Development of a Mechanically Pumped Two-Phase CO 2 Loop for the AMS-2 Tracker Thermal Control System

Size: px
Start display at page:

Download "Development of a Mechanically Pumped Two-Phase CO 2 Loop for the AMS-2 Tracker Thermal Control System"

Transcription

1 Development of a Mechanically Pumped Two-Phase CO 2 Loop for the AMS-2 Tracker Thermal Control System A.A.M. Delil National Aerospace Laboratory NLR P.O. Box 153, 8300 AD Emmeloord, Netherlands phone , fax adelil@nlr.nl AMS TIM Meeting Boston January 23rd 2002

2 AMS-2 Silicon Tracker Responsibles Tracker Thermal Control System (TTCS) Team NLR, Amsterdam, The Netherlands TTCS Development PM: A. A.M. Delil LPM of TTCS Development & Tracker Overall Thermal Modelling: A.A. Woering Thermal Modelling: A. Pauw Simulation Loop, Components, Experimenting: A.W.G. de Vries, G. van Donk, A. Pauw Thermal Vacuum Test Plan: J.J.M. Prins NIKHEF, Amsterdam, The Netherlands TTCS Internal & Loop Development, Thermal Modelling, Simulation Loops: B. Verlaat CO 2 & PumpsConsultancy: H. Boer Rookhuizen INFN, Perugia, Italy Tracker Overall Responsible, Co-ordination: R. Battiston University of Geneva, Switzerland Co-ordination Tracker Internal: Mechanics/Interfaces/Integration: M. Pohl, E. Perrin 3

3 AMS-2 6

4 AMS-Silicon Tracker Thermal Requirements Silicon wafer thermal requirements: Operating temperature: -10 ºC / +25 ºC Survival temperature: -20 ºC / +40 ºC Temperature stability: 3 ºC per orbit Maximum accepted gradient between any silicon: 10.0 ºC Dissipated heat: 2.0 Watt EOL Overview of the main thermal components in the AMS-Tracker Hybrid circuit thermal requirements: Operating temperature: -10 ºC / +40 ºC Survival temperature: -20 ºC / +60 ºC Dissipated heat: 192 Watt total, 1 Watt per hybrid pair 7

5 Merits of Two-Phase Thermal Control Q=m(Xh lv + C p T), where T = T source T sink. h lv = J/kg and C p = 4780 J/kg.K for ammonia at 300 K. Since X = 0 in a single-phase loop and X = 1 (at maximum) in a twophase loop, the ratio of single-phase and two-phase mass flow rates is for ammonia / T. This implies for the two-phase loop case: considerably smaller, thinner, hence lower mass, system lines and smaller, lower power pumps, yielding far less undesired vibration impact on the micro-g level needed for proper experimentation. To minimise radiator area and mass, the temperature drop along the loop should be as small as possible. This drop is 1 to 2 orders of magnitude smaller in the two-phase case. The two-phase loop is almost isothermal (except the pulsating, vapour pressure driven loop). The latter is very important in case of a series configuration: All dissipating or heat requiring stations are almost at the same temperature, and do not depend on behaviour of preceding stations (like in the single-phase case). 8

6 Proposed Baseline Design Concept Series Configuration Two-Phase Mechanically Pumped Loop Compatible with existing AMS-Tracker hardware. Minimised material inside or near the tracker acceptance. Directly connected to the thermal bars, no additional heat collector needed. Multiple heat input possible, with minimum temperature gradients. Possibility of implementing a fully redundant system. Relatively low mass and costs. Drawback: Mechanical pump in a two-phase system. 9

7 10

8 Serial CO 2 Two-Phase MPL Merits of Carbon Dioxide CO 2 currently is considered to replace freon-like refrigerants, as it is environment friendly and non-toxic. It is used for cooling in nuclear power plants as it is inert for radio-active radiation. For AMS this means no ISS safety-related problems! CO 2 has a very low liquid/vapour density ratio O(1-10), being crucial for a series 2-phase system. Ammonia: O( ). CO 2 cooling is proposed to be used in LHCb-Vertex by NIKHEF. Tests have proven concept feasibility. For the AMS-Tracker application, this means small tube dimensions (3 mm OD) in case of 2 loops, very low temperature differences (<1ºC), low pumping power (<10 Watt). 11

