Butterworth Filter Properties

Size: px
Start display at page:

Download "Butterworth Filter Properties"

Transcription

1 OpenStax-CNX module: m693 Butterworth Filter Properties C. Sidney Burrus This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3. This section develops the properties of the Butterworth lter which has as its basic concept a Taylor's series approximation to the desired frequency response. The measure of the approximation is the number of terms in the Taylor's series expansion of the actual frequency response that can be made equal to those of the desired frequency response. The optimal or best solution will have the maximum number of terms equal. The Taylor's series is a power series expansion of a function in the form of where K = F (), F (ω) = K + K ω + K 2 ω 2 + K 3 ω 3 + () K = df (ω) dω ω=, K 2 = (/2) d2 F (ω) dω 2, etc., (2) ω= with the coecients of the Taylor's series being proportional to the various order derivatives of F (ω) evaluated at ω =. A basic characteristic of this approach is that the approximation is all performed at one point, i.e., at one frequency. The ability of this approach to give good results over a range of frequencies depends on the analytic properties of the response. The general form for the squared-magnitude response is an even function of ω and, therefore, is a function of ω 2 expressed as F F (jω) = d + d 2 ω 2 + d 4 ω d 2M ω 2M c + c 2 ω 2 + c 4 ω c 2N ω 2N (3) In order to obtain a solution that is a lowpass lter, the Taylor's series expansion is performed around ω =, requiring that F F () = and that F F (j ) =, (i.e., d = c, N > M, and c 2N ). This is written as Combining (3) and (4) gives F F (jω) = + E (ω) (4) d + d 2 ω d 2 Mw = c + c 2 w + + c 2N ω 2N + E (ω) [c + c 2 ω + ] (5) The best Taylor's approximation requires that F F (jω) and the desired ideal response have as many terms as possible equal in their Taylor's series expansion at a given frequency. For a lowpass lter, the expansion is around ω =, and this requires E (ω) have as few low-order ω terms as possible. This is achieved by setting c = d, c 2 = d 2, c 2M = d 2M, c 2M+2 =, c 2N 2 =, c 2N (6) Version.2: Nov 7, 22 5:54 pm

2 OpenStax-CNX module: m693 2 Because the ideal response in the passband is a constant, the Taylor's series approximation is often called maximally at". (6) states that the numerator of the transfer function may be chosen arbitrarily. Then by setting the denominator coecients of FF(s) equal to the numerator coecients plus one higher-order term, an optimal Taylor's series approximation is achieved [2]. Since the numerator is arbitrary, its coecients can be chosen for a Taylor's approximation to zero at ω =. This is accomplished by setting d = and all other d's equal zero. The resulting magnitude-squared function is[2] F F (jω) = (7) + c 2N ω 2N The value of the constant c 2N determines at which value of ω the transition of passband to stopband occurs. For this development, it is normalized to c 2N =, which causes the transition to occur at ω =. This gives the simple form for what is called the Butterworth lter F F (jω) = (8) + ω 2N This approximation is sometimes called maximally at" at both ω = and ω =, since it is simultaneously a Taylor's series approximation to unity at ω = and to zero at ω =. A graph of the resulting frequency response function is shown in Figure for several N. Order N Analog Butterworth Filter N = Magnitude Response N = 3 N = Normalized Frequency Figure : Frequency Responses of the Butterworth Lowpass Filter Approximation The characteristics of the normalized Butterworth lter frequency response are:

3 OpenStax-CNX module: m693 3 Very close to the ideal near ω = and ω =, Very smooth at all frequencies with a monotonic decrease from ω = to, and Largest dierence between the ideal and actual responses near the transition at ω = where F (j) 2 = /2. Although not part of the approximation addressed, the phase curve is also very smooth. An important feature of the Butterworth lter is the closed- form formula for the solution, F (s). The expression for F F (s) may be determined as F (s) F ( s) = + ( s 2 ) N (9) This function has 2N poles evenly spaced around a unit radius circle and 2N zeros at innity. The determination of F (s) is very simple. In order to have a stable lter, F (s) is selected to have the N lefthand plane poles and N zeros at innity; F ( s) will necessarily have the right-hand plane poles and the other N zeros at innity. The location of these poles on the complex s plane for N =, 2, 3, and 4 is shown in Figure 2. Imaginary part of s Imaginary part of s First Order BW Filter Poles Third Order BW Filter Poles Real part of s Second Order BW Filter Poles Fourth Order BW Filter Poles Real part of s Figure 2: Pole Locations for Analog Butterworth Filter Transfer Function on the Complex s Plane

