Final Exam. covering the entire semester. Extra time granted about 1 hour about 5 Problems about 30 Multiple Choice

Size: px
Start display at page:

Download "Final Exam. covering the entire semester. Extra time granted about 1 hour about 5 Problems about 30 Multiple Choice"

Transcription

1 his week Applications o oces and oues hap. 12, sec. 1-5 onseation o anula momentum hap. 10, sec. 1-4 ast weeks Oscillations hap. 14 inal Exam coein the entie semeste Exta time anted about 1 hou about 5 Poblems about 30 Multiple hoice Ealy stat o those who want it - 6 pm Each poblem will typically inole seeal undamental physics concepts. Statin a Solution hee possible appoaches to solin physics poblems Kinematics -inea and otational Position ime Velocity Acceleation What the uantities mean. What the uantities ae eual to. Dynamics - inea and otational Add oces onseation -inea and otational X -X i = X tanse Eney Momentum Anula Momentum Anle ime Anula Velocity Anula Acceleation Add oues Newton s 2nd aw Newton s 3d aw Example You hae a pat time job with a company that desins loadin euipment o eiht. You team has desined a simple cane o litin heay cao. A 45.0 k ba 15 t lon is made out o lihtweiht aluminum and is suppoted at its base by a hine that allows the ba to piot etically. A suppot cable uns om the othe end o the ba that is in the ai to the ound. he team is woied that the hine miht ail. You task is to detemine the oce on the hine when a packae o 225 k is lited staiht up into the ai om the end o the ba. You hae been asked to conside the case whee the ba is at an anle o 45 to the ound and the suppot cable is at an anle o 30 to the ound. he packae is lited with an acceleation o /2 a W p What is the oce on the hine? = 30 = 45 W p = (225 k) = (45 k) a = 0.10 = 15 t =? Use dynamics on the ba Sum hoizontal oces = ma h = 0 Sum etical oces = ma = 0 Sum toues out o plane = Ia = 0 ake axis o otation as hine Geomety o anles to et = = 30 > W p because packae is acceleatin up ee body diaam o ba ee body diaam o packae W p S y = - W p oces oce diaam o ba S y = y - y - - = 0 S x = x - x = 0 x 2 + y 2 = 2 y = sin x = cos W = m

2 oue b m m St = t - t- (/2) t = 0 t = sinb t = sinm t = sinm Geomety + b = b = = 15 m o = 180 m = = 45 unknowns ind 2 x + 2 y = 2 [1] x, y ind x (oces) x - cos = 0 [2] ind (oue) sinb - sinm - (/2) m b sinm = 0 sinb - sinm - (1/2) m b sinm = 0 ind (oces on packae) [3] - = a [4] an sole o x [4] - = a Sole o put in [3] = (a + ) sinb - (a + ) sinm - (1/2) m b sinm = 0 Sole o put into [2] sinb = (a + ) sinm + (1/2) m b sinm = ( (a + ) sinm + (1/2) m b sinm) / sinb x = cos ( (a + ) sinm + (1/2) m b sinm) / sinb heck units Ok units o oce = units o ma Eeythin is known Just plu in the numbes x = cos30 ((225k) (9.8) (m/s 2 )(1.1) sin45 + (1/2)(45k) (9.8) (m/s 2 ) sin45 ) / sin15 ) ind y (oces) y - sin - m b - = 0 ind (om beoe) = ( (a + ) sinm + (1/2) m b sinm) / sinb ind (om beoe) = a + y =sin (( (a + ) sinm + (1/2)m b sinm ) / sinb ) +m b + (a + ) heck units Eeythin is known just plu in the numbes Deined the ba as the system used = ma x = 0 y = 0 t=0 t= t = t Reiew needed to ind anles took hine as axis o otation needed to ind anles Deined packae as the system = ma on packae to et Oanize the aleba Rotations and onseation An ice skate is spinnin in place on the ice when he bins his ams in close to his body. Detemine his anula speed as a unction o his initial and inal moment o inetia and initial anula speed. w initial Possible appoaches Dynamics (ecto) 1 2 I w = 0 w 2 = I 2 t = Ia onseation o Eney (scala) Use eney ---- system: skate inal I KE = 1 2 Iw2 inally x 2 + y 2 = 2 w = I i I < w > Is it tue?