9 Properties of CO Phase Diagram Carbon Dioxide: Temperature - Pressure Diagram Melting Line Pressure, bar Solid Liquid Saturation Line Critical Point Sublimation Line Triple Point Vapor Copyright 1999 ChemicaLogic Corpo DrawnwithCO 2 Tab V Temperature, C Density of Vapour & Liquid Enthaplpy [kjoule/kg] Enthalpy Enthalpies liquid & / gas Evaporation and vaporization for Heat CO Temperature [ C] fluid vapor vaporization 12

10 Feasibility demonstration of the TTCS CO 2 MPL D A Q Tube 1 Tube 2 Tube 3 Tube 4 To gas heater, spring relieve valve and flow meter Pressure gauges CO 2 Bottle Expansion % valve CO 2 Feasibility Test Set-Up Temperature gradient dt ('C) A1 (0.8 'C, 100 W, 1.7 g/s) A3 (3.2 'C, 100 W, 3.6 g/s) C1 (19.0 'C,100 W, 0.8 g/s) C2 (14.3 'C,100 W, 1.4 g/s) C3 (6.1 'C, 100 W, 3.2 g/s) C4 (0.4 'C, 200 W, 1.9 g/s) C5 (1.2 'C, 250 W, 2.6 g/s) C6 (2.5 'C, 360 W, 3.4 g/s) dt inlet (0m) dt tube 1 (1m) dt tube 2 dt tube 3 dt tube 4 (3.4m) (5.8m) (8.3m) dt outlet (9.3m) A A C C C C C C Feasibility Test Results Test Set-Up schematic 13

11 Heat transfer coefficient (W/m2K) Observed flow pattern 1 Watt, 4716 W/m2 2 Watt, 9432 W/m2 3 Watt, W/m2 4 Watt, W/m2 5 Watt, W/m2 0 Pure liquid Bubbly flow Annular flow Dry-out Vapour quality (-) Vapour quality and power dependence of the heat transfer coefficient and observed flow patterns, for a 2.5 mm ID tube at a flow rate of 2.7 g/s and a temperature of 278 K TTCS Test Loop Results Pressure drop (mbar) Liquid flow Watt Watt Watt Watt Watt X=0.5 (Dry-out limit) 100 X= Mass flow (g/s) Power Dependent Pressure/Temperature Drops for a 10 m long, 2.5 mm ID Evaporator at 273 K Evaporative temperature gradient ('C) Schematic of the TTCS Test Loop at NIKHEF. 14

12 AMS Silicon Tracker Thermal Control Phase 1 Results & Concluding Remarks Tracker cooling baseline: CO 2 two-phase serial MPL with dedicated low temperature (< say 270K) radiator. Simulation loop experiments with CO 2 has proven the feasibility for the 3-D tracker cooling line routing. Optimisation & control experiments with CO 2 and NH 3 are being done, after incorporating NLR components in the loop, i.e. a delta pressure sensor, a coriolis mass flow meter, view glasses for flow pattern observation, and a mechanical pump. Preliminary transient orbital heat sink calculations have been carried out for various radiator orientations. Transient radiator temperature calculations will follow for BOL & EOL conditions, and different thermal mass values. 15

13 NLR Joins AMS Collaboration to Experiment with TTCS Baseline Philosophy Minimum risk for Tracker and AMS Any period AMS is not active can be used for thermal experiments At least one week of thermal experiments during the first six months Adding minimum power and mass In principle no intrusion of the TTCS-loop TM/TC required 16

14 Critical Issues & Questions What do do if loop meets non-functioning at 278K? Slightly increasing set-point, as 288 K is not acceptable and it yields worse dt/dx in Tracker. Evaporator oscillations are: No issue in layout with 2 pumps. Damped in parallel operation by long lines with relatively large resistances. Condensers: Which one is active, what about freezing? Both are active, in accordance with the Tsink of the radiators. Freezing prevented by Overall System thermostat heaters. Control of TTCS (passively assisted by HX, liquid buffer, PCM) by: Set-point control by Peltier, most likely using a PID-type control algorithm. Electric pre-heater heating-up sub-cooled liquid to saturation Three-way valve for control of the flow through condensers (to be verified experiments). Pumping speeds control. FMECA/FTA study is to be done to compare separated versus connected loops. 18