4 OpenStax-CNX module: m693 4 Because of the geometry of the pole positions, simple formulas are easy to derive for the pole locations. If the real and imaginary parts of the pole location are denoted as the locations of the N poles are given by s = u + jw () u k = cos (kπ/2n) () for N values of k where ω k = sin (kπ/2n) (2) k = ±, ±3, ±5,..., ± (N ) for N even (3) k =, ±2, ±4,..., ± (N ) for N odd (4) Because the coecients of the numerator and denominator polynomials of F (s) are real, the roots occur in complex conjugate pairs. The conjugate pairs in (),(2) can be combined to be the roots of second-order polynomials so that for N even, F (s) has the partially factored form of F (s) = s 2 + 2cos (kπ/2n) s + k for k =, 3, 5,..., N. For N odd, F (s) has a single real pole and, therefore, the form F (s) = s + s 2 + 2cos (kπ/2n) s + for k = 2, 4, 6,, N This is a convenient form for the cascade and parallel realizations discussed in elsewhere. A single formula for the pole locations for both even and odd N is k (5) (6) u k = sin ((2k + ) π/2n) (7) ω k = cos ((2k + ) π/2n) (8) for N values of k where k =,, 2,..., N One of the important features of the Butterworth lter design formulas is that the pole locations are found by independent calculations which do not depend on each other or on factoring a polynomial. A FORTRAN program which calculates these values is given in the appendix as Program 8. Mathworks has a powerful command for designing analog and digital Butterworth lters. The classical form of the Butterworth lter given in (8) is discussed in many books [3], [], [4], [5], [2]. The less well-known form given in (6) also has many useful applications [2]. If the frequency location of unwanted signals is known, the zeros of the transfer function given by the numerator can be set to best reject them. It is then possible to choose the pole locations so as to have a passband as at as the classical Butterworth lter by using (6). Unfortunately, there are no formulas for the pole locations; therefore, the denominator polynomial must be factored. Summary This section has derived design procedures and formulas for a class of lter transfer functions that approximate the ideal desired frequency response by a Taylor's series. If the approximation is made at ω = and ω =, the resulting lter is called a Butterworth lter and the response is called maximally-at at zero and innity. This lter has a very smooth frequency response and, although not explicitly designed for, has a smooth phase response. Simple formulas for the pole locations were derived and are implemented in the design program in the appendix of this book.

5 OpenStax-CNX module: m693 5 Butterworth Filter Design Procedures This section considers the process of going from given specications to use of the approximation results derived in the previous section. The Butterworth lter is the simplest of the four classical lters in that all the approximation eort is placed at two frequencies: ω = and ω =. The transition from passband to stopband occurs at a normalized frequency of ω =. Assuming that this transition frequency or bandedge can later be scaled to any desired frequency, the only parameter to be chosen in the design process is the order N. The lter specications that are consistent with what is optimized in the Butterworth lter are the degree of atness" at ω = (DC) and at ω =. The higher the order, the atter the frequency response at these two points. Because of the analytic nature of rational functions, the atter the response is at ω = and ω =, the closer it stays to the desired response throughout the whole passband and stopband. An indirect consequence of the lter order is the slope of the response at the transition between pass and stopband. The slope of the squared-magnitude frequency response at ω = is s = F F ' (j) = N/2 (9) The eects of the increased atness and increased transition slope of the frequency response as N increases are illustrated in Figure from Design of Innite Impulse Response (IIR) Filters by Frequency Transformations. In some cases specications state the response must stay above or below a certain value over a given frequency band. Although this type of specication is more compatible with a Chebyshev error optimization, it is possible to design a Butterworth lter to meet the requirements. If the magnitude of the frequency response of the lter over the passband of < ω < ω P must remain between unity and G, where ω p < and G <, the required order is found by the smallest integer N satisfying ( ) log (/G) 2 N (2) log (ω p ) This is illustrated in Figure 3 where F must remain above.9 for ω up to.9, i.e., G =.9 and ω p =.9. These requirements require an order of at least N = 7.

