Transactions on Biomedicine and Health vol 2, 1995 WIT Press, ISSN

Size: px
Start display at page:

Download "Transactions on Biomedicine and Health vol 2, 1995 WIT Press, ISSN"

Transcription

1 Indirect instantaneous velocitiy profiles and wall shear rate measurements in arteries: a centre line velocity method applied to non newtonian fluids P.Flaud,*A.Bensalahk "Laboratoire de Biorheologie et d'hydrodynamique Physicochimique, CNRS URA 343 and Universite Paris VII, 2 Place Jussieu, Paris, France ^Laboratoire d'informatique et de Mathematiques Appliquees, C.N.C.P.R.S.T., B.P. 1346, Rabat, Morocco Abstract Noninvasive measurement of the arterial wall shear rate has been studied in many works, in relation with the various mechanical factors involved in atherosclerosis genesis (Nerem [1], Noller [2]). In a previous work (Bensalah, [3]), it has been shown how to compute reliably this factor in the case of a linear newtonian flow. This method required the only measurement of the arterial centre line velocity, by means of the ultrasonic Doppler velocimetry. Furthermore it avoided the use of curve fitting methods (Lou, [4]), inefficient because of the rather bad quality of the velocity determination near the wall (convolution effects and sensitivity of the apparatus). The present work deals with the extent of this method when accounting for the non newtonian behaviour of the blood. In that case, the numerical solution of the Navier-Stokes equations requires the approximation of the longitudinal non linear terms and the modelling of the shear thinning rheological behaviour of the blood. Thus, it can be shown that the best way for determining in vivo the arterial wall shear rate is to measure the instantaneous axial centre line velocity (Flaud, [5]), and the instantaneous radius, thus accounting for the linear or non linear elastic properties of the wall (mainly in the greatest arteries). The non newtonian rheological behaviour of the blood can be easily measured and modelised. It is significant when: i) the wall shear rate is less than 100 s^, ii).the rheological behaviour of the blood is abnormal and highly non newtonian, iii) back flow occurs.

2 192 Computer Simulations in Biomedicirie 1 Introduction In spite of recent progress in velocimetric technics, blood velocity profiles in human arteries still remain difficult to be obtained near the arterial walls. In this region the shape of the velocity is strongly affected by different artefacts such as the moving walls, or the convolution effects. Efficient deconvolution procedures have been proposed (Bensalah, [6]), which improve the quality of the measurement. Nevertheless they give unsatisfactory results when considering the evaluation of the wall shear rate. The use of curve fitting, as attempted by different authors, is an alternative method which is very difficult to be used with convoluted and noised velocity profiles (Lou, [4]). An other way consists to use a linear mathematical model (Bensalah, [3]) and the measured centre line velocity. Nevertheless, these theories neither account for the non linear and high amplitude wall displacement, nor for the non newtonian behaviour of the blood. In the present work, a theory is presented and discussed. It assumes the knowledge of both the instantaneous diameter and the instantaneous velocity measured near the center of the vessel, where noise level and convolution effects are minimized. The additional knowledge of the blood and wall rheological properties allows to reconstruct the whole instantaneous velocity profile, the wall shear rate or wall shear stress, and the pressure gradient generating the flow. 2 Mathematical model The description of the non newtonian fluid flow in an elastic tube requires the knowledge of the mechanical behaviour of both the fluid and the wall. a/ mechanical properties of the wall The mechanical properties of the vessel wall have been extensively studied during the last twenty years. Numerous mechanical models have been proposed to describe the non linear Pressure P(t) Radius R(t) relationship. Assuming a viscoelastic behaviour with a static E and a dynamic E^ Young's modulus, the radius pressure relationship can be written as (1): where ^»o"ov^s ^d ; (1) P0 is the mean value of the transmural pressure, RQ and hg the radius and thickness of the tube at zero transmural pressure. This relationship can be generalised for non linear materials with E^(k) and E^(X) (X = R/RQ), or for sake of simplicity in the following way (1):

3 Computer Simulations in Biomedicine 193 /, * * _p_) where R is the mean value of the radius, and C is the wave speed defined as: _ \1 2, 4 R h08qe b Rheological behaviour of the fluid ^~ti 0,00 0,00 1, Shear rate (Log) 3,00 Fig. 1: comparison between the model (solid line) and the experimental data (human blood). Numerous models have been proposed to describe the rheological behaviour of the blood viscosity. A non newtonian fluid like blood exhibits two viscous newtonian plateaux for very low shear rate (p^), or high shear rate (m^), and a transition zone, the position and the range of which can be characterised by two parameters, (i^andp). Among these models, the Quemada's one, based on a theory of minimisation of dissipated energy can be considered as a reference one. But a simple phenomenological one, such as Cross model defined by (2): gives also results allowing a good description of the experimental data (Fig. 1). c/ Fluid dynamic We assume a fully developed laminar axisymmetrical flow in an elastic tube filled with a non newtonian fluid. In such a case, the Navier Stokes equations can be expressed as (3): d\v dw chv 1 dp 1 d ( <3w d\\ + u + w = - + rji( ) (3) di dr dz. p dz pr dr \ dr or (2) fe ^L = o with: u(r) = and w(r) = 0 dr r dz di