3 Pediction and Expeiment check uantitatiely with expeiment pediction w = I i I inceases by a acto o 4 w deceases by a acto o 2 Do an expeiment like this in lab Inceased I system: disk, in his pediction does not wok out Detemine actual elationship in lab onseation o Eney oot the chane o intenal eney 1 2 I w DE int enal = 0 In case o skate What is won Intenal eney deceases to pull ams in In case o disk and in Intenal eney inceases in inelastic collision Don t know the chane o intenal eney onseation o eney is not useul. onseation o anula momentum = Iw initial system I w o o input system output - i = input - output input output Dtanse = input - output inal system Iw In case o skate o in dopped on disk No extenal inteaction No anula momentum tanse I w - = 0 w = I I I inceases by a acto o 4 o w w deceases by a acto o 4 Need an extenal inteaction: extenal toue x t = Ia Anula momentum tanse initial Use Dynamics t = I dw dt x inteaction tdt = I dw dw dt = I dt dt dt tdt = I( w -w i ) int eaction time x inal - i = D tanse w = Iw Anula momentum Anula momentum is conseed D system = D tanse D tanse = tdt inteaction time A 250 hockey puck taelin acoss the ice at 5.0 t/sec hits the end o a 1.0 k hockey stick that is layin at est on the ice. he puck hits the hockey stick 3.0 t om its cente o mass. he puck bounces staiht back at 1.0 t/sec. ow does the hockey stick moe just ate it is hit? he moment o inetia o the hockey stick otatin about its cente o mass is 0.10 k m 2. tdt = - i int eaction time tdt = D tanse inteaction time

4 m s =1.0 k =0.10 k m 2 =3.0 t =0.25 k o =5.0 t/s s Use conseation o momentum w =1.0 t/s What is the elocity o the cente o mass o the hockey stick and the anula elocity about the cente o mass? Use conseation onseation o eney is useless. Why? Use conseation o anula momentum system: puck + stick initial time: just beoe the collision inal time: just ate the collision Momentum: system: puck + stick Initial time p o inal time conseation o momentum: no momentum tanse ( m s s - )- o = 0 Anula momentum: system: puck + stick Is thee any anula momentum tanse to the system? Does the system hae anula momentum ate the collision? Does the system hae anula momentum beoe the collision? Gies the elocity o cente o mass! Need to et the anula elocity. conseation o anula momentum: - i = 0 No extenal toue ps p Beoe ollision o What is the system? w = t just beoe collision = o An object moin in a staiht line can hae an anula elocity Depends on axis o otation Initial anula momentum i = I p = I p o Diection: same as w out Does the hockey puck hae a moment o inetia? Depends on the axis o otation I = 2 Anula momentum o hockey puck just beoe the collision = ( 2 ) o = o Anula momentum o stick just beoe collision? Diection out hoose out as + What is the anula momentum o system just beoe the collision? Ate ollision ut system = puck + stick onseation o anula momentum - i = 0 inal diection same as initial diection: out z inal - z initial = w - 2 o = 0 Gies anula elocity about cente o mass Soles the poblem: Diection? Objects moin in staiht lines can hae anula momentum!!! onseation o Momentum ind s ( m s s - )- o = 0 m s s = o + s = mp ( m o + ) s s = 0.25k 1.0k s = 1.50 t s check units t t Ł s s ł note that thee was no need to conet to consistent units.

5 onseation o Anula Momentum ind w w - 2 o = 0 w = 2 o +m p 2 w = ( o + ) w = ( o + ) check units Just beoe the puck hits the stick it has an anula momentum with espect to the cente o mass o the stick. = Iw = ( 2 ) o = o What is the anula momentum o the puck with espect to the cente o mass o the stick some time beoe that? d t t d I = 2 w = t cos = d cos = t t = d put in numbes I = 2 Anula momentum o puck w = t t is the component o pependicula to Does the anula momentum o the puck chane as it moes towad the stick? = Iw = ( m 2 ) t = m t = m d = m d Does not chane!!! Anothe expession o anula momentum o a paticle = p X Anula Momentum as a oss Poduct = w I p Manitude o anula momentum diection Anula momentum is in diection o anula elocity. Out in this case. (p cos) iht hand ule: om to p out p p t p t onseation o anula momentum D system = Dtanse Any chane in the anula momentum o a system must come om Inteactions with objects outside the system System bicycle wheel You choose the system w : down tun it oe w : up Diection o Anula Momentum o system Initial: down inal: up tdt =Dtanse inteactiontime Anula Momentum tanse by? Anothe system System bicycle wheel + peson + stool hai is ee to tun (no extenal toue) No Anula Momentum tanse Initial inal w : down w w : up tun it oe w p : down Diection o Anula Momentum o system Initial: down inal: down

