmt.fraunhofer.de Page Modulated Filter Banks Extending the

More information

Basic Multi-rate Operations: Decimation and Interpolation

Basic Multi-rate Operations: Decimation and Interpolation 1 Basic Multirate Operations 2 Interconnection of Building Blocks 1.1 Decimation and Interpolation 1.2 Digital Filter Banks Basic Multi-rate Operations: Decimation and Interpolation Building blocks for

More information

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Niranjan Damera-Venkata and Brian L. Evans Embedded Signal Processing Laboratory Dept. of Electrical and Computer Engineering The University

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to decrease the sampling rate by an integer

More information

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany

Filter Banks II. Prof. Dr.-Ing. G. Schuller. Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Filter Banks II Prof. Dr.-Ing. G. Schuller Fraunhofer IDMT & Ilmenau University of Technology Ilmenau, Germany Page Modulated Filter Banks Extending the DCT The DCT IV transform can be seen as modulated

More information

Multirate signal processing

Multirate signal processing Multirate signal processing Discrete-time systems with different sampling rates at various parts of the system are called multirate systems. The need for such systems arises in many applications, including

More information

Module 4 MULTI- RESOLUTION ANALYSIS. Version 2 ECE IIT, Kharagpur

Module 4 MULTI- RESOLUTION ANALYSIS. Version 2 ECE IIT, Kharagpur Module MULTI- RESOLUTION ANALYSIS Version ECE IIT, Kharagpur Lesson Multi-resolution Analysis: Theory of Subband Coding Version ECE IIT, Kharagpur Instructional Objectives At the end of this lesson, the

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings

More information

Design of Nonuniform Filter Banks with Frequency Domain Criteria

Design of Nonuniform Filter Banks with Frequency Domain Criteria Blekinge Institute of Technology Research Report No 24:3 Design of Nonuniform Filter Banks with Frequency Domain Criteria Jan Mark de Haan Sven Nordholm Ingvar Claesson School of Engineering Blekinge Institute

More information

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design

Digital Speech Processing Lecture 10. Short-Time Fourier Analysis Methods - Filter Bank Design Digital Speech Processing Lecture Short-Time Fourier Analysis Methods - Filter Bank Design Review of STFT j j ˆ m ˆ. X e x[ mw ] [ nˆ m] e nˆ function of nˆ looks like a time sequence function of ˆ looks

More information

Course and Wavelets and Filter Banks. Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations.

Course and Wavelets and Filter Banks. Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations. Course 18.327 and 1.130 Wavelets and Filter Banks Filter Banks (contd.): perfect reconstruction; halfband filters and possible factorizations. Product Filter Example: Product filter of degree 6 P 0 (z)

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

Tunable IIR Digital Filters

Tunable IIR Digital Filters Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

Filter structures ELEC-E5410

Filter structures ELEC-E5410 Filter structures ELEC-E5410 Contents FIR filter basics Ideal impulse responses Polyphase decomposition Fractional delay by polyphase structure Nyquist filters Half-band filters Gibbs phenomenon Discrete-time

More information

Multiresolution image processing

Multiresolution image processing Multiresolution image processing Laplacian pyramids Some applications of Laplacian pyramids Discrete Wavelet Transform (DWT) Wavelet theory Wavelet image compression Bernd Girod: EE368 Digital Image Processing

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Digital Signal Processing Lecture 8 - Filter Design - IIR

Digital Signal Processing Lecture 8 - Filter Design - IIR Digital Signal Processing - Filter Design - IIR Electrical Engineering and Computer Science University of Tennessee, Knoxville October 20, 2015 Overview 1 2 3 4 5 6 Roadmap Discrete-time signals and systems

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 2, FEBRUARY 1999 389 Oversampling PCM Techniques and Optimum Noise Shapers for Quantizing a Class of Nonbandlimited Signals Jamal Tuqan, Member, IEEE

More information

1 1.27z z 2. 1 z H 2

1 1.27z z 2. 1 z H 2 E481 Digital Signal Processing Exam Date: Thursday -1-1 16:15 18:45 Final Exam - Solutions Dan Ellis 1. (a) In this direct-form II second-order-section filter, the first stage has

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED EE 33 Linear Signals & Systems (Fall 208) Solution Set for Homework #7 on Infinite Impulse Response (IIR) Filters CORRECTED By: Mr. Houshang Salimian and Prof. Brian L. Evans Prolog for the Solution Set.