4 194 Computer Simulations in Biomedicine where u and w are respectively the radial and the longitudinal velocity, r and z the radial and longitudinal co-ordinate, and JA( ) the non newtonian viscosity dr of the fluid as expressed by (2). Introducing a reduced variable for the radial coordinate and using the approximation suggested by Ling and Attabek (Ling [8]) for the longitudinal velocity gradient, this set of equation can be written as (4): aw _ iap i ar aw i aw S(^) w w at' p az' R at' ^ arj r arj Sm(l) Sm( 1) J ±8P8R(2. R az' dp(r\ ar ^ Sm(l) )) ' Sm(l) 1 R 2 j_aw rj ar 1 p,q- i<x) I 1 a\v aw Icomp p(l+comp)[ T] dr\ drf 1 + comp dr? where z'=z, r = r/r(t), t'=t, S(r() = J^Tiwdrj, Sm(rj) - J^TI w dr, and comp = - R This equation appears mostly as a generalisation for a non newtonian fluid of the Ling Attabek model which allows, assuming the knowledge of R(t) and (t), the computation of the resultant velocity profile, as soon as the a% rheological behaviour of the fluid (v>p<h^lo and the wall (via the wave speed C) are known. The numerical computation is stable and convergent if: where dr\ = dr / R is the reduced increment in radial displacement, 9 = dt / T is the reduced increment in time, and T a characteristic time, for instance the period for a periodic flow Nevertheless, for biomedical applications, the pressure gradient is quite difficult to measure in an atraumatic way and this method has to be rejected. In an other hand, the measurement of the centre line velocity is precise, and fully atraumatic. Moreover, the convolution effects are minimised in the core of the vessel (Bensalah, [6]). The echographic technics allows a precise measurement of the instantaneous diameter, and the wave speed can also been evaluated in an atraumatic way. For these reasons, we present an alternative method using the measured instantaneous centre line velocity w^(t) instead of the pressure gradient in order to evaluate the wall shear rate, the wall shear stress, the whole velocity profile, and the pressure gradient governing the flow. This approach is similar to

5 Computer Simulations in Biomedicine 195 a previous work (Flaud, [7]), but account for non linearity both of the fluid and the vessel wall, and doesn't assume a periodic flow. This method is based on the following equation (5), obtained from (3) at the center of the vessel (n=0): r 2 (5) R ^at' Sm(l) Sm(l) dz' cp) R* p drf which allows, at a given value of the time to compute the pressure gradient if the instantaneous centre line velocity w^(t) and radius R(t) are known. 3 Numerical model The numerical computation can be summarised in the following way (see Tab 1): The values of the instantaneous centre line velocity and radius are given, and the rheological parameters characterising the tube and the fluid are known. An arbitrary velocity profile is used to initialise the computation. Read Wcl(t) and R(t) Read rheological parameters Arbitrary initial velocity profile /\ Computation of the pressure gradient at t - Computation of the velocity profile at t+dt I Computation of the radial velocity Wall shear rate, wall shear stress. Tab. 1: Simplified representation of the numerical procedure. At each time t, the associated pressure gradient is computed by (5), which allows, using (3) the computation of the velocity profile at the next time step t+dt. The radial velocity 11(1,2%,t + dt), the wall shear rate y(r.z^.t + dt), and wall shear stress i(r.zq,t + dt) can then be computed. In a first approach we used simulated centre line velocity w (t) and radius R(t) to get evidence of the effects of the non newtonian behaviour of the fluid, as presented in the next section. The validity of the numerical model has been checked both with Womersley analytical solution (for unstationnary flow of newtonian fluids in

6 196 Computer Simulations in Biomedicine rigid tubes) and with non newtonian static flows in rigid tubes. In these cases, the numerical solution matches exactly the analytical one. 4 Results and discussion In order to get evidence of the non newtonian effects, the newtonian viscosity was taken equal to the high shear rate viscosity of the non newtonian fluid, as commonly admitted. Typical results are presented which correspond to the flow conditions in middle or large size arteries, where the non newtonian effects are generally neglected. The use of the centre line velocity method implies that the velocity is given at the vessel axis, and known (zero) at the wall. The knowledge of these two values of the velocity independently of the rheological behaviour of the fluid implies that this non newtonian behaviour moderately affects the shape of the computed velocity profiles. (Fig 2). Reduced radial position Reduced radial position ig. 2: Comparison between an non newtonian effects on computed velocity profiles, for large size arteries (R=6mm., on the left) or middle size arteries (R=4mm, on the right), and at t\vo values of the reduced time: t/t Nevertheless, it appears that when back flow occurs, the non newtonian effects cannot be neglected and give significant differences in the shape of the velocity profile. This observation has to be related to the small value of the shear rate after the systolic peak. When the shear rate is less than 100 s-\ the non newtonian effects induces a noticeable enhancement of the viscosity of the fluid (see Fig. 1), which cannot be neglected. The incidence on the computed wall shear rate is more complex to interpret when comparing the results corresponding to large or middle size arteries (Fig. 3). The main point to be underlined is the decrease of the wall shear when the size of the arteries is decreasing. This induces an obvious increase of the non newtonian effects.