6 Anula Momentum anse balanced piot point Now apply a oce he oce causes a toue on the system t = oue diection: out he toue causes anula momentum tanse to the system tdt = D tanse int eaction time Anula momentum tanse diection: out D tanse is out i = 0 =? onseation o anula momentum - i = Dtanse = D tanse is out = Iw w is out System tuns up What happens i wheel is spinnin? he otatin wheel has a lae anula momentum Anula momentum tanse Balanced with otatin wheel apply a oce he oce causes a toue on the system t = oue diection: out he toue causes anula momentum tanse to the system tdt = Dtanse int eaction time Anula momentum tanse diection: out ow does the system moe? D tanse is out onseation o anula momentum -i =Dtanse = Dtanse+ i 3-D iew i +z D top iew i D +z When the ba tuns anula momentum tanse is still pependicula to the ba Ba tuns aain so that wheel anula momentum in diection o inal anula momentum he ba keeps tunin w ba is up top iew i D D Anula momentum om the wheel is always alon the ba D Ba tuns so that wheel anula momentum in diection o inal anula momentum

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians:

HW 7 Help. 60 s t. (4.0 rev/s)(1 min) 240 rev 1 min Solving for the distance traveled, we ll need to convert to radians: HW 7 Help 30. ORGANIZE AND PLAN We ae given the angula velocity and the time, and we ae asked to ind the distance that is coveed. We can ist solve o the angula displacement using Equation 8.3: t. The distance

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Section 26 The Laws of Rotational Motion

Section 26 The Laws of Rotational Motion Physics 24A Class Notes Section 26 The Laws of otational Motion What do objects do and why do they do it? They otate and we have established the quantities needed to descibe this motion. We now need to

More information

Chapter 4: The laws of motion. Newton s first law

Chapter 4: The laws of motion. Newton s first law Chapte 4: The laws of motion gavitational Electic magnetic Newton s fist law If the net foce exeted on an object is zeo, the object continues in its oiginal state of motion: - an object at est, emains

More information

HRW 7e Chapter 13 Page 1 of 5

HRW 7e Chapter 13 Page 1 of 5 HW 7e Chapte Pae o 5 Halliday/enick/Walke 7e Chapte Gaitation The manitude o the oce o one paticle on the othe i ien by F = Gm m /, whee m and m ae the mae, i thei epaation, and G i the unieal aitational

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

Rotatoy Motion Hoizontal Cicula Motion In tanslatoy motion, evey point in te body follows te pat of its pecedin one wit same velocity includin te cente of mass In otatoy motion, evey point move wit diffeent

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Rotational Motion: Statics and Dynamics

Rotational Motion: Statics and Dynamics Physics 07 Lectue 17 Goals: Lectue 17 Chapte 1 Define cente of mass Analyze olling motion Intoduce and analyze toque Undestand the equilibium dynamics of an extended object in esponse to foces Employ consevation

More information

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z Moentu, Ipulse and Collisions Moentu eeyday connotations? physical eaning the tue easue of otion (what changes in esponse to applied foces) d d ΣF ( ) dt dt Moentu (specifically Linea Moentu) defined p

More information

Physics 201 Lecture 18

Physics 201 Lecture 18 Phsics 0 ectue 8 ectue 8 Goals: Define and anale toque ntoduce the coss poduct Relate otational dnamics to toque Discuss wok and wok eneg theoem with espect to otational motion Specif olling motion (cente

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

Momentum is conserved if no external force

Momentum is conserved if no external force Goals: Lectue 13 Chapte 9 v Employ consevation of momentum in 1 D & 2D v Examine foces ove time (aka Impulse) Chapte 10 v Undestand the elationship between motion and enegy Assignments: l HW5, due tomoow

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 9

PHYS Summer Professor Caillault Homework Solutions. Chapter 9 PHYS - Summe 007 - Pofesso Caillault Homewok Solutions Chapte 9 3. Pictue the Poblem The owne walks slowly towad the notheast while the cat uns eastwad and the dog uns nothwad. Stategy Sum the momenta