6 OpenStax-CNX module: m693 6 Analog Butterworth Filter Frequency Response.8 Magnitude Response ω p Normalized Frequency ω Figure 3: Passband Specications for Designing a Butterworth Filter If stopband performance is stated in the form of requiring that the response stay below a certain value for frequency above a certain value, i.e., F < G for ω > ω s, the order is determined by the same formula (2) with ω p replaced by ω s. Note F (j) = / (2) which is called the half power" frequency because F (j) 2 = /2. This frequency is normalized to one for the theory but can be scaled to any value for applications. Example : Design of a Butterworth Lowpass IIR Filter To illustrate the calculations, a lowpass Butterworth lter is designed. It is desired that the frequency response stay above.8 for frequencies up to.9. The formula (2) for determining the order gives a value of 2.73; therefore, the order is three. The analytic function corresponding to the squared-magnitude frequency response in (9) is F (jω) 2 = + ω 6 (2) The transfer function corresponding to the left-half-plane poles of F'(s) are calculated from ()

7 OpenStax-CNX module: m693 7 to give F (s) = (s + ) (s j.866) (s +.5 j.866) F (s) = (s + ) (s 2 + s + ) (22) (23) F (s) = s 3 + 2s 2 + 2s + The frequency response is obtained by setting s = jω which has a plot illustrated in Figure for N = 3. The pole locations are the same as shown in Figure 2c. (24) References [] A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice-Hall, Englewood Clis, NJ, second edition, 999. Earlier editions in 975 and 989. [2] T. W. Parks and C. S. Burrus. Digital Filter Design. John Wiley & Sons, New York, 987. [3] L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Clis, NJ, 975. [4] F. J. Taylor. Digital Filter Design Handbook. Marcel Dekker, Inc., New York, 983. [5] M.E. Van Valkenburg. Analog Filter Design. Holt, Rinehart, and Winston, New York,

The DFT as Convolution or Filtering

The DFT as Convolution or Filtering Connexions module: m16328 1 The DFT as Convolution or Filtering C. Sidney Burrus This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License A major application

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Maximally Flat Lowpass Digital Differentiators

Maximally Flat Lowpass Digital Differentiators Maximally Flat Lowpass Digital Differentiators Ivan W. Selesnick August 3, 00 Electrical Engineering, Polytechnic University 6 Metrotech Center, Brooklyn, NY 0 selesi@taco.poly.edu tel: 78 60-36 fax: 78

More information

Notes on L (Optimal) Filters

Notes on L (Optimal) Filters Notes on L (Optimal) Filters by C. Bond, 20 Background In 959 A. Papoulis published a paper which completed the description of a new class of filters with optimal properties, originally reported in 958.

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #24 Tuesday, November 4, 2003 6.8 IIR Filter Design Properties of IIR Filters: IIR filters may be unstable Causal IIR filters with rational system

More information

IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter

IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter IIR digital filter design for low pass filter based on impulse invariance and bilinear transformation methods using butterworth analog filter Nasser M. Abbasi May 5, 0 compiled on hursday January, 07 at

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture 3 The Approximation Problem Classical Approximating Functions - Thompson and Bessel Approximations Review from Last Time Elliptic Filters Can be thought of as an extension of the CC approach

More information

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI Signals and Systems Lecture 11 Wednesday 22 nd November 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Effect on poles and zeros on frequency response

More information

EE 521: Instrumentation and Measurements

EE 521: Instrumentation and Measurements Aly El-Osery Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA November 1, 2009 1 / 27 1 The z-transform 2 Linear Time-Invariant System 3 Filter Design IIR Filters FIR Filters

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

Filter Analysis and Design

Filter Analysis and Design Filter Analysis and Design Butterworth Filters Butterworth filters have a transfer function whose squared magnitude has the form H a ( jω ) 2 = 1 ( ) 2n. 1+ ω / ω c * M. J. Roberts - All Rights Reserved

More information

Digital Signal Processing IIR Filter Design via Bilinear Transform

Digital Signal Processing IIR Filter Design via Bilinear Transform Digital Signal Processing IIR Filter Design via Bilinear Transform D. Richard Brown III D. Richard Brown III 1 / 12 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic

More information

Lecture 7 Discrete Systems

Lecture 7 Discrete Systems Lecture 7 Discrete Systems EE 52: Instrumentation and Measurements Lecture Notes Update on November, 29 Aly El-Osery, Electrical Engineering Dept., New Mexico Tech 7. Contents The z-transform 2 Linear

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,

More information

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital

DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS. 3.6 Design of Digital Filter using Digital to Digital DIGITAL SIGNAL PROCESSING UNIT III INFINITE IMPULSE RESPONSE DIGITAL FILTERS Contents: 3.1 Introduction IIR Filters 3.2 Transformation Function Derivation 3.3 Review of Analog IIR Filters 3.3.1 Butterworth

More information

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12

ECE 410 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter 12 . ECE 40 DIGITAL SIGNAL PROCESSING D. Munson University of Illinois Chapter IIR Filter Design ) Based on Analog Prototype a) Impulse invariant design b) Bilinear transformation ( ) ~ widely used ) Computer-Aided

More information

FIR BAND-PASS DIGITAL DIFFERENTIATORS WITH FLAT PASSBAND AND EQUIRIPPLE STOPBAND CHARACTERISTICS. T. Yoshida, Y. Sugiura, N.

FIR BAND-PASS DIGITAL DIFFERENTIATORS WITH FLAT PASSBAND AND EQUIRIPPLE STOPBAND CHARACTERISTICS. T. Yoshida, Y. Sugiura, N. FIR BAND-PASS DIGITAL DIFFERENTIATORS WITH FLAT PASSBAND AND EQUIRIPPLE STOPBAND CHARACTERISTICS T. Yoshida, Y. Sugiura, N. Aikawa Tokyo University of Science Faculty of Industrial Science and Technology

More information

PS403 - Digital Signal processing

PS403 - Digital Signal processing PS403 - Digital Signal processing 6. DSP - Recursive (IIR) Digital Filters Key Text: Digital Signal Processing with Computer Applications (2 nd Ed.) Paul A Lynn and Wolfgang Fuerst, (Publisher: John Wiley

More information

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER

INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters 4. THE BUTTERWORTH ANALOG FILTER INFINITE-IMPULSE RESPONSE DIGITAL FILTERS Classical analog filters and their conversion to digital filters. INTRODUCTION 2. IIR FILTER DESIGN 3. ANALOG FILTERS 4. THE BUTTERWORTH ANALOG FILTER 5. THE CHEBYSHEV-I

More information

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR

Digital Signal Processing Lecture 9 - Design of Digital Filters - FIR Digital Signal Processing - Design of Digital Filters - FIR Electrical Engineering and Computer Science University of Tennessee, Knoxville November 3, 2015 Overview 1 2 3 4 Roadmap Introduction Discrete-time

More information

Digital Signal Processing Lecture 8 - Filter Design - IIR

Digital Signal Processing Lecture 8 - Filter Design - IIR Digital Signal Processing - Filter Design - IIR Electrical Engineering and Computer Science University of Tennessee, Knoxville October 20, 2015 Overview 1 2 3 4 5 6 Roadmap Discrete-time signals and systems

More information

Zeros of Polynomial Functions

Zeros of Polynomial Functions OpenStax-CNX module: m49349 1 Zeros of Polynomial Functions OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you will:

More information

Stability Condition in Terms of the Pole Locations

Stability Condition in Terms of the Pole Locations Stability Condition in Terms of the Pole Locations A causal LTI digital filter is BIBO stable if and only if its impulse response h[n] is absolutely summable, i.e., 1 = S h [ n] < n= We now develop a stability

More information

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design

DIGITAL SIGNAL PROCESSING. Chapter 6 IIR Filter Design DIGITAL SIGNAL PROCESSING Chapter 6 IIR Filter Design OER Digital Signal Processing by Dr. Norizam Sulaiman work is under licensed Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

More information

Design IIR Butterworth Filters Using 12 Lines of Code

Design IIR Butterworth Filters Using 12 Lines of Code db Design IIR Butterworth Filters Using 12 Lines of Code While there are plenty of canned functions to design Butterworth IIR filters [1], it s instructive and not that complicated to design them from

More information

Design of IIR filters

Design of IIR filters Design of IIR filters Standard methods of design of digital infinite impulse response (IIR) filters usually consist of three steps, namely: 1 design of a continuous-time (CT) prototype low-pass filter;