7 Computer Simulations in Biomedicine ,J 7 Non newtonian Reduced time t/t --/OO - Non newtonian Reduced time t/t 0,J 7 A Non newtonian Reduced time t/t Fig. 3: Comparison between newtonian and newtonian effects on computed wall shear rate for large size arteries (R=6mm. top left), or middle size arteries (R=4mm. top right and R=2mm.) On an other hand, the computation of the pressure gradient seems to be more or less unaffected by the non newtonian behaviour of the fluid (Fig. 4) VOOO ^ 2000 t "# (3 i bo 0 M ^ a o g V «& tf* \lawt A Non newtonian ^ JOOO - A Non newtonian Reduced time t/t gradien Non newtonian reduced time Fig. 4: Comparison between newtonian and newtonian effects on the computed pressure gradient for large size arteries (R=6mm. top left), or middle size arteries (R=4mm. top right and R=2mm.)

8 198 Computer Simulations in Biomedicine This can be related to the order of magnitude of both the viscous terms in equation (5) which can be neglected for a blunted velocity profile, and the non linear one which appear also as corrective terms quasi independent of the non newtonian effects. 5 Conclusion In this work, our interest was focused on the noninvasive evaluation of the arterial wall shear stress by using ultrasonic velocimetric data We have shown that for blood vessels assimilated to viscoelastic straight pipes, the centre-line velocity method is the most efficient way for the in vivo determination of the arterial wall shear rate, the wall shear stress, the pressure gradient or the flow rate. The quality of the determination is improved when measuring the instantaneous radius and thus taking into account the linear or non linear elastic properties of the wall (mainly in the great arteries). The non newtonian rheological behaviour which is generally neglected and which is shown to have little influence on the computation of the pressure gradient, has to be taken into account when: i/ the wall shear rate is less than 100 s^ \i/ the rheological behaviour of the blood is abnormal iii/ back flow occurs. Nevertheless, the centre-line velocity method cannot be applied everywhere in the arterial systemic tree For singular sites (bifurcation, bending), non-linear effects are no more negligible and no analytical expression of the wall shear rate as a function of the centre-line velocity is provided by the theory. The unique approach remains the curve fitting of velocity profiles which is not practicable for convoluted profiles In this case, one has to attempt a deconvolution of the arterial velocity profiles 6 References I/ Nerem R M. Vascular Fluid Mechanics, the arterial wall, and Atherosclerosis. Journal of Biomechanical Engineering Transactions of the AS ME Vol. 114, n 3, pp , Noller, M. U, Hall, E R., Eskin, S. G. and Mclntire L V The effect of the shear stress on the uptake and metabolism of arachidonic acid by human endothelial cells. Biochimica et Biophysica Acta, 1005 : 72-78, / Bensalah, A. and Flaud, P. Non-traumatic study of the arterial system by indirect determination of clinical parameters. A theoretical linear model. Computer Method in Water Resources II, Vol 3, Computer Aided Engineering in Water Resources, Eds Brebbia C.A., Ouazar, D, Bensari, D. Computational Mechanics Publications, pp , Rabat, Morocco, Feb / Lou, Z, Yang, W.J. and Stein, P.D Errors in the estimation of arterial wall shear rates that result from curvefittingof velocity profiles. J. Biomechanics, 26 : , 1993

9 Computer Simulations in Biomedicine 199 5/ Flaud, P., Bensalah, A., Counord, J.L., Levenson, J and Simon, A. A new geometric procedure for in vivo pulsed Doppler evaluation of velocity distribution inside the diametrical section of large arteries in humans. Annals of Biomedical Engineering, Vol. 18:1-13,1990 6/ Bensalah A. and Flaud P.: Ultrasonic indirect arterial wall shear rate measurement: comparison between a centre-line velocity method and curve fitting of velocity profiles. Effects of the convolution. Computational in Biomedicine (II), Eds: Brebbia, Hart, Power, Ciskowski,. Computational mechanics publications, , 1993 II Flaud, P., Bensalah, A. and De Jouvenel, F. Experimental and theoretical determination of the wall shear stress in an unsteady periodic flow. Euromech 272, Response of shear flows to imposed unsteadiness, pp , Aussois, France, Jan / Ling, S., Atabek, H, A non linear analysis of pulsatile flow in arteries. J Fluid Meek Vol. 55 part 3 pp , 1972.