More information

Physics Tutorial V1 2D Vectors

Physics Tutorial V1 2D Vectors Physics Tutoial V1 2D Vectos 1 Resolving Vectos & Addition of Vectos A vecto quantity has both magnitude and diection. Thee ae two ways commonly used to mathematically descibe a vecto. y (a) The pola fom:,

More information

Kinematics of rigid bodies

Kinematics of rigid bodies Kinematics of igid bodies elations between time and the positions, elocities, and acceleations of the paticles foming a igid body. (1) Rectilinea tanslation paallel staight paths Cuilinea tanslation (3)

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 18: System of Particles II. Slide 18-1 Physics 1501 Fall 2008 Mechanics, Themodynamics, Waves, Fluids Lectue 18: System of Paticles II Slide 18-1 Recap: cente of mass The cente of mass of a composite object o system of paticles is the point

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg

Circular Motion. x-y coordinate systems. Other coordinates... PHY circular-motion - J. Hedberg Cicula Motion PHY 207 - cicula-motion - J. Hedbeg - 2017 x-y coodinate systems Fo many situations, an x-y coodinate system is a geat idea. Hee is a map on Manhattan. The steets ae laid out in a ectangula

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Falls in the realm of a body force. Newton s law of gravitation is:

Falls in the realm of a body force. Newton s law of gravitation is: GRAVITATION Falls in the ealm of a body foce. Newton s law of avitation is: F GMm = Applies to '' masses M, (between thei centes) and m. is =. diectional distance between the two masses Let ˆ, thus F =

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force.

Motion in a Circle. Content 1. Kinematics of uniform circular motion 2. Centripetal acceleration 3. Centripetal force. JJ 014 H PHYSICS (9646) Motion in a Cicle Motion in a Cicle Content 1. Kinematics of unifom cicula motion. Centipetal acceleation 3. Centipetal foce Leaning Outcomes Candidates should be able to: (a) expess

More information

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b,

SAMPLE QUIZ 3 - PHYSICS For a right triangle: sin θ = a c, cos θ = b c, tan θ = a b, SAMPLE QUIZ 3 - PHYSICS 1301.1 his is a closed book, closed notes quiz. Calculatos ae pemitted. he ONLY fomulas that may be used ae those given below. Define all symbols and justify all mathematical expessions

More information

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart

Rotational Motion. Every quantity that we have studied with translational motion has a rotational counterpart Rotational Motion & Angula Momentum Rotational Motion Evey quantity that we have studied with tanslational motion has a otational countepat TRANSLATIONAL ROTATIONAL Displacement x Angula Position Velocity

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS 4 Equilibium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. of Rigid Bodies Lectue Notes: J. Walt Ole Texas Tech Univesity Contents Intoduction Fee-Body Diagam

More information

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687

Chapter 4. Newton s Laws of Motion. Newton s Law of Motion. Sir Isaac Newton ( ) published in 1687 Chapte 4 Newton s Laws of Motion 1 Newton s Law of Motion Si Isaac Newton (1642 1727) published in 1687 2 1 Kinematics vs. Dynamics So fa, we discussed kinematics (chaptes 2 and 3) The discussion, was

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS 5.4 Radian Measue So fa, ou hae measued angles in degees, with 60 being one eolution aound a cicle. Thee is anothe wa to measue angles called adian measue. With adian measue, the ac length of a cicle is

More information

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame

Relativity and Astrophysics Lecture 38 Terry Herter. Rain fall source to distance observer Distance source to rain fall frame Light and Tides Relativity and Astophysics Lectue 38 Tey Hete Outline etic in the Rain Fame Inside the hoizon One-way motion Rain Fall Light Cones Photon Exchange Rain all souce to distance obseve Distance

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

Chapter 1: Mathematical Concepts and Vectors

Chapter 1: Mathematical Concepts and Vectors Chapte : Mathematical Concepts and Vectos giga G 9 mega M 6 kilo k 3 centi c - milli m -3 mico μ -6 nano n -9 in =.54 cm m = cm = 3.8 t mi = 58 t = 69 m h = 36 s da = 86,4 s ea = 365.5 das You must know

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Lecture 52. Dynamics - Variable Acceleration