15 Design Activities Evaporator Layout Radiator Layout Area, Orientation Shape: Curved versus Flat (Current Baseline) Condenser Layout (Radiator Shape Dependent) Condenser-Radiator Connection (Shape Dependent) De-Coupling of Primary and Back-up Loop 21

16 22

17 23

18 MPL Evaporator Configuration 25

19 TTCS Radiator Concepts Flat radiator with straight heat pipes Sensible for puncture (no extra debris shielding possible other than the radiator itself) Relatively low costs Flat radiator with bent heat pipes Flat radiator with bent heat pipes Condensers can be optimally protected against debris: Extra debris shield possible, Condensers in the center Complex geometry yields high costs Integration problems Curved radiator with bent heat pipes Condensers have same protection as the flat version Simple geometry No severe integration problems foreseen Curved radiator shows slightly better performance 27

20 Bent Heat Pipe Radiator Concept Debris shield (0-70 mm) Aluminum radiator plate (0.5 mm) Embedded heat pipes (o12.5 mm) Primary loop condensers Back-up loop condensers Flat Heat Pipe Radiator Concept 28

21 Flat Radiator & Bent Heat Pipes 31

22 Curved Radiator with Bent Heat Pipes 32

23 TTCS Modelling Refinement Honey comb HP wall HP core 34

24 Modelling Refinement Activities: Radiator (Provisional) 35

25 Current Modelling Activities: Solving Differences with CGS Model -EqualEqual temperatures on radiators: only a single moment during orbit -Choose set-point (2φ,, X=0 in exit) -Do steady state calculation 38

26 Modelling Activities for Other Orbital Cases The many cases necessary to be calculated in addition to nominal case for the tracker (beta=0, MPA), are: Hottest and coldest cases Transfer phases Contingency cases 39

27 Breadboard Model Test Set-ups Preliminary Test Set-up Current BBM Layout 40

28 BBM Evaporators 41

29 Flat Condenser Element 43

30 Other BBM Components Liquid buffer PCM set-up 44

31 Breadboard Model Experiments BB set-up with real AMS dimensions & shapes Peak damping options: Liquid buffering Phase Change Material: Paraffin with appropriate melting temperature Active coupling of liquid line exiting the condenser, with the TTCS components-box Liquid Flow Metering Vapour Quality monitoring 45

32 46

33 Redundancy Policy Failure Mode Effect & Criticality Analysis should provide all possible ways things can go wrong provides a possible solution, e.g. redundancy of the item Fault Tree Analysis should provide the probability of failure and the impact on the system provides the amount of redundant items optimises the design by checking the progression of component failures 48

34 Concluding Remarks TTCS development is in progress, but original concept of two complete loops (full redundancy) is under discussion, to realise AMS-2 mass reduction. The above may imply a reduction of reliability, increase of risk, reduction of lifetime and decrease of the planned NLR two-phase experiments. Nothing is sure, things are changing, but the manifest date hardly moves. 50

EVAPORATIVE CO 2 HEAT TRANSFER MEASUREMENTS FOR COOLING SYSTEMS OF PARTICLE PHYSICS DETECTORS

EVAPORATIVE CO 2 HEAT TRANSFER MEASUREMENTS FOR COOLING SYSTEMS OF PARTICLE PHYSICS DETECTORS HEFAT21 7 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 19-21 July 21 Antalya, Turkey EVAPORATIVE CO 2 HEAT TRANSFER MEASUREMENTS FOR COOLING SYSTEMS OF PARTICLE PHYSICS

More information

Evaporative CO 2 cooling for thermal control of scientific equipments. Bart Verlaat (Nikhef/CERN)

Evaporative CO 2 cooling for thermal control of scientific equipments. Bart Verlaat (Nikhef/CERN) Evaporative CO 2 cooling for thermal control of scientific equipments SLAC Advanced Instrumentation Seminars March 28, 2012, 1:30 PM, Kavli 3rd floor Bart Verlaat (Nikhef/CERN) 1 CO 2 Cooling Seminar Introduction

More information

THE CERN CRYOGENIC TEST FACILITY FOR THE ATLAS BARREL TOROID MAGNETS

THE CERN CRYOGENIC TEST FACILITY FOR THE ATLAS BARREL TOROID MAGNETS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 365 THE CERN CRYOGENIC TEST FACILITY FOR THE ATLAS BARREL TOROID MAGNETS