Arterial Macrocirculatory Hemodynamics

Arterial Macrocirculatory Hemodynamics Arterial Macrocirculatory Hemodynamics 莊漢聲助理教授 Prof. Han Sheng Chuang 9/20/2012 1 Arterial Macrocirculatory Hemodynamics Terminology: Hemodynamics, meaning literally "blood movement" is the study of blood

More information

Multiscale Hydrodynamic Phenomena

Multiscale Hydrodynamic Phenomena M2, Fluid mechanics 2012/2013 Friday, December 7th, 2012 Multiscale Hydrodynamic Phenomena Part I. : 30 minutes, NO documents 1. Quick Questions In few words : 1.1 What is dominant balance? 1.2 What is

More information

Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels

Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels Mathematical Models and Numerical Simulations for the Blood Flow in Large Vessels Balazs ALBERT 1 Titus PETRILA 2a Corresponding author 1 Babes-Bolyai University M. Kogalniceanu nr. 1 400084 Cluj-Napoca

More information

Radial Variation of Axial and Radial Velocity of Blood in Stenosed Artery in the Presence of Body Accelerations

Radial Variation of Axial and Radial Velocity of Blood in Stenosed Artery in the Presence of Body Accelerations International Journal of Mathematics And its Applications Volume 4, Issue 3 B (216), 37 43. ISSN: 2347-1557 Available Online: http://ijmaa.in/ International Journal 2347-1557 of Mathematics Applications

More information

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe

Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe Unsteady Flow of a Newtonian Fluid in a Contracting and Expanding Pipe T S L Radhika**, M B Srinivas, T Raja Rani*, A. Karthik BITS Pilani- Hyderabad campus, Hyderabad, Telangana, India. *MTC, Muscat,

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

31545 Medical Imaging systems

31545 Medical Imaging systems 31545 Medical Imaging systems Lecture 5: Blood flow in the human body Jørgen Arendt Jensen Department of Electrical Engineering (DTU Elektro) Biomedical Engineering Group Technical University of Denmark

More information

BME 419/519 Hernandez 2002

BME 419/519 Hernandez 2002 Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

More information

A MATHEMATICAL MODEL OF FLOW IN A LIQUID-FILLED VISCOELASTIC TUBE

A MATHEMATICAL MODEL OF FLOW IN A LIQUID-FILLED VISCOELASTIC TUBE A MATHEMATICAL MODEL OF FLOW IN A LIQUID-FILLED VISCOELASTIC TUBE Giuseppe Pontrelli Istituto per le Applicazioni del Calcolo - CNR Viale del Policlinico, 37 006 Roma, Italy E-mail: pontrelli@iac.rm.cnr.it

More information

Numerical study of blood fluid rheology in the abdominal aorta

Numerical study of blood fluid rheology in the abdominal aorta Design and Nature IV 169 Numerical study of blood fluid rheology in the abdominal aorta F. Carneiro 1, V. Gama Ribeiro 2, J. C. F. Teixeira 1 & S. F. C. F. Teixeira 3 1 Universidade do Minho, Departamento

More information

Exam Cardiovascular Fluid Mechanics 8W090 sheet 1/4 on Thursday 5th of june 2005, 9-12 o clock

Exam Cardiovascular Fluid Mechanics 8W090 sheet 1/4 on Thursday 5th of june 2005, 9-12 o clock EINDHOVEN UNIVERSITY OF TECHNOLOGY DEPARTMENT OF PHYSICAL TECHNOLOGY, Fluid Mechanics group DEPARTMENT OF BIOMEDICAL ENGINEERING, Cardiovascular Biomechanics group Exam Cardiovascular Fluid Mechanics 8W090

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

arxiv: v1 [physics.med-ph] 18 Apr 2016

arxiv: v1 [physics.med-ph] 18 Apr 2016 arxiv:1604.05171v1 [physics.med-ph] 18 Apr 2016 拳必殺 notes series Physical description of the blood flow from the internal jugular vein to the right atrium of the heart: new ultrasound application perspectives

More information

PREDICTION OF PULSATILE 3D FLOW IN ELASTIC TUBES USING STAR CCM+ CODE

PREDICTION OF PULSATILE 3D FLOW IN ELASTIC TUBES USING STAR CCM+ CODE 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Mathematical modelling of physiological flows

Mathematical modelling of physiological flows Mathematical modelling of physiological flows Sarah Waters Oxford Centre for Industrial and Applied Mathematics University of Oxford waters@maths.ox.ac.uk Research Overview Develop & solve mathematical

More information

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis

Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Commun. Theor. Phys. 57 (2012) 133 140 Vol. 57 No. 1 January 15 2012 Simulation of Variable Viscosity and Jeffrey Fluid Model for Blood Flow Through a Tapered Artery with a Stenosis Noreen Sher Akbar 1

More information

Modeling of non-newtonian Blood Flow through a Stenosed Artery Incorporating Fluid-Structure Interaction

Modeling of non-newtonian Blood Flow through a Stenosed Artery Incorporating Fluid-Structure Interaction Modeling of non-newtonian Blood Flow through a Stenosed Artery Incorporating Fluid-Structure Interaction W. Y. Chan Y.Ding J. Y. Tu December 8, 2006 Abstract This study investigated fluid and structural