More information

Increasing and decreasing intervals *

Increasing and decreasing intervals * OpenStax-CNX module: m15474 1 Increasing and decreasing intervals * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 A function is

More information

On the Frequency-Domain Properties of Savitzky-Golay Filters

On the Frequency-Domain Properties of Savitzky-Golay Filters On the Frequency-Domain Properties of Savitzky-Golay Filters Ronald W Schafer HP Laboratories HPL-2-9 Keyword(s): Savitzky-Golay filter, least-squares polynomial approximation, smoothing Abstract: This

More information

MITOCW watch?v=jtj3v Rx7E

MITOCW watch?v=jtj3v Rx7E MITOCW watch?v=jtj3v Rx7E The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

An Iir-Filter Example: A Butterworth Filter

An Iir-Filter Example: A Butterworth Filter An Iir-Filter Example: A Butterworth Filter Josef Goette Bern University of Applied Sciences, Biel Institute of Human Centered Engineering - microlab JosefGoette@bfhch February 7, 2017 Contents 1 Introduction

More information

Chapter 7: Filter Design 7.1 Practical Filter Terminology

Chapter 7: Filter Design 7.1 Practical Filter Terminology hapter 7: Filter Design 7. Practical Filter Terminology Analog and digital filters and their designs constitute one of the major emphasis areas in signal processing and communication systems. This is due

More information

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 )

Let H(z) = P(z)/Q(z) be the system function of a rational form. Let us represent both P(z) and Q(z) as polynomials of z (not z -1 ) Review: Poles and Zeros of Fractional Form Let H() = P()/Q() be the system function of a rational form. Let us represent both P() and Q() as polynomials of (not - ) Then Poles: the roots of Q()=0 Zeros:

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

Shifted-modified Chebyshev filters

Shifted-modified Chebyshev filters Turkish Journal of Electrical Engineering & Computer Sciences http:// journals. tubitak. gov. tr/ elektrik/ Research Article Turk J Elec Eng & Comp Sci (23) 2: 35 358 c TÜBİTAK doi:.396/elk-2-26 Shifted-modified

More information

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter?

UNIT - III PART A. 2. Mention any two techniques for digitizing the transfer function of an analog filter? UNIT - III PART A. Mention the important features of the IIR filters? i) The physically realizable IIR filters does not have linear phase. ii) The IIR filter specification includes the desired characteristics

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Quadrature-Mirror Filter Bank

Quadrature-Mirror Filter Bank Quadrature-Mirror Filter Bank In many applications, a discrete-time signal x[n] is split into a number of subband signals { v k [ n]} by means of an analysis filter bank The subband signals are then processed

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

The Approximation Problem

The Approximation Problem EE 508 Lecture The Approximation Problem Classical Approximating Functions - Elliptic Approximations - Thompson and Bessel Approximations Review from Last Time Chebyshev Approximations T Type II Chebyshev

More information

Design IIR Filters Using Cascaded Biquads

Design IIR Filters Using Cascaded Biquads Design IIR Filters Using Cascaded Biquads This article shows how to implement a Butterworth IIR lowpass filter as a cascade of second-order IIR filters, or biquads. We ll derive how to calculate the coefficients

More information

Time Series Analysis: 4. Linear filters. P. F. Góra

Time Series Analysis: 4. Linear filters. P. F. Góra Time Series Analysis: 4. Linear filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Linear filters in the Fourier domain Filtering: Multiplying the transform by a transfer function. g n DFT G

More information

Limits of algebraic functions *

Limits of algebraic functions * OpenStax-CNX module: m7542 Limits of algebraic functions * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 Algebraic expressions

More information

Analog and Digital Filter Design

Analog and Digital Filter Design Analog and Digital Filter Design by Jens Hee http://jenshee.dk October 208 Change log 28. september 208. Document started.. october 208. Figures added. 6. october 208. Bilinear transform chapter extended.