More information

Development of cryogenic silicon detectors for the TOTEM Roman pots

Development of cryogenic silicon detectors for the TOTEM Roman pots Development of cryogenic silicon detectors for the TOTEM Roman pots S. Grohmann, CERN ST-CV RD39 Collaboration Seminar on Solid State Detectors July 11, 2001 Table of contents u u u u Introduction / Roman

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

CONTENTS. Introduction LHP Library Examples Future Improvements CARMEN GREGORI DE LA MALLA EAI. ESTEC, October 2004

CONTENTS. Introduction LHP Library Examples Future Improvements CARMEN GREGORI DE LA MALLA EAI. ESTEC, October 2004 CARMEN GREGORI DE LA MALLA EAI CONTENTS Introduction LHP Library Examples Future Improvements INTRODUCTION (1) Loop heat pipes (LHP) are two-phase capillary heat transfer devices that are becoming very

More information

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy.

THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM. Joint research Centre of the European Commission Ispra, Italy. THE USE OF PB-BI EUTECTIC AS THE COOLANT OF AN ACCELERATOR DRIVEN SYSTEM Alberto Peña 1, Fernando Legarda 1, Harmut Wider 2, Johan Karlsson 2 1 University of the Basque Country Nuclear Engineering and

More information

ADVANCED MODELLING TECHNIQUES for AEROSPACE SMEs

ADVANCED MODELLING TECHNIQUES for AEROSPACE SMEs ADVANCED MODELLING TECHNIQUES for AEROSPACE SMEs Intermediate report Deliverable 8.1: Simulation of the LHP in orbital conditions 1.1 Introduction The loop heat pipe (LHP) is a closed system in which heat

More information

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS

LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS CH-1211 Geneva 23 Switzerland EDMS No. ST/CV - Cooling of Electronics & Detectors GUIDE LEAKLESS COOLING SYSTEM V.2 PRESSURE DROP CALCULATIONS AND ASSUMPTIONS Objectives Guide to Leakless Cooling System

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

Vapour Absorption Refrigeration Systems Based On Ammonia- Water Pair Nagendra M CBM Engineer, Hindusthan Zink.Ltd The specific objectives of this lesson are to: 1. Introduce ammonia-water based vapour

More information

Topic 19b. Thermal Properties of Matter

Topic 19b. Thermal Properties of Matter Topic 19b The infra-red image of a head shows the distribution of heat. Different colours indicate different temperatures. Which do you think are the warmest regions? Thermal Properties of Matter contents

More information

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE

EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta EXPERIMENTAL ANALYSIS OF R-134a FLOW CONDENSATION IN A SMOOTH TUBE Bastos S., Fernández-Seara

More information

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS Md. Khairul Islam Lecturer Department of Applied Chemistry and Chemical Engineering. University of Rajshahi. What is design? Design includes all the

More information

Supercritical Helium Cooling of the LHC Beam Screens

Supercritical Helium Cooling of the LHC Beam Screens EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report Supercritical Helium Cooling of the LHC Beam Screens Emmanuel Hatchadourian,,

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Solar Flat Plate Thermal Collector

Solar Flat Plate Thermal Collector Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and

More information

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes 1777 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 61, 2017 Guest Editors: Petar S Varbanov, Rongxin Su, Hon Loong Lam, Xia Liu, Jiří J Klemeš Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-51-8;

More information

SECOND ENGINEER REG. III/2 APPLIED HEAT

SECOND ENGINEER REG. III/2 APPLIED HEAT SECOND ENGINEER REG. III/2 APPLIED HEAT LIST OF TOPICS A B C D E F G H I J K Pressure, Temperature, Energy Heat Transfer Internal Energy, Thermodynamic systems. First Law of Thermodynamics Gas Laws, Displacement

More information

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Heat Transfer of Condensation in Smooth Round Tube from Superheated Vapor

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook Reference Manual 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com Reference Manual 405 and 1595 405 Compact Orifice Series and 1595 Conditioning

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 and 1595 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book NOTICE Read