More information

PROBLEM SET 6. SOLUTIONS April 1, 2004

PROBLEM SET 6. SOLUTIONS April 1, 2004 Harvard-MIT Division of Health Sciences and Technology HST.54J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

PULSE WAVE PROPAGATION IN LARGE BLOOD VESSELS BASED ON FLUID-SOLID INTERACTIONS METHODS

PULSE WAVE PROPAGATION IN LARGE BLOOD VESSELS BASED ON FLUID-SOLID INTERACTIONS METHODS PULSE WAVE PROPAGATION IN LARGE BLOOD VESSELS BASED ON FLUID-SOLID INTERACTIONS METHODS Tomohiro Fukui 1,, Kim H. Parker 2 and Takami Yamaguchi 3 1. Department of Mechanical and System Engineering, Kyoto

More information

Pulsatile Flow in a Tapered U-Tube

Pulsatile Flow in a Tapered U-Tube Journal of Applied Fluid Mechanics, Vol. 7, No. 1, pp. 103-110, 2014. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. Pulsatile Flow in a Tapered U-Tube M. Sumida Faculty of Engineering,

More information

A THEORY OF FLUID FLOW

A THEORY OF FLUID FLOW A THEORY OF FLUID FLOW IN COMPLIANT TUBES A. C. L. BARNARD, W. A. HUNT, W. P. TIMLAKE, E.VARLEY From the IBM Scientific Center, Houston, Texas ABSTRACT Starting with the Navier-Stokes equations, a system

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Oscillatory flow of a jeffrey fluid in an elastic tube of variable cross-section

Oscillatory flow of a jeffrey fluid in an elastic tube of variable cross-section Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research 2012 3 (2):671-677 ISSN: 0976-8610 CODEN (USA): AASRFC Oscillatory flow of a jeffrey fluid in an elastic tube of

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics

TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics TECHNISCHE UNIVERSITEIT EINDHOVEN Department of Biomedical Engineering, section Cardiovascular Biomechanics Exam Cardiovascular Fluid Mechanics (8W9) page 1/4 Monday March 1, 8, 14-17 hour Maximum score

More information

On the effects of Non-Newtonian fluids above the ribbing instability

On the effects of Non-Newtonian fluids above the ribbing instability On the effects of Non-Newtonian fluids above the ribbing instability L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M. Rabaud Laboratoire FAST, Bât. 502, Campus Universitaire, 91405

More information

Navier-Stokes Flow in Cylindrical Elastic Tubes

Navier-Stokes Flow in Cylindrical Elastic Tubes Navier-Stokes Flow in Cylindrical Elastic Tubes Taha Sochi University College London, Department of Physics & stronomy, Gower Street, London, WC1E 6BT Email: t.sochi@ucl.ac.uk. bstract nalytical expressions

More information

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine

Mathematical Modeling of Peristaltic Flow of Chyme in Small Intestine Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 6, Issue 2 (December 2011), pp. 428 444 Applications and Applied Mathematics: An International Journal (AAM) Mathematical Modeling

More information

Advanced Structural Analysis EGF Cylinders Under Pressure

Advanced Structural Analysis EGF Cylinders Under Pressure Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls

More information

Mathematical Model. M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen

Mathematical Model. M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen Mathematical Model M. Umar Qureshi, Mitchel J. Colebank, and Mette S. Olufsen Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695 Friday 7 th September, 2018 The 1D

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery

Biomagnetic Steady Flow through an Axisymmetric Stenosed Artery International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 8 No. 1 Sep. 2014, pp. 394-407 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Biomagnetic

More information

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 2 April 2014

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 2 April 2014 CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 2 April 2014 The PR Wave Equation - a Primary and Realistic Arterial Pressure Wave Equation for the Quantitative and Collective Study of the Cardiovascular System

More information

Numerical simulation of blood flow in a straight artery under the influence of magnetic field

Numerical simulation of blood flow in a straight artery under the influence of magnetic field Numerical simulation of blood flow in a straight artery under the influence of magnetic field G. C. Shit, A. Sinha, A. Mondal, S. Majee Department of Mathematics Jadavpur University, Kolkata Motivation

More information

Effect of Magnetic Field on Blood Flow (Elastico- Viscous) Under Periodic Body Acceleration in Porous Medium

Effect of Magnetic Field on Blood Flow (Elastico- Viscous) Under Periodic Body Acceleration in Porous Medium IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 4 (May. - Jun. 2013), PP 43-48 Effect of Magnetic Field on Blood Flow (Elastico- Viscous) Under Periodic Body

More information

Finite Element Modeling of the Pulse Wave propagation in the aorta for simulation of the Pulse Wave Imaging (PWI) method

Finite Element Modeling of the Pulse Wave propagation in the aorta for simulation of the Pulse Wave Imaging (PWI) method Finite Element Modeling of the Pulse Wave propagation in the aorta for simulation of the Pulse Wave Imaging (PWI) method Jonathan Vappou, Ioannis Zervantonakis, Jianwen Luo, and Elisa Konofagou June 2008