Lecture 52. Dynamics - Variable Acceleration Dynamics - Vaiable Acceleation Lectue 5 Example. The acceleation due to avity at a point outside the eath is invesely popotional to the squae of the distance x fom the cente, i.e., ẍ = k x. Nelectin ai

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Chapters 5-8. Dynamics: Applying Newton s Laws

Chapters 5-8. Dynamics: Applying Newton s Laws Chaptes 5-8 Dynamics: Applying Newton s Laws Systems of Inteacting Objects The Fee Body Diagam Technique Examples: Masses Inteacting ia Nomal Foces Masses Inteacting ia Tensions in Ropes. Ideal Pulleys

More information

PHYSICS 151 Notes for Online Lecture 2.6

PHYSICS 151 Notes for Online Lecture 2.6 PHYSICS 151 Note fo Online Lectue.6 Toque: The whole eaon that we want to woy about cente of ma i that we ae limited to lookin at point mae unle we know how to deal with otation. Let eviit the metetick.

More information

Motion in a Plane Uniform Circular Motion

Motion in a Plane Uniform Circular Motion Lectue 11 Chapte 8 Physics I Motion in a Plane Unifom Cicula Motion Couse website: http://faculty.uml.edu/andiy_danylo/teaching/physicsi PHYS.1410 Lectue 11 Danylo Depatment of Physics and Applied Physics

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics CBS Solved Test Papes PHYSICS Class XII Chapte : lectostatics CBS TST PAPR-01 CLASS - XII PHYSICS (Unit lectostatics) 1. Show does the foce between two point chages change if the dielectic constant of

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables).

In many engineering and other applications, the. variable) will often depend on several other quantities (independent variables). II PARTIAL DIFFERENTIATION FUNCTIONS OF SEVERAL VARIABLES In man engineeing and othe applications, the behaviou o a cetain quantit dependent vaiable will oten depend on seveal othe quantities independent

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

System of Particles: Center-of-Mass

System of Particles: Center-of-Mass System of Paticles: Cente-of-ass The cente-of-mass of a system of paticles is the point that moes as though () all of the systems mass wee concentated thee and () all etenal foces wee applied thee. Location

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving.

Chapter 5. really hard to start the object moving and then, once it starts moving, you don t have to push as hard to keep it moving. Chapte 5 Fiction When an object is in motion it is usually in contact with a viscous mateial (wate o ai) o some othe suface. So fa, we have assumed that moving objects don t inteact with thei suoundings

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Class #16 Monday, March 20, 2017

Class #16 Monday, March 20, 2017 D. Pogo Class #16 Monday, Mach 0, 017 D Non-Catesian Coodinate Systems A point in space can be specified by thee numbes:, y, and z. O, it can be specified by 3 diffeent numbes:,, and z, whee = cos, y =

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

4. Two and Three Dimensional Motion

4. Two and Three Dimensional Motion 4. Two and Thee Dimensional Motion 1 Descibe motion using position, displacement, elocity, and acceleation ectos Position ecto: ecto fom oigin to location of the object. = x i ˆ + y ˆ j + z k ˆ Displacement:

More information

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path.

PROJECTILE MOTION. At any given point in the motion, the velocity vector is always a tangent to the path. PROJECTILE MOTION A pojectile is any object that has been thown though the ai. A foce must necessaily set the object in motion initially but, while it is moing though the ai, no foce othe than gaity acts

More information

UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Approximate Classroom Time: Two 100 minute sessions

UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Approximate Classroom Time: Two 100 minute sessions Name SFU e-mail @sfu.ca Date(YY/MM/DD) / / Section Goup UNIT 13: ANGULAR MOMENTUM AND TORQUE AS VECTORS Appoximate Classoom Time: Two 100 minute sessions Help! Pue logical thinking cannot yield us any

More information

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ Section. Cuilinea Motion he study of the motion of a body along a geneal cue. We define u ˆ û the unit ecto at the body, tangential to the cue the unit ecto nomal to the cue Clealy, these unit ectos change

More information

PHYSICS NOTES GRAVITATION

PHYSICS NOTES GRAVITATION GRAVITATION Newton s law of gavitation The law states that evey paticle of matte in the univese attacts evey othe paticle with a foce which is diectly popotional to the poduct of thei masses and invesely

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

3.3 Centripetal Force

3.3 Centripetal Force 3.3 Centipetal Foce Think of a time when ou wee a passenge in a ca going aound a shap cue at high speed (Figue 1). If the ca wee going fast enough, ou might feel the side of the ca doo pushing on ou side.