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

Filter Banks with Variable System Delay. Georgia Institute of Technology. Atlanta, GA Abstract

Filter Banks with Variable System Delay. Georgia Institute of Technology. Atlanta, GA Abstract A General Formulation for Modulated Perfect Reconstruction Filter Banks with Variable System Delay Gerald Schuller and Mark J T Smith Digital Signal Processing Laboratory School of Electrical Engineering

More information

Bifrequency and Bispectrum Maps: A New Look at Multirate Systems with Stochastic Inputs

Bifrequency and Bispectrum Maps: A New Look at Multirate Systems with Stochastic Inputs IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 3, MARCH 2000 723 Bifrequency and Bispectrum Maps: A New Look at Multirate Systems with Stochastic Inputs Sony Akkarakaran and P. P. Vaidyanathan, Fellow,

More information

Responses of Digital Filters Chapter Intended Learning Outcomes:

Responses of Digital Filters Chapter Intended Learning Outcomes: Responses of Digital Filters Chapter Intended Learning Outcomes: (i) Understanding the relationships between impulse response, frequency response, difference equation and transfer function in characterizing

More information

ENEE630 ADSP RECITATION 5 w/ solution Ver

ENEE630 ADSP RECITATION 5 w/ solution Ver ENEE630 ADSP RECITATION 5 w/ solution Ver20209 Consider the structures shown in Fig RI, with input transforms and filter responses as indicated Sketch the quantities Y 0 (e jω ) and Y (e jω ) Figure RI:

More information

Near-perfect-reconstruction low-complexity two-band IIR/FIR QMF banks with FIR phase-compensation filters

Near-perfect-reconstruction low-complexity two-band IIR/FIR QMF banks with FIR phase-compensation filters Signal Processing 86 (26) 171 181 www.elsevier.com/locate/sigpro Near-perfect-reconstruction low-complexity two-band IIR/FIR QMF banks with FIR phase-compensation filters Jo rg Kliewer a,, Enisa Brka b,1

More information

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings and ordering Each one

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Synthesis of passband filters with asymmetric transmission zeros

Synthesis of passband filters with asymmetric transmission zeros Synthesis of passband filters with asymmetric transmission zeros Giuseppe Macchiarella Polytechnic of Milan, Italy Electronic and Information Department Passband filters with asymmetric zeros Placing asymmetric

More information

Image Denoising using Uniform Curvelet Transform and Complex Gaussian Scale Mixture

Image Denoising using Uniform Curvelet Transform and Complex Gaussian Scale Mixture EE 5359 Multimedia Processing Project Report Image Denoising using Uniform Curvelet Transform and Complex Gaussian Scale Mixture By An Vo ISTRUCTOR: Dr. K. R. Rao Summer 008 Image Denoising using Uniform

More information

On the Frequency-Domain Properties of Savitzky-Golay Filters

On the Frequency-Domain Properties of Savitzky-Golay Filters On the Frequency-Domain Properties of Savitzky-Golay Filters Ronald W Schafer HP Laboratories HPL-2-9 Keyword(s): Savitzky-Golay filter, least-squares polynomial approximation, smoothing Abstract: This

More information

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing

Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Wavelet Bi-frames with Uniform Symmetry for Curve Multiresolution Processing Qingtang Jiang Abstract This paper is about the construction of univariate wavelet bi-frames with each framelet being symmetric.

More information

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014 Subband Coding and Wavelets National Chiao Tung Universit Chun-Jen Tsai /4/4 Concept of Subband Coding In transform coding, we use N (or N N) samples as the data transform unit Transform coefficients are

More information

Phase Factor Influence on Amplitude Distortion and Aliasing of Pseudo-QMF Banks

Phase Factor Influence on Amplitude Distortion and Aliasing of Pseudo-QMF Banks Phase Factor Influence on Amplitude Distortion and Aliasing of Pseudo-QF Bans F. Cruz-Roldán; F. López-Ferreras; P. artin-artin;. Blanco-Velasco. Dep. de Teoría de la Señal y Comunicaciones, Universidad