More information

14.5 K Hydrogen Sorption Cooler: Design and Breadboard Tests

14.5 K Hydrogen Sorption Cooler: Design and Breadboard Tests 14.5 K Hydrogen Sorption Cooler: Design and Breadboard Tests H.J.M. ter Brake 1, J.F. Burger 1, H.J. Holland 1, R.J. Meijer 1, A.V. Mudaliar 1, D. Zalewski 1, M. Linder 2 1 University of Twente, 7500 AE

More information

Measurement of the performances of a transparent closed loop two-phase thermosyphon

Measurement of the performances of a transparent closed loop two-phase thermosyphon Advanced Computational Methods and Experiments in Heat Transfer XI 227 Measurement of the performances of a transparent closed loop two-phase thermosyphon B. Agostini & M. Habert ABB Switzerland Ltd.,

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

ltcm Thermal Simulation of Microchannel Two-Phase Liquid Cooling of Cold Plates for Servers and Power Electronics Prof. John R. Thome and LTCM Staff

ltcm Thermal Simulation of Microchannel Two-Phase Liquid Cooling of Cold Plates for Servers and Power Electronics Prof. John R. Thome and LTCM Staff Thermal Simulation of Microchannel Two-Phase Liquid Cooling of Cold Plates for Servers and Power Electronics Prof. John R. Thome ltcm Heat and Mass Transfer Laboratory and LTCM Staff Based partially on

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System CERN-ACC-2014-0065 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Milestone Report Cryogenic Scenarios for the Cold Powering System Ballarino, A (CERN) et al 27 May 2014 The HiLumi LHC

More information

I. TEMPERATURE DEPENDENCE OF VAPOUR PRESSURE. THEORETICAL INTRODUCTION.

I. TEMPERATURE DEPENDENCE OF VAPOUR PRESSURE. THEORETICAL INTRODUCTION. 25 DETERMINATION OF THE VAPOUR PRESSURE OF A PURE LIQUID SUBSTANCE BY THE SIMPLE STATIC METHOD AS A FUNCTION OF TEMPERATURE. DETERMINATION OF THE ENTHALPY CHANGE OF EVAPORATION. The necessary theoretical

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

1. Basic state values of matter

1. Basic state values of matter 1. Basic state values of matter Example 1.1 The pressure inside a boiler is p p = 115.10 5 Pa and p v = 9.44.10 4 Pa inside a condenser. Calculate the absolute pressure inside the boiler and condenser

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015

Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015 Safety analysis on beam dump Luca de Ruvo LNL - INFN Safety group SSTAC meeting, July 23, 2015 Topics: 1. Overview on Beam Dump 2. Description of cooling circuit 3. Safety philosofy 4. BD safety system:

More information

Chapter 2: The Physical Properties of Pure Compounds

Chapter 2: The Physical Properties of Pure Compounds Chapter 2: The Physical Properties of Pure Compounds 2-10. The boiler is an important unit operation in the Rankine cycle. This problem further explores the phenomenon of boiling. A. When you are heating

More information

Two-Phase Refrigerant Distribution in a Micro- Channel Manifold

Two-Phase Refrigerant Distribution in a Micro- Channel Manifold Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 6 Two-Phase Refrigerant Distribution in a Micro- Channel Manifold Chad D. Bowers

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 17 Properties of Pure Substances-I Good morning to all of you. We were discussing

More information

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss. Condenser Analysis Water Cooled Model: For this condenser design there will be a coil of stainless steel tubing suspended in a bath of cold water. The cold water will be stationary and begin at an ambient

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK

FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. I (April, 2016), pp. 257-265 FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK R. S. H. AL-KHAFAJY College

More information

HE II HEAT EXCHANGER TEST UNIT FOR THE LHC INNER TRIPLET

HE II HEAT EXCHANGER TEST UNIT FOR THE LHC INNER TRIPLET EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 505 HE II HEAT EXCHANGER TEST UNIT FOR THE LHC INNER TRIPLET Ch. Darve

More information

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES

INVESTIGATION OF VAPOR GENERATION INTO CAPILLARY STRUCTURES OF MINIATURE LOOP HEAT PIPES Minsk International Seminar Heat Pipes, Heat Pumps, Refrigerators Minsk, Belarus, September 8-, INESTIGATION OF APOR GENERATION INTO CAPIARY STRUCTURES OF MINIATURE OOP HEAT PIPES.M. Kiseev, A.S. Nepomnyashy,