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

LAB 6: FIR Filter Design Summer 2011

LAB 6: FIR Filter Design Summer 2011 University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering ECE 311: Digital Signal Processing Lab Chandra Radhakrishnan Peter Kairouz LAB 6: FIR Filter Design Summer 011

More information

Digital Control & Digital Filters. Lectures 21 & 22

Digital Control & Digital Filters. Lectures 21 & 22 Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205 Review of Analog Filters-Cont. Types of Analog Filters:

More information

DISCRETE-TIME SIGNAL PROCESSING

DISCRETE-TIME SIGNAL PROCESSING THIRD EDITION DISCRETE-TIME SIGNAL PROCESSING ALAN V. OPPENHEIM MASSACHUSETTS INSTITUTE OF TECHNOLOGY RONALD W. SCHÄFER HEWLETT-PACKARD LABORATORIES Upper Saddle River Boston Columbus San Francisco New

More information

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings

More information

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches

How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches How to manipulate Frequencies in Discrete-time Domain? Two Main Approaches Difference Equations (an LTI system) x[n]: input, y[n]: output That is, building a system that maes use of the current and previous

More information

A Simple Proof of the Alternation Theorem

A Simple Proof of the Alternation Theorem A Simple Proof of the Alternation Theorem P. P. Vaidyanathan Dept. of Electrical Engineering California Institute of Technology Pasadena, CA 91125 Email: ppvnath@systems.caltech.edu T. Q. Nguyen Dept.

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

Analysis of Finite Wordlength Effects

Analysis of Finite Wordlength Effects Analysis of Finite Wordlength Effects Ideally, the system parameters along with the signal variables have infinite precision taing any value between and In practice, they can tae only discrete values within

More information

Chapter 7: IIR Filter Design Techniques

Chapter 7: IIR Filter Design Techniques IUST-EE Chapter 7: IIR Filter Design Techniques Contents Performance Specifications Pole-Zero Placement Method Impulse Invariant Method Bilinear Transformation Classical Analog Filters DSP-Shokouhi Advantages

More information

Factorising Cubic Polynomials - Grade 12 *

Factorising Cubic Polynomials - Grade 12 * OpenStax-CNX module: m32660 1 Factorising Cubic Polynomials - Grade 12 * Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed

More information

Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0.1)

Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0.1) Coefficients of Recursive Linear Time-Invariant First-Order Low-Pass and High-Pass Filters (v0. Cliff Sparks www.arpchord.com The following is a quick overview of recursive linear time-invariant first-order

More information

INF3440/INF4440. Design of digital filters

INF3440/INF4440. Design of digital filters Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 INF3440/INF4440. Design of digital filters October 2004 Last week lecture Today s lecture: Chapter 8.1-8.3, 8.4.2, 8.5.3 Last lectures:

More information

Review of Fundamentals of Digital Signal Processing

Review of Fundamentals of Digital Signal Processing Solution Manual for Theory and Applications of Digital Speech Processing by Lawrence Rabiner and Ronald Schafer Click here to Purchase full Solution Manual at http://solutionmanuals.info Link download

More information

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials

All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials RADIOENGINEERING, VOL. 3, NO. 3, SEPTEMBER 4 949 All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials Nikola STOJANOVIĆ, Negovan STAMENKOVIĆ, Vidosav STOJANOVIĆ University of Niš,

More information

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra

Time Series Analysis: 4. Digital Linear Filters. P. F. Góra Time Series Analysis: 4. Digital Linear Filters P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2018 Linear filters Filtering in Fourier domain is very easy: multiply the DFT of the input by a transfer

More information

Gravitational potential energy *

Gravitational potential energy * OpenStax-CNX module: m15090 1 Gravitational potential energy * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 The concept of potential

More information

Perfect Reconstruction Two- Channel FIR Filter Banks

Perfect Reconstruction Two- Channel FIR Filter Banks Perfect Reconstruction Two- Channel FIR Filter Banks A perfect reconstruction two-channel FIR filter bank with linear-phase FIR filters can be designed if the power-complementary requirement e jω + e jω

More information

Detailed Solutions to Exercises

Detailed Solutions to Exercises Detailed Solutions to Exercises Digital Signal Processing Mikael Swartling Nedelko Grbic rev. 205 Department of Electrical and Information Technology Lund University Detailed solution to problem E3.4 A

More information

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products ECE 8440 Unit 12 More on finite precision representa.ons (See sec.on 6.7) Already covered: quan.za.on error due to conver.ng an analog signal to a digital signal. 1 Other types of errors due to using a

More information

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions

University of Illinois at Chicago Spring ECE 412 Introduction to Filter Synthesis Homework #4 Solutions Problem 1 A Butterworth lowpass filter is to be designed having the loss specifications given below. The limits of the the design specifications are shown in the brick-wall characteristic shown in Figure