More information

STUDY OF BLOOD FLOW THROUGH MODELLED VASCULAR STENOSIS

STUDY OF BLOOD FLOW THROUGH MODELLED VASCULAR STENOSIS STUDY OF BLOOD FLOW THROUGH MODELLED VASCULAR STENOSIS S.R. Verma Department of Mathematics D.A-V. (P.G.) College, Kanpur-208001, India E-mail : srverma303@gmail.com The effect of an axially symmetric

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids

Modelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Numerical modelling of shear-thinning non-newtonian flows in compliant vessels

Numerical modelling of shear-thinning non-newtonian flows in compliant vessels INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2007; 00:1 [Version: 2002/09/18 v1.01] Numerical modelling of shear-thinning non-newtonian flows in compliant vessels M.

More information

Mathematical Modelling of Blood Flow through Catheterized Artery under the Influence of Body Acceleration with Slip Velocity

Mathematical Modelling of Blood Flow through Catheterized Artery under the Influence of Body Acceleration with Slip Velocity Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 8, Issue (December 3), pp. 48 494 Applications and Applied Mathematics: An International Journal (AAM) Mathematical Modelling of Blood

More information

Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel

Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel Commun. Theor. Phys. 56 (2011) 756 760 Vol. 56, No. 4, October 15, 2011 Lattice Boltzmann Simulation of One Particle Migrating in a Pulsating Flow in Microvessel QIU Bing ( ), 1, TAN Hui-Li ( Û), 2 and

More information

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass

Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Numerical Simulation of Newtonian and Non-Newtonian Flows in Bypass Vladimír Prokop, Karel Kozel Czech Technical University Faculty of Mechanical Engineering Department of Technical Mathematics Vladimír

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Microphone reciprocity calibration: acoustic field in the coupler

Microphone reciprocity calibration: acoustic field in the coupler Microphone reciprocity calibration: acoustic field in the coupler Cécile Guianvarc h, Jean-Noël Durocher Laboratoire National d Essais, 29 av. Roger Hennequin, 78197 Trappes Cedex, France, e-mail: {cecile.guianvarch,

More information

Numerical Model of the Influence of Shear Stress on the Adaptation of a Blood Vessel BMT 03-35

Numerical Model of the Influence of Shear Stress on the Adaptation of a Blood Vessel BMT 03-35 Numerical Model of the Influence of Shear Stress on the Adaptation of a Blood Vessel BMT 03-35 Mirjam Yvonne van Leeuwen Supervisor: Dr. Ir. M.C.M. Rutten Ir. N.J.B. Driessen TUE Eindhoven, The Netherlands

More information

Wall shear stress and flow stability in a model fusiform aneurysm

Wall shear stress and flow stability in a model fusiform aneurysm ANZIAM J. 5 (CTAC28) pp.c1 C15, 28 C1 Wall shear stress and flow stability in a model fusiform aneurysm G. J. Sheard 1 K. Ryan 2 (Received 12 August 28; revised 28 August 28) Abstract Levels of wall shear

More information

Numerical Simulation of Sinusoidal Fluctuated Pulsatile Laminar Flow Through Stenotic Artery

Numerical Simulation of Sinusoidal Fluctuated Pulsatile Laminar Flow Through Stenotic Artery Journal of Applied Fluid Mechanics, Vol. 1, No. 2, pp. 25-35, 28. Available online at www.jafmonline.net, ISSN 1735-3645. Numerical Simulation of Sinusoidal Fluctuated Pulsatile Laminar Flow Through Stenotic

More information

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS Transactions, SMiRT-23 Division II, Paper ID 287 Fracture Mechanics and Structural Integrity DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF

More information

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1)

Research Article Innovation: International Journal of Applied Research; ISSN: (Volume-2, Issue-2) ISSN: (Volume-1, Issue-1) Free Convective Dusty Visco-Elastic Fluid Flow Through a Porous Medium in Presence of Inclined Magnetic Field and Heat Source/ Sink 1 Debasish Dey, 2 Paban Dhar 1 Department of Mathematics, Dibrugarh University,

More information

Dynamics Of Double Pipe Heat Exchangers: Explicit Time Domain Solutions

Dynamics Of Double Pipe Heat Exchangers: Explicit Time Domain Solutions Dynamics Of Double Pipe Heat Exchangers: Explicit Time Domain Solutions Franco Evangelista Department of Chemistry, Chemical Engineering and Materials University of L Aquila Italy The dynamics of double

More information

Longitudinal buckling of slender pressurised tubes

Longitudinal buckling of slender pressurised tubes Fluid Structure Interaction VII 133 Longitudinal buckling of slender pressurised tubes S. Syngellakis Wesse Institute of Technology, UK Abstract This paper is concerned with Euler buckling of long slender

More information

DIVIDED SYLLABUS ( ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL

DIVIDED SYLLABUS ( ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL DIVIDED SYLLABUS (2015-16 ) - CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL Unit I: Physical World and Measurement Physics Need for measurement: Units of measurement; systems of units; SI units, fundamental