More information

Latest Heat Transfer

Latest Heat Transfer Latest Heat Transfer 1. Unit of thermal conductivity in M.K.S. units is (a) kcal/kg m2 C (b) kcal-m/hr m2 C (c) kcal/hr m2 C (d) kcal-m/hr C (e) kcal-m/m2 C. 2. Unit of thermal conductivity in S.I. units

More information

Minhhung Doan, Thanhtrung Dang

Minhhung Doan, Thanhtrung Dang An Experimental Investigation on Condensation in Horizontal Microchannels Minhhung Doan, Thanhtrung Dang Department of Thermal Engineering, Hochiminh City University of Technology and Education, Vietnam

More information

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number:

ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: ECE309 THERMODYNAMICS & HEAT TRANSFER MIDTERM EXAMINATION June 19, 2015 2:30 pm - 4:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Permitted

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns The International Journal of Engineering and Science (IJES) Volume 6 Issue 7 Pages PP 01-12 2017 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Comparison of Heat Transfer rate of closed loop micro pulsating

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

A dynamic model of a vertical direct expansion ground heat exchanger

A dynamic model of a vertical direct expansion ground heat exchanger A dynamic model of a vertical direct expansion ground heat exchanger B. Beauchamp 1, L. Lamarche 1 and S. Kajl 1 1 Department of mechanical engineering École de technologie supérieure 1100 Notre-Dame Ouest,

More information

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations L. Makaum, P.v.Z. Venter and M. van Eldik Abstract Refrigerants

More information

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark)

(ii) the total kinetic energy of the gas molecules (1 mark) (iii) the total potential energy of the gas molecules (1 mark) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Complex Compounds Background of Complex Compound Technology

Complex Compounds Background of Complex Compound Technology Complex Compounds For more than 20 years, Rocky Research has been a pioneer in the field of sorption refrigeration utilizing complex compounds. Our technology earned special recognition from NASA in 1999.

More information

Thermal conductivity measurement of two microencapsulated phase change slurries

Thermal conductivity measurement of two microencapsulated phase change slurries Thermal conductivity measurement of two microencapsulated phase change slurries Xiaoli Ma (corresponding author), Siddig Omer, Wei Zhang and S. B. Riffat Institute of Sustainable Energy Technology, School

More information

Introduction to Blackbody Sources

Introduction to Blackbody Sources Introduction to s This section contains dedicated blackbody sources for low uncertainty calibration of infrared thermometers. A range of portable primary blackbody sources combine high emissivity with

More information

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe

Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1 Effect of Nanofluid Concentration on the Performance of Circular Heat Pipe M. G. Mousa Abstract The goal of this

More information

AN EXPLORATORY STUDY OF A PULSATING HEAT PIPE OPERATED WITH A TWO COMPONENT FLUID MIXTURE

AN EXPLORATORY STUDY OF A PULSATING HEAT PIPE OPERATED WITH A TWO COMPONENT FLUID MIXTURE Paper ID: ISHMT_IND_16_033 AN EXPLORATORY STUDY OF A PULSATING HEAT PIPE OPERATED WITH A TWO COMPONENT FLUID MIXTURE Mauro Mameli Department of Industrial Engineering, University of Bergamo, Viale Marconi

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

Measurements of temperature on LHC thermal models

Measurements of temperature on LHC thermal models Measurements of temperature on LHC thermal models Christine Darve 1, Juan Casas 2, Moyses Kuchnir 1 1 : Fermi National Accelerator Laboratory, Batavia, IL, USA 2 : CERN, European Laboratory for Particle

More information

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions

Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Modular Thermal Design Concepts: Thermal Design of a Spacecraft on a Module Level for LEO Missions Mark Barton AeroAstro mark.barton@aeroastro.com 703.723.9800 x 131 2005 AIAA/USU Conference on Small Satellites

More information

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M)

Put sufficient ice cubes into water (1 M) and wait for equilibrium (both exist) (1 M) NAME : F.5 ( ) Marks: /70 FORM FOUR PHYSICS REVISION TEST on HEAT Allowed: 70 minutes This paper consists of two sections. Section A (50 marks) consists of the structure-type questions, and Section B (20