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

Topic 3: Fourier Series (FS)

Topic 3: Fourier Series (FS) ELEC264: Signals And Systems Topic 3: Fourier Series (FS) o o o o Introduction to frequency analysis of signals CT FS Fourier series of CT periodic signals Signal Symmetry and CT Fourier Series Properties

More information

transition band ω p. ω s 0.2

transition band ω p. ω s 0.2 ASYMPTOTICS OF OPTIMAL FILTERS The Asymptotics of Optimal (Equiripple) Filters Jianhong Shen and Gilbert Strang Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 39-437 Dedicated

More information

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems.

UNIVERSITY OF OSLO. Faculty of mathematics and natural sciences. Forslag til fasit, versjon-01: Problem 1 Signals and systems. UNIVERSITY OF OSLO Faculty of mathematics and natural sciences Examination in INF3470/4470 Digital signal processing Day of examination: December 1th, 016 Examination hours: 14:30 18.30 This problem set

More information

Lecture 9 Infinite Impulse Response Filters

Lecture 9 Infinite Impulse Response Filters Lecture 9 Infinite Impulse Response Filters Outline 9 Infinite Impulse Response Filters 9 First-Order Low-Pass Filter 93 IIR Filter Design 5 93 CT Butterworth filter design 5 93 Bilinear transform 7 9

More information

SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE

SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE SYNTHESIS OF BIRECIPROCAL WAVE DIGITAL FILTERS WITH EQUIRIPPLE AMPLITUDE AND PHASE M. Yaseen Dept. of Electrical and Electronic Eng., University of Assiut Assiut, Egypt Tel: 088-336488 Fax: 088-33553 E-Mail

More information

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse).

There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Filters I There are two main classes of digital lter FIR (Finite impulse response) and IIR (innite impulse reponse). FIR Digital Filters These are described by dierence equations of the type: y[n]

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION

ECSE 512 Digital Signal Processing I Fall 2010 FINAL EXAMINATION FINAL EXAMINATION 9:00 am 12:00 pm, December 20, 2010 Duration: 180 minutes Examiner: Prof. M. Vu Assoc. Examiner: Prof. B. Champagne There are 6 questions for a total of 120 points. This is a closed book

More information

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings and ordering Each one

More information

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters

Computer-Aided Design of Digital Filters. Digital Filters. Digital Filters. Digital Filters. Design of Equiripple Linear-Phase FIR Filters Computer-Aided Design of Digital Filters The FIR filter design techniques discussed so far can be easily implemented on a computer In addition, there are a number of FIR filter design algorithms that rely

More information

Minimum and maximum values *

Minimum and maximum values * OpenStax-CNX module: m17417 1 Minimum and maximum values * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 2.0 In general context, a

More information

Model-based PID tuning for high-order processes: when to approximate

Model-based PID tuning for high-order processes: when to approximate Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 25 Seville, Spain, December 2-5, 25 ThB5. Model-based PID tuning for high-order processes: when to approximate

More information

Domain and range of exponential and logarithmic function *

Domain and range of exponential and logarithmic function * OpenStax-CNX module: m15461 1 Domain and range of exponential and logarithmic function * Sunil Kumar Singh This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Convolution Algorithms

Convolution Algorithms Connexions module: m16339 1 Convolution Algorithms C Sidney Burrus This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License 1 Fast Convolution by the

More information

Time-Delay Estimation *

Time-Delay Estimation * OpenStax-CNX module: m1143 1 Time-Delay stimation * Don Johnson This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1. An important signal parameter estimation

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters

Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Optimal Design of Real and Complex Minimum Phase Digital FIR Filters Niranjan Damera-Venkata and Brian L. Evans Embedded Signal Processing Laboratory Dept. of Electrical and Computer Engineering The University

More information

Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version)

Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version) Digital Wideband Integrators with Matching Phase and Arbitrarily Accurate Magnitude Response (Extended Version) Ça gatay Candan Department of Electrical Engineering, METU, Ankara, Turkey ccandan@metu.edu.tr

More information

Closed-Form Design of Maximally Flat IIR Half-Band Filters

Closed-Form Design of Maximally Flat IIR Half-Band Filters IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 49, NO. 6, JUNE 2002 409 Closed-Form Design of Maximally Flat IIR Half-B Filters Xi Zhang, Senior Member, IEEE,