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE

TABLE OF CONTENTS CHAPTER TITLE PAGE v TABLE OF CONTENTS CHAPTER TITLE PAGE TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES v viii ix xii xiv CHAPTER 1 INTRODUCTION 1.1 Introduction 1 1.2 Literature Review

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

The boundary layer approximation and nonlinear waves in elastic tubes

The boundary layer approximation and nonlinear waves in elastic tubes The boundary layer approximation and nonlinear waves in elastic tubes N.Antar Istanbul Technical University, Faculty of Sciences and Letters, Department of Mathematics, 80626, Maslak-Istanbul, Turkey Abstract

More information

Numerical Study of the Behaviour of Wall Shear Stress in Pulsatile Stenotic Flows

Numerical Study of the Behaviour of Wall Shear Stress in Pulsatile Stenotic Flows 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia 2-7 December 27 Numerical Study of the Behaviour of Wall Shear Stress in Pulsatile Stenotic Flows A. Ooi 1, H. M. Blackburn

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.)

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Vlachos Prof. Ardekani

More information

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.

Week 8. Topics: Next deadline: Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6. 8/1 Topics: Week 8 Viscous fluid flow (Study guide 14. Sections 12.4 and 12.5.) Bolus flow (Study guide 15. Section 12.6.) Pulsatile flow (Study guide 15. Section 12.7.) Next deadline: Friday October 31

More information

Choking of liquid flows

Choking of liquid flows J. Fluid Mech. (989), vol. 99, pp. 563-568 Printed in Great Britain 563 Choking of liquid flows By S. M. RICHARDSON Department of Chemical Engineering & Chemical Technology, Imperial College, London SW7.

More information

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Cardiovasculaire Stromingsleer (8W090) blad /4 dinsdag 8 mei 2007, 9-2 uur Maximum score

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. 12/21/01 topic7_ns_equations 1 AE/ME 339 Professor of Aerospace Engineering 12/21/01 topic7_ns_equations 1 Continuity equation Governing equation summary Non-conservation form D Dt. V 0.(2.29) Conservation form ( V ) 0...(2.33) t 12/21/01

More information

2 Navier-Stokes Equations

2 Navier-Stokes Equations 1 Integral analysis 1. Water enters a pipe bend horizontally with a uniform velocity, u 1 = 5 m/s. The pipe is bended at 90 so that the water leaves it vertically downwards. The input diameter d 1 = 0.1

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2013 Lecture 1 3/13/13 University of Washington Department of Chemistry Chemistry 53 Winter Quarter 013 A. Definition of Viscosity Viscosity refers to the resistance of fluids to flow. Consider a flowing liquid

More information

Elec Eng 3BA3: Structure of Biological Materials

Elec Eng 3BA3: Structure of Biological Materials Elec Eng 3BA3: Structure of Biological Materials Page 1 of 12 Day Class Instructor: Dr. I. C. BRUCE Duration of Examination: 3 Hours McMaster University Final Examination December 5, 2008 This examination

More information

Numerical analysis of Fully Developed Laminar Flow and heat transfer of Non-Newtonian Fluid in Ducts of Arbitrary Cross- Sectional Shape

Numerical analysis of Fully Developed Laminar Flow and heat transfer of Non-Newtonian Fluid in Ducts of Arbitrary Cross- Sectional Shape Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016 ICCFD9-xxxx Numerical analysis of Fully Developed Laminar Flow and heat transfer of Non-Newtonian

More information

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE

STEADY VISCOUS FLOW THROUGH A VENTURI TUBE CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 12, Number 2, Summer 2004 STEADY VISCOUS FLOW THROUGH A VENTURI TUBE K. B. RANGER ABSTRACT. Steady viscous flow through an axisymmetric convergent-divergent

More information

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques

Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Disruptive shear stress measurements of fibre suspension using ultrasound Doppler techniques Pasi Raiskinmäki 1 and Markku Kataja 1 1 VTT PROCESSES, Pulp and Paper Industry, P.O.Box 163, FI-411 JYVÄSKYLÄ,

More information

SCATTERING OF ULTRASONIC WAVE ON A MODEL OF THE ARTERY J. WÓJCIK, T. POWAŁOWSKI, R. TYMKIEWICZ A. LAMERS, Z. TRAWIŃSKI

SCATTERING OF ULTRASONIC WAVE ON A MODEL OF THE ARTERY J. WÓJCIK, T. POWAŁOWSKI, R. TYMKIEWICZ A. LAMERS, Z. TRAWIŃSKI ARCHIVES OF ACOUSTICS 31, 4, 471 479 (2006) SCATTERING OF ULTRASONIC WAVE ON A MODEL OF THE ARTERY J. WÓJCIK, T. POWAŁOWSKI, R. TYMKIEWICZ A. LAMERS, Z. TRAWIŃSKI Institute of Fundamental Technological

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 ISSN 648 Local sensitivity analysis of cardiovascular system parameters R. Gul and S. Bernhard, Fachbereich Mathematik, FU Berlin, Germany. Dept. of Electrical Engineering and Information Technology, Pforzheim

More information

2, where dp is the constant, R is the radius of

2, where dp is the constant, R is the radius of Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a one-dimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.