More information

Answers to test yourself questions

Answers to test yourself questions Answes to test youself questions opic. Cicula motion π π a he angula speed is just ω 5. 7 ad s. he linea speed is ω 5. 7 3. 5 7. 7 m s.. 4 b he fequency is f. 8 s.. 4 3 a f. 45 ( 3. 5). m s. 3 a he aeage

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

PHYSICS 151 Notes for Online Lecture #20

PHYSICS 151 Notes for Online Lecture #20 PHYSICS 151 Notes fo Online Lectue #20 Toque: The whole eason that we want to woy about centes of mass is that we ae limited to looking at point masses unless we know how to deal with otations. Let s evisit

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

3-7 FLUIDS IN RIGID-BODY MOTION

3-7 FLUIDS IN RIGID-BODY MOTION 3-7 FLUIDS IN IGID-BODY MOTION S-1 3-7 FLUIDS IN IGID-BODY MOTION We ae almost eady to bein studyin fluids in motion (statin in Chapte 4), but fist thee is one cateoy of fluid motion that can be studied

More information

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE

ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES ON EARTH S SURFACE Fundamental Jounal of Mathematical Physics Vol. 3 Issue 1 13 Pages 33-44 Published online at http://www.fdint.com/ ESTIMATION MODELS USING MATHEMATICAL CONCEPTS AND NEWTON S LAWS FOR CONIC SECTION TRAJECTORIES

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7

FZX: Personal Lecture Notes from Daniel W. Koon St. Lawrence University Physics Department CHAPTER 7 FZX: Pesonal Lectue Notes fom Daniel W. Koon St. Lawence Univesity Physics Depatment CHAPTER 7 Please epot any glitches, bugs o eos to the autho: dkoon at stlawu.edu. 7. Momentum and Impulse Impulse page

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion

Thomas Whitham Sixth Form Mechanics in Mathematics. Rectilinear Motion Dynamics of a particle Projectiles Vectors Circular motion Thomas Whitham Sith om Mechanics in Mathematics Unit M Rectilinea Motion Dynamics of a paticle Pojectiles Vectos Cicula motion . Rectilinea Motion omation and solution of simple diffeential equations in

More information

AP Centripetal Acceleration Lab

AP Centripetal Acceleration Lab AP PHYSICS NAME: PERIOD: DATE: GRADE: DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP Centipetal Acceleation Lab Note: Data collection will be done by table goups. Data analysis is to be done individually. Copying

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MAACHUETT INTITUTE OF TECHNOLOGY Depatment of Physics Physics 8. TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t = Exam 3: Equation ummay = Impulse: I F( t ) = p Toque: τ =,P dp F P τ =,P

More information

PHYS 1410, 11 Nov 2015, 12:30pm.

PHYS 1410, 11 Nov 2015, 12:30pm. PHYS 40, Nov 205, 2:30pm. A B = AB cos φ x = x 0 + v x0 t + a 2 xt 2 a ad = v2 2 m(v2 2 v) 2 θ = θ 0 + ω 0 t + 2 αt2 L = p fs µ s n 0 + αt K = 2 Iω2 cm = m +m 2 2 +... m +m 2 +... p = m v and L = I ω ω

More information

2013 Checkpoints Chapter 6 CIRCULAR MOTION

2013 Checkpoints Chapter 6 CIRCULAR MOTION 013 Checkpoints Chapte 6 CIRCULAR MOTIO Question 09 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity to change (in diection). Since the speed is constant,

More information

NEETIIT.COM. Angular Displacement. Page - 1

NEETIIT.COM. Angular Displacement. Page - 1 - Download ou andoid App. 1. ANGULA DISPLACEMENT Intoduction : Angle subtended by position ecto of a paticle moing along any abitay path w..t. some fixed point is called angula displacement. (a) Paticle

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Physics 111 Lecture 10. SJ 8th Ed.: Chap Torque, Energy, Rolling. Copyright R. Janow Spring basics, energy methods, 2nd law problems)

Physics 111 Lecture 10. SJ 8th Ed.: Chap Torque, Energy, Rolling. Copyright R. Janow Spring basics, energy methods, 2nd law problems) hysics Lectue 0 Toque, Enegy, Rolling SJ 8th Ed.: Chap 0.6 0.9 Recap and Oveview Toque Newton s Second Law fo Rotation Enegy Consideations in Rotational Motion Rolling Enegy Methods Second Law Applications