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department

More information

Basic Principles of an Adsorption Heat Storage System

Basic Principles of an Adsorption Heat Storage System Development of a High Energy Density Sorption Storage System Günter Gartler, Dagmar Jähnig, Gottfried Purkarthofer, Waldemar Wagner AEE-INTEC, A-82 Gleisdorf, Feldgasse 19, Austria Phone: +43/3112/5886/64,

More information

7. Development of the 2nd Law

7. Development of the 2nd Law 7-1 7. Development of the 2nd Law 7.1 1st Law Limitations The 1 st Law describes energy accounting. Once we have a process (or string of processes) we can calculate the relevant energy interactions. The

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

A generic adsorption heat pump model for system simulations in TRNSYS

A generic adsorption heat pump model for system simulations in TRNSYS A generic adsorption heat pump model for system simulations in TRNSYS Christian Glück and Ferdinand P. Schmidt Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany Phone: +49 721

More information

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS

FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS FIELD TEST OF WATER-STEAM SEPARATORS FOR THE DSG PROCESS Markus Eck 1, Holger Schmidt 2, Martin Eickhoff 3, Tobias Hirsch 1 1 German Aerospace Center (DLR), Institute of Technical Thermodynamics, Pfaffenwaldring

More information

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 208 Boiling Heat Transfer and Pressure Drop of inside a Small-Diameter 2.5 mm

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial.

THERMODYNAMICS, FLUID AND PLANT PROCESSES. The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS, FLUID AND PLANT PROCESSES The tutorials are drawn from other subjects so the solutions are identified by the appropriate tutorial. THERMODYNAMICS TUTORIAL 2 THERMODYNAMIC PRINCIPLES SAE

More information

Flow instabilities in a vertical tube reboiler

Flow instabilities in a vertical tube reboiler Advanced Computational Methods and Experiments in Heat Transfer XIII 325 Flow instabilities in a vertical tube reboiler M. Kessler 1 & S. Kabelac 2 1 Institute for Thermodynamics, Helmut Schmidt University,

More information

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger Journal of Physics: Conference Series PAPER OPEN ACCESS An eperimental investigation on condensation of R134a refrigerant in microchannel heat echanger To cite this article: A S Shamirzaev 218 J. Phys.:

More information

SIMULINK MODEL FOR A HEAT-EXCHANGER

SIMULINK MODEL FOR A HEAT-EXCHANGER The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania SIMULINK MODEL FOR A HEAT-EXCHANGER L. Costiuc 1, V. Popa 2 1 TRANSILVANIA

More information

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Acta Polytechnica Vol. 52 No. 3/202 Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Petr Kracík,JiříPospíšil, Ladislav Šnajdárek Brno University of

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Time: 1 Hour HEAT AND MASS TRANSFER Note: All questions are compulsory. Q1) The inside temperature of a furnace wall ( k=1.35w/m.k), 200mm thick, is 1400 0 C. The heat transfer coefficient

More information

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES BY JINGWEI ZHU Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Urbana,

More information

Heat transfer and pressure drop experimentation inside single minichannels

Heat transfer and pressure drop experimentation inside single minichannels Advanced Computational Methods in Heat Transfer X 137 Heat transfer and pressure drop experimentation inside single minichannels A. Cavallini, S. Bortolin, D. Del Col, M. Matkovic & L. Rossetto Dipartimento

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

ENGINEERING OF NUCLEAR REACTORS

ENGINEERING OF NUCLEAR REACTORS 22.312 ENGINEERING OF NUCLEAR REACTORS Monday, December 17 th, 2007, 9:00am-12:00 pm FINAL EXAM SOLUTIONS Problem 1 (45%) Analysis of Decay Heat Removal during a Severe Accident i) The energy balance for

More information

Properties of Vapors

Properties of Vapors Properties of Vapors Topics for Discussion The Pressure/Temperature Relationship Vaporization Condensation Enthalpy Properties of Vapors Topics for Discussion Entropy Properties of Substances Saturated

More information

Ice formation modelling around the coils of an ice storage tank

Ice formation modelling around the coils of an ice storage tank Journal of Physics: Conference Series Ice formation modelling around the coils of an ice storage tank To cite this article: J Biosca-Taronger et al 2012 J. Phys.: Conf. Ser. 395 012133 View the article

More information

FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS

FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS FORCE FED BOILING AND CONDENSATION FOR HIGH HEAT FLUX APPLICATIONS Edvin Cetegen 1, Serguei Dessiatoun 1, Michael M. Ohadi 2 1 Smart and Small Thermal Systems Laboratory Department of Mechanical Engineering,

More information

Available online at ScienceDirect. Physics Procedia 67 (2015 ) Superfluid helium heat pipe. P.