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

DISCRETE-TIME SIGNAL PROCESSING

DISCRETE-TIME SIGNAL PROCESSING THIRD EDITION DISCRETE-TIME SIGNAL PROCESSING ALAN V. OPPENHEIM MASSACHUSETTS INSTITUTE OF TECHNOLOGY RONALD W. SCHÄFER HEWLETT-PACKARD LABORATORIES Upper Saddle River Boston Columbus San Francisco New

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #20 Wednesday, October 22, 2003 6.4 The Phase Response and Distortionless Transmission In most filter applications, the magnitude response H(e

More information

Design of Biorthogonal FIR Linear Phase Filter Banks with Structurally Perfect Reconstruction

Design of Biorthogonal FIR Linear Phase Filter Banks with Structurally Perfect Reconstruction Electronics and Communications in Japan, Part 3, Vol. 82, No. 1, 1999 Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J81-A, No. 1, January 1998, pp. 17 23 Design of Biorthogonal FIR Linear

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Chapter 2 Review of Fundamentals of Digital Signal Processing 2.1 (a) This system is not linear (the constant term makes it non linear) but is shift-invariant (b) This system is linear but not shift-invariant

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Filter Banks for Image Coding. Ilangko Balasingham and Tor A. Ramstad

Filter Banks for Image Coding. Ilangko Balasingham and Tor A. Ramstad Nonuniform Nonunitary Perfect Reconstruction Filter Banks for Image Coding Ilangko Balasingham Tor A Ramstad Department of Telecommunications, Norwegian Institute of Technology, 7 Trondheim, Norway Email:

More information

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions

LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Phase Transfer Functions Linear Phase Transfer Functions LTI Discrete-Time Systems in Transform Domain Ideal Filters Zero Pase Transfer Functions Linear Pase Transfer Functions Tania Stataki 811b t.stataki@imperial.ac.uk Types of Transfer Functions Te time-domain

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

DESIGN OF ALIAS-FREE LINEAR PHASE QUADRATURE MIRROR FILTER BANKS USING EIGENVALUE-EIGENVECTOR APPROACH

DESIGN OF ALIAS-FREE LINEAR PHASE QUADRATURE MIRROR FILTER BANKS USING EIGENVALUE-EIGENVECTOR APPROACH DESIGN OF ALIAS-FREE LINEAR PHASE QUADRATURE MIRROR FILTER BANKS USING EIGENVALUE-EIGENVECTOR APPROACH ABSTRACT S. K. Agrawal 1# and O. P. Sahu 1& Electronics and Communication Engineering Department,

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

New Design of Orthogonal Filter Banks Using the Cayley Transform

New Design of Orthogonal Filter Banks Using the Cayley Transform New Design of Orthogonal Filter Banks Using the Cayley Transform Jianping Zhou, Minh N. Do and Jelena Kovačević Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign,

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Very useful for designing and analyzing signal processing systems

Very useful for designing and analyzing signal processing systems z-transform z-transform The z-transform generalizes the Discrete-Time Fourier Transform (DTFT) for analyzing infinite-length signals and systems Very useful for designing and analyzing signal processing

More information

RATIONAL CANONICAL FORM OF POLYPHASE MATRICES WITH APPLICATIONS TO DESIGNING PARAUNITARY FILTER BANKS. Peter Vouras, Trac Tran, Michael Ching

RATIONAL CANONICAL FORM OF POLYPHASE MATRICES WITH APPLICATIONS TO DESIGNING PARAUNITARY FILTER BANKS. Peter Vouras, Trac Tran, Michael Ching RATIONAL ANONIAL ORM O POLYPASE MATRIES WIT APPLIATIONS TO ESIGNING PARAUNITARY ILTER BANKS Peter Vouras Trac Tran Michael hing Naval Research Laboratory Johns opkins University University of Georgia ABSTRAT

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

The Discrete-Time Fourier

The Discrete-Time Fourier Chapter 3 The Discrete-Time Fourier Transform 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 3-1-1 Continuous-Time Fourier Transform Definition The CTFT of

More information

Network Parameters of a Two-Port Filter

Network Parameters of a Two-Port Filter Contents Network Parameters of a Two-Port Filter S Parameters in the s-domain Relation between ε and ε R 2 2 Derivation of S 22 3 2 Network Parameters in the jω-domain 3 2 S Parameters in the jω-domain