More information

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex. BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 15-Convective Heat Transfer Fausto Arpino f.arpino@unicas.it Introduction In conduction problems the convection entered the analysis

More information

Fluid dynamics - viscosity and. turbulent flow

Fluid dynamics - viscosity and. turbulent flow Fluid dynamics - viscosity and Fluid statics turbulent flow What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle Fluid dynamics Reynolds number Equation

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

A CFD model of hemodynamics in hemodialysis vascular access

A CFD model of hemodynamics in hemodialysis vascular access Modelling in Medicine and Biology VI 341 A CFD model of hemodynamics in hemodialysis vascular access A. Ciandrini 1, P. G. Walker 2, M. K. Kolandavel 2, C. A. Lodi 3, R. Galato 4 & S. Cavalcanti 1 1 Department

More information

Numerical Study on Sinusoidal Fluctuated Pulsatile Laminar Flow Through Various Constrictions

Numerical Study on Sinusoidal Fluctuated Pulsatile Laminar Flow Through Various Constrictions COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol. 2, No. 1, pp. 99-122 Commun. Comput. Phys. February 27 Numerical Study on Sinusoidal Fluctuated Pulsatile Laminar Flow Through Various Constrictions T. S. Lee,

More information

Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions

Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions Annals of Biomedical Engineering, Vol. 28, pp. 1281 1299, 2 Printed in the USA. All rights reserved. 9-6964/2/2811/1281/19/$15. Copyright 2 Biomedical Engineering Society Numerical Simulation and Experimental

More information

Mathematical Model of Blood Flow in Carotid Bifurcation

Mathematical Model of Blood Flow in Carotid Bifurcation Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Mathematical Model of Blood Flow in Carotid Bifurcation E. Muraca *,1, V. Gramigna 1, and G. Fragomeni 1 1 Department of Experimental Medicine

More information

BLOOD FLOW SIMULATIONS IN A CAST OF THE AORTHIC BIFURCATION. Arnold F. Bertelsen, Lars Walloe and Arve Kvalheim

BLOOD FLOW SIMULATIONS IN A CAST OF THE AORTHIC BIFURCATION. Arnold F. Bertelsen, Lars Walloe and Arve Kvalheim ISBN 8-553-61-8 Applied Mathematics No 4 17. Nov. 1986 BLOOD FLOW SIMULATIONS IN A CAST OF THE AORTHIC BIFURCATION by Arnold F. Bertelsen, Lars Walloe and Arve Kvalheim PREPRINT SERIES - Matematisk institutt,

More information

Effect of body acceleration on pulsatile blood flow through a catheterized artery

Effect of body acceleration on pulsatile blood flow through a catheterized artery Available online at www.pelagiaresearchlibrary.com Pelagia esearch Library Advances in Applied Science esearch, 6, 7(:55-66 ISSN: 976-86 CODEN (USA: AASFC Effect of body acceleration on pulsatile blood

More information

Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid in a uniform tube

Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid in a uniform tube Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research,, 3 ():9-98 ISSN: 976-86 CODEN (USA): AASRFC Effect of variable viscosity on the peristaltic flow of a Jeffrey fluid

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT CHAPTER 8 ENTROPY GENERATION AND TRANSPORT 8.1 CONVECTIVE FORM OF THE GIBBS EQUATION In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

HOW GOOD ARE THE FITS TO THE EXPERIMENTAL VELOCITY PROFILES IN VIVO?

HOW GOOD ARE THE FITS TO THE EXPERIMENTAL VELOCITY PROFILES IN VIVO? HOW GOOD ARE THE FITS TO THE EXPERIMENTAL VELOCITY PROFILES IN VIVO? Aristotle G. KOUTSIARIS 1,3,*, Sophia V. TACHMITZI 2, Athanassios D. GIANNOUKAS 3 * Corresponding author: Tel.: ++30 (2410) 555278;

More information

Chapter 5. The Differential Forms of the Fundamental Laws

Chapter 5. The Differential Forms of the Fundamental Laws Chapter 5 The Differential Forms of the Fundamental Laws 1 5.1 Introduction Two primary methods in deriving the differential forms of fundamental laws: Gauss s Theorem: Allows area integrals of the equations

More information

Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound Paper presented at the IEEE International Ultrasonics Symposium, Prague, Czech Republic, 213: Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound Jacob Bjerring Olesen 1,

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Modeling of Suspension Flow in Pipes and Rheometers

Modeling of Suspension Flow in Pipes and Rheometers Modeling of Suspension Flow in Pipes and Rheometers Nicos S. Martys, Chiara F. Ferraris, William L. George National Institute of Standards and Technology Abstract: Measurement and prediction of the flow

More information