More information

Show that Three Vectors are Coplanar *

Show that Three Vectors are Coplanar * OpenStax-CNX module: m47413 1 Show that Three Vectors are Coplanar * John Taylor This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Demonstrates

More information

Modified Pole Re-position Technique for Optimal IIR Multiple Notch Filter Design

Modified Pole Re-position Technique for Optimal IIR Multiple Notch Filter Design Modified Pole Re-position Technique for Optimal IIR Multiple Notch Filter Design 7 Modified Pole Re-position Technique for Optimal IIR Multiple Notch Filter Design Amnart Thamrongmas and Chalie Charoenlarpnopparut,

More information

Signals & Systems Handout #4

Signals & Systems Handout #4 Signals & Systems Handout #4 H-4. Elementary Discrete-Domain Functions (Sequences): Discrete-domain functions are defined for n Z. H-4.. Sequence Notation: We use the following notation to indicate the

More information

High Accuracy Evaluation of the Finite Fourier Transform using Sampled Data

High Accuracy Evaluation of the Finite Fourier Transform using Sampled Data NASA Technical Memorandum 1134 High Accuracy Evaluation of the Finite Fourier Transform using Sampled Data Eugene A. Morelli NASA Langley Research Center Hampton, Virginia June 1997 National Aeronautics

More information

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book

Cast of Characters. Some Symbols, Functions, and Variables Used in the Book Page 1 of 6 Cast of Characters Some s, Functions, and Variables Used in the Book Digital Signal Processing and the Microcontroller by Dale Grover and John R. Deller ISBN 0-13-081348-6 Prentice Hall, 1998

More information

Design of Narrow Stopband Recursive Digital Filter

Design of Narrow Stopband Recursive Digital Filter FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 24, no. 1, April 211, 119-13 Design of Narrow Stopband Recursive Digital Filter Goran Stančić and Saša Nikolić Abstract: The procedure for design of narrow

More information

Enhanced Steiglitz-McBride Procedure for. Minimax IIR Digital Filters

Enhanced Steiglitz-McBride Procedure for. Minimax IIR Digital Filters Enhanced Steiglitz-McBride Procedure for Minimax IIR Digital Filters Wu-Sheng Lu Takao Hinamoto University of Victoria Hiroshima University Victoria, Canada Higashi-Hiroshima, Japan May 30, 2018 1 Outline

More information

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform

Lecture 16: Filter Design: Impulse Invariance and Bilinear Transform EE58 Digital Signal Processing University of Washington Autumn 2 Dept. of Electrical Engineering Lecture 6: Filter Design: Impulse Invariance and Bilinear Transform Nov 26, 2 Prof: J. Bilmes

More information

Algebraic Expressions and Equations: Solving Equations of the Form x+a=b and x-a=b

Algebraic Expressions and Equations: Solving Equations of the Form x+a=b and x-a=b OpenStax-CNX module: m35044 1 Algebraic Expressions and Equations: Solving Equations of the Form x+ab and x-ab Wade Ellis Denny Burzynski work is produced by OpenStax-CNX and licensed under the Creative

More information

-Digital Signal Processing- FIR Filter Design. Lecture May-16

-Digital Signal Processing- FIR Filter Design. Lecture May-16 -Digital Signal Processing- FIR Filter Design Lecture-17 24-May-16 FIR Filter Design! FIR filters can also be designed from a frequency response specification.! The equivalent sampled impulse response

More information

The basic structure of the L-channel QMF bank is shown below

The basic structure of the L-channel QMF bank is shown below -Channel QMF Bans The basic structure of the -channel QMF ban is shown below The expressions for the -transforms of various intermediate signals in the above structure are given by Copyright, S. K. Mitra

More information

(Refer Slide Time: 01:28 03:51 min)

(Refer Slide Time: 01:28 03:51 min) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture 40 FIR Design by Windowing This is the 40 th lecture and our topic for

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay

Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay Minimax Design of Complex-Coefficient FIR Filters with Low Group Delay Wu-Sheng Lu Takao Hinamoto Dept. of Elec. and Comp. Engineering Graduate School of Engineering University of Victoria Hiroshima University

More information