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

We have shown earlier that the 1st-order lowpass transfer function

We have shown earlier that the 1st-order lowpass transfer function Tunable IIR Digital Filters We have described earlier two st-order and two nd-order IIR digital transfer functions with tunable frequency response characteristics We shall show now that these transfer

More information

Lecture 15: Time and Frequency Joint Perspective

Lecture 15: Time and Frequency Joint Perspective WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 15: Time and Frequency Joint Perspective Prof.V.M.Gadre, EE, IIT Bombay Introduction In lecture 14, we studied steps required to design conjugate

More information

Lapped Unimodular Transform and Its Factorization

Lapped Unimodular Transform and Its Factorization IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 50, NO 11, NOVEMBER 2002 2695 Lapped Unimodular Transform and Its Factorization See-May Phoong, Member, IEEE, and Yuan-Pei Lin, Member, IEEE Abstract Two types

More information

Lecture 11: Two Channel Filter Bank

Lecture 11: Two Channel Filter Bank WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 11: Two Channel Filter Bank Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In the previous lecture we studied Z domain analysis of two channel filter

More information

Design of IIR filters

Design of IIR filters Design of IIR filters Standard methods of design of digital infinite impulse response (IIR) filters usually consist of three steps, namely: 1 design of a continuous-time (CT) prototype low-pass filter;

More information

Butterworth Filter Properties

Butterworth Filter Properties OpenStax-CNX module: m693 Butterworth Filter Properties C. Sidney Burrus This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3. This section develops the properties

More information

Multi-rate Signal Processing 3. The Polyphase Representation

Multi-rate Signal Processing 3. The Polyphase Representation Multi-rate Signal Processing 3. The Polyphase Representation Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

COMPLEX WAVELET TRANSFORM IN SIGNAL AND IMAGE ANALYSIS

COMPLEX WAVELET TRANSFORM IN SIGNAL AND IMAGE ANALYSIS COMPLEX WAVELET TRANSFORM IN SIGNAL AND IMAGE ANALYSIS MUSOKO VICTOR, PROCHÁZKA ALEŠ Institute of Chemical Technology, Department of Computing and Control Engineering Technická 905, 66 8 Prague 6, Cech

More information

Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0.1)

Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0.1) Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0. Cliff Sparks www.arpchord.com The following is a quick overview of recursive linear time-invariant first-order

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture 3 The Approximation Problem Classical Approximating Functions - Thompson and Bessel Approximations Review from Last Time Elliptic Filters Can be thought of as an extension of the CC approach

More information

Lecture 10, Multirate Signal Processing Transforms as Filter Banks. Equivalent Analysis Filters of a DFT

Lecture 10, Multirate Signal Processing Transforms as Filter Banks. Equivalent Analysis Filters of a DFT Lecture 10, Multirate Signal Processing Transforms as Filter Banks Equivalent Analysis Filters of a DFT From the definitions in lecture 2 we know that a DFT of a block of signal x is defined as X (k)=

More information

Direct Design of Orthogonal Filter Banks and Wavelets

Direct Design of Orthogonal Filter Banks and Wavelets Direct Design of Orthogonal Filter Banks and Wavelets W.-S. Lu T. Hinamoto Dept. of Electrical & Computer Engineering Graduate School of Engineering University of Victoria Hiroshima University Victoria,

More information

Design of Stable IIR filters with prescribed flatness and approximately linear phase

Design of Stable IIR filters with prescribed flatness and approximately linear phase Design of Stable IIR filters with prescribed flatness and approximately linear phase YASUNORI SUGITA Nagaoka University of Technology Dept. of Electrical Engineering Nagaoka city, Niigata-pref., JAPAN

More information

MULTIRATE DIGITAL SIGNAL PROCESSING

MULTIRATE DIGITAL SIGNAL PROCESSING MULTIRATE DIGITAL SIGNAL PROCESSING Signal processing can be enhanced by changing sampling rate: Up-sampling before D/A conversion in order to relax requirements of analog antialiasing filter. Cf. audio

More information

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials RADIOENGINEERING, VOL. 3, NO. 3, SEPTEMBER 4 949 All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials Nikola STOJANOVIĆ, Negovan STAMENKOVIĆ, Vidosav STOJANOVIĆ University of Niš,