More information

SOLUTIONS TO CONCEPTS CHAPTER 12

SOLUTIONS TO CONCEPTS CHAPTER 12 SOLUTONS TO CONCEPTS CHPTE. Given, 0c. t t 0, 5 c. T 6 sec. So, w sec T 6 t, t 0, 5 c. So, 5 0 sin (w 0 + ) 0 sin Sin / 6 [y sin wt] Equation of displaceent (0c) sin (ii) t t 4 second 8 0 sin 4 0 sin 6

More information

Today in Physics 218: radiation from moving charges

Today in Physics 218: radiation from moving charges Today in Physics 218: adiation fom moving chages Poblems with moving chages Motion, snapshots and lengths The Liénad-Wiechet potentials Fields fom moving chages Radio galaxy Cygnus A, obseved by Rick Peley

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Physics 201, Lecture 6

Physics 201, Lecture 6 Physics 201, Lectue 6 Today s Topics q Unifom Cicula Motion (Section 4.4, 4.5) n Cicula Motion n Centipetal Acceleation n Tangential and Centipetal Acceleation q Relatie Motion and Refeence Fame (Sec.

More information

Experiment 09: Angular momentum

Experiment 09: Angular momentum Expeiment 09: Angula momentum Goals Investigate consevation of angula momentum and kinetic enegy in otational collisions. Measue and calculate moments of inetia. Measue and calculate non-consevative wok

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Physics 231 Lecture 21

Physics 231 Lecture 21 Physics 3 Lectue Main points o today s lectue: Angula momentum: L Newton s law o univesal gavitation: GMm F PE GMm Keple s laws and the elation between the obital peiod and obital adius. T π GM 4 3 Rolling

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields

2/26/2014. Magnetism. Chapter 20 Topics. Magnets and Magnetic Fields. Magnets and Magnetic Fields. Magnets and Magnetic Fields Magnets and Magnetic ields Magnetism Howee, if you cut a magnet in half, you don t get a noth pole and a south pole you get two smalle magnets. ectue otes Chapte 20 Topics Magnets and Magnetic ields Magnets

More information

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin

TP A.4 Post-impact cue ball trajectory for any cut angle, speed, and spin technical poof TP A.4 Pot-impact cue ball tajectoy fo any cut anle, peed, and pin uppotin: The Illutated Pinciple of Pool and Billiad http://billiad.colotate.edu by Daid G. Alciatoe, PhD, PE ("D. Dae")

More information

Chapter 7 Rotational Motion and the Law of Gravity

Chapter 7 Rotational Motion and the Law of Gravity Chapte 7 Rotational Motion and the Law of Gaity What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and

More information

Kinematics in 2-D (II)

Kinematics in 2-D (II) Kinematics in 2-D (II) Unifom cicula motion Tangential and adial components of Relative velocity and acceleation a Seway and Jewett 4.4 to 4.6 Pactice Poblems: Chapte 4, Objective Questions 5, 11 Chapte

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Depatment of Physics and Engineeing Physics Physics 115.3 Physics and the Univese FINAL EXAMINATION Decembe 21, 2016 NAME: (Last) Please Pint (Given) Time: 3 hous STUDENT NO.:

More information

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room.

Multiple choice questions [100 points] As shown in the figure, a mass M is hanging by three massless strings from the ceiling of a room. Multiple choice questions [00 points] Answe all of the following questions. Read each question caefully. Fill the coect ule on you scanton sheet. Each coect answe is woth 4 points. Each question has exactly

More information

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section

AP Physics 1 - Circular Motion and Gravitation Practice Test (Multiple Choice Section) Answer Section AP Physics 1 - Cicula Motion and Gaitation Pactice est (Multiple Choice Section) Answe Section MULIPLE CHOICE 1. B he centipetal foce must be fiction since, lacking any fiction, the coin would slip off.

More information

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION

ΣF = r r v. Question 213. Checkpoints Chapter 6 CIRCULAR MOTION Unit 3 Physics 16 6. Cicula Motion Page 1 of 9 Checkpoints Chapte 6 CIRCULAR MOTION Question 13 Question 8 In unifom cicula motion, thee is a net foce acting adially inwads. This net foce causes the elocity

More information