Available online at   ScienceDirect. Physics Procedia 67 (2015 ) Superfluid helium heat pipe. P. Available online at www.sciencedirect.com ScienceDirect Physics Procedia 67 (2015 ) 625 630 25th International Cryogenic Engineering Conference and the International Cryogenic Materials Conference in 2014,

More information

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases.

True/False. Circle the correct answer. (1pt each, 7pts total) 3. Radiation doesn t occur in materials that are transparent such as gases. ME 323 Sample Final Exam. 120pts total True/False. Circle the correct answer. (1pt each, 7pts total) 1. A solid angle of 2π steradians defines a hemispherical shell. T F 2. The Earth irradiates the Sun.

More information

Design of a Refrigerator. Department of Aerospace and Mechanical Engineering. Abdallah Soliman. Masih Ahmed. Ryan Seballos. EMAE 355 Project 4

Design of a Refrigerator. Department of Aerospace and Mechanical Engineering. Abdallah Soliman. Masih Ahmed. Ryan Seballos. EMAE 355 Project 4 Design of a Refrigerator Department of Aerospace and Mechanical Engineering Abdallah Soliman Masih Ahmed Ryan Seballos EMAE 355 Project 4 Professor Dr. J.R. Kadambi Teaching Assistants Bo Tan Henry Brown

More information

Proton Conductive Membrane Compressor-Driven Pulse Tube Cryocooler

Proton Conductive Membrane Compressor-Driven Pulse Tube Cryocooler Proton Conductive Membrane Compressor-Driven Pulse Tube Cryocooler James R. Muller 1, Lonnie G. Johnson 1, Carl S. Kirkconnell 2 and Robert Hon 2 1 Johnson Research and Development Atlanta, Georgia, USA

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

O Plus Dry Bushing 69 kv system, 350 kv BIL, 3000 A. Table of contents

O Plus Dry Bushing 69 kv system, 350 kv BIL, 3000 A. Table of contents Type test report O Plus Dry Bushing 69 kv system, 0 kv BIL, 000 A Table of contents Abstract... 2 2 Certification... 2 Introduction.... Description and ratings....2 Overview of tests.... Applicable standards....4

More information

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port

More information

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A

UBMCC11 - THERMODYNAMICS. B.E (Marine Engineering) B 16 BASIC CONCEPTS AND FIRST LAW PART- A UBMCC11 - THERMODYNAMICS B.E (Marine Engineering) B 16 UNIT I BASIC CONCEPTS AND FIRST LAW PART- A 1. What do you understand by pure substance? 2. Define thermodynamic system. 3. Name the different types

More information

Performance Investigation on Electrochemical Compressor with Ammonia

Performance Investigation on Electrochemical Compressor with Ammonia Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Performance Investigation on Electrochemical Compressor with Ammonia Ye Tao University

More information

CHARACTERIZATION OF LPM'S 1-T DEW POINT GENERATOR

CHARACTERIZATION OF LPM'S 1-T DEW POINT GENERATOR XVIII IMEKO WORLD CONGRESS Metrology for a Sustainable Development September, 17 22, 2006, Rio de Janeiro, Brazil CHARACTERIZATION OF LPM'S 1-T DEW POINT GENERATOR Davor Zvizdic, Tomislav Stasic, Lovorka

More information

Topic 5 Practice Test

Topic 5 Practice Test Base your answers to questions 1 and 2 on the diagram below, which represents the greenhouse effect in which heat energy is trapped in Earth's atmosphere 1. The Earth surface that best absorbs short-wave

More information

Lentis Pai/Associate Director/Wiwynn

Lentis Pai/Associate Director/Wiwynn Two Phase Rack Level Liquid Cooling Solution Lentis Pai/Associate Director/Wiwynn A g e n d a Existing Chassis Level Solution Wiwynn Two Phase Immersion Cooling Rack Level Liquid Cooling Solution Overview

More information