More information

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters Computer-Aided Design of Digital Filters The FIR filter design techniques discussed so far can be easily implemented on a computer In addition, there are a number of FIR filter design algorithms that rely

More information

Design of Narrow Stopband Recursive Digital Filter

Design of Narrow Stopband Recursive Digital Filter FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 24, no. 1, April 211, 119-13 Design of Narrow Stopband Recursive Digital Filter Goran Stančić and Saša Nikolić Abstract: The procedure for design of narrow

More information

EDICS No. SP Abstract. A procedure is developed to design IIR synthesis lters in a multirate lter bank. The lters

EDICS No. SP Abstract. A procedure is developed to design IIR synthesis lters in a multirate lter bank. The lters Design of Multirate Filter Banks by H 1 Optimization Tongwen Chen Electrical and Computer Engineering University of Calgary Calgary, Alberta TN 1N4 Canada chent@enel.ucalgary.ca Bruce Francis Electrical

More information

1 The Continuous Wavelet Transform The continuous wavelet transform (CWT) Discretisation of the CWT... 2

1 The Continuous Wavelet Transform The continuous wavelet transform (CWT) Discretisation of the CWT... 2 Contents 1 The Continuous Wavelet Transform 1 1.1 The continuous wavelet transform (CWT)............. 1 1. Discretisation of the CWT...................... Stationary wavelet transform or redundant wavelet

More information

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform EE58 Digital Signal Processing University of Washington Autumn 2 Dept. of Electrical Engineering Lecture 6: Filter Design: Impulse Invariance and Bilinear Transform Nov 26, 2 Prof: J. Bilmes

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

EXTENDED LAPPED TRANSFORMS: PROPERTIES, APPLICATIONS, AND FAST ALGORITHMS

EXTENDED LAPPED TRANSFORMS: PROPERTIES, APPLICATIONS, AND FAST ALGORITHMS EXTENDED LAPPED TRANSFORMS: PROPERTIES, APPLICATIONS, AND FAST ALGORITHMS Henrique S. Malvar, Senior Member, IEEE Dept. of Electrical Engineering, Universidade de Brasília CP 153041, 70910 Brasília, DF,

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information

OPTIMIZED PROTOTYPE FILTER BASED ON THE FRM APPROACH

OPTIMIZED PROTOTYPE FILTER BASED ON THE FRM APPROACH CIRCUITS SYSTEMS SIGNAL PROCESSING c Birkhäuser Boston (2003) VOL. 22, NO. 2,2003, PP. 193 210 OPTIMIZED PROTOTYPE FILTER BASED ON THE FRM APPROACH FOR COSINE-MODULATED FILTER BANKS* Miguel B. Furtado

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Multi-dimensional signal processing Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione

More information

Symmetric Wavelet Tight Frames with Two Generators

Symmetric Wavelet Tight Frames with Two Generators Symmetric Wavelet Tight Frames with Two Generators Ivan W. Selesnick Electrical and Computer Engineering Polytechnic University 6 Metrotech Center, Brooklyn, NY 11201, USA tel: 718 260-3416, fax: 718 260-3906

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

The Dual-Tree Complex Wavelet Transform A Coherent Framework for Multiscale Signal and Image Processing

The Dual-Tree Complex Wavelet Transform A Coherent Framework for Multiscale Signal and Image Processing The Dual-Tree Complex Wavelet Transform A Coherent Framework for Multiscale Signal and Image Processing Ivan W. Selesnick Electrical and Computer Engineering Polytechnic University 6 Metrotech Center,

More information

Transform Analysis of Linear Time-Invariant Systems

Transform Analysis of Linear Time-Invariant Systems Transform Analysis of Linear Time-Invariant Systems Discrete-Time Signal Processing Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-Sen University Kaohsiung, Taiwan ROC Transform

More information

Organization of This Pile of Lecture Notes. Part V.F: Cosine-Modulated Filter Banks

Organization of This Pile of Lecture Notes. Part V.F: Cosine-Modulated Filter Banks Part V.F: Cosine-Modulated s This part shows how to efficiently implement a multichannel (M > ) analysis synthesis bank using a single prototype filter a proper cosine modulation scheme. It is mostly based

More information