BRILLIANT PUBLIC SCHOOL, SITAMARHI (Affiliated up to +2 level to C.B.S.E., New Delhi)

Size: px
Start display at page:

Download "BRILLIANT PUBLIC SCHOOL, SITAMARHI (Affiliated up to +2 level to C.B.S.E., New Delhi)"

Transcription

1 BRILLIANT PUBLIC SCHOOL, SITAMARHI (Affilited up to level to C.B.S.E., New Delhi) Clss-XII IIT-JEE Advced Mthemtics Study Pckge Sessio: -5 Office: Rjoptti, Dumr Rod, Sitmrhi (Bihr), Pi-8 Ph.66-5, Moile:966758, 9969 Wesite: E-mil:

2 STUDY PACKAGE Trget: IIT-JEE (Advced) SUBJECT: MATHEMATICS-XII Chpter Pges Eercises Iverse Trigoometric 7 5 Fuctios Determits d Mtrices 5 Cotiuity & Differetiility 8 Applictios of Derivtive Itegrtio Are Uder Curves 5 7 Differetil Equtios 8

3 STUDY PACKAGE Trget: IIT-JEE (Advced) SUBJECT: MATHEMATICS TOPIC: 8 XII M. Iverse Trigoometric Fuctios Ide:. Key Cocepts. Eercise I to II. Aswer Key. Assertio d Resos 5. Yrs. Que. from IIT-JEE 6. Yrs. Que. from AIEEE

4 . Pricipl Vlues & Domis of Iverse Trigoometric/Circulr Fuctios: Fuctio Domi Rge (i) y si where y (ii) y cos where y (iii) y t where R < y < (iv) y cosec where or y, y (v) y sec where or y ; y (vi) y cot where R < y < NOTE: () st qudrt is commo to the rge of ll the iverse fuctios. () rd qudrt is ot used i iverse fuctios. (c) th qudrt is used i the clockwise directio i.e. y. (d) No iverse fuctio is periodic. (See the grphs o pge 7) Solved Emple # Solutio Fid the vlue of t Let y t t cos t 6 y Self prctice prolems: 6 cos t As. t Fid the vlue of the followigs :.. () si si As. () cosec [sec ( ) cot ( )] As. Solved Emple # Fid domi of si ( ) Solutio. Let y si ( ) For y to e defied ( ) [, ] Self prctice prolems: Fid the domi of followigs : () y sec ( )

5 () y cos (5) y t ( ) Aswers () (, ] [, ] [, ) () R (5) (, ] [, ). Properties of Iverse Trigoometric Fuctios: Property - (A) (i) si (si ), (ii) cos (cos ), (iii) t (t ), R (iv) cot (cot ), R (v) sec (sec ),, (vi) cosec (cosec ),, These fuctios re equl to idetity fuctio i their whole domi which my or my ot e R.(See the grphs o pge 8) Solved Emple # Fid the vlue of cosec cot cot Solutio. Let y cosec cot cot cot (cot ), R cot cot from equtio (i), we get y cosec y As. Self prctice prolems:. Fid the vlue of ech of the followig : (6) cos si si 6...(i) (7) si cos cos Aswers (6) (7) ot defied Property - (B) (i) si (si ), (ii) cos (cos ) ; (iii) t (t ) ; < < (iv) cot (cot ) ; < < (v) sec (sec ) ;, These re equl to idetity fuctio for short itervl of oly. (See the grphs o pge 9-) Solved Emple # Solutio. Fid the vlue of t t Let y t t Note t (t ) if, (vi) cosec (cosec ) ;,

6 , t t, grph of y t (t ) is s : from the grph we c see tht if < <, the y t (t ) c e writte s y y t t y solved Emple # 5 Fid the vlue of si (si7) Solutio. Let y si (si 7) Note : si (si 7) 7 s 7 5 < 7 < grph of y si (si ) is s :, 5 From the grph we c see tht if the y si (si ) c e writte s : y si (si 7) 7 Similrly if we hve to fid si (si( 5)) the < 5 <

7 from the grph of si (si ), we c sy tht si (si( 5)) ( 5) 5 Self prctice prolems: (8) Fid the vlue of cos (cos ) (9) 5 Fid si (si θ), cos (cosθ), t (tθ ), cot (cotθ) for θ, As. (8) (9) si - (siθ) θ ; cos (cos θ ) θ ; t (t θ) θ ; cot (cot θ) θ Property - (C) (i) s i () si, (ii) t () t, R (iii) cos () cos, (iv) cot () cot, R The fuctios si, t d cosec re odd fuctios d rest re either eve or odd. Solved Emple # 6 Solutio. Let Fid the vlue of cos {si( 5)} y cos {si( 5)} cos ( si 5) cos ( ) cos, cos (si 5) cos cos 5 < 5 < grph of cos (cos ) is s :...(i) from the grph we c see tht if the y cos (cos) c e writte s y from the grph cos cos from equtio (i), we get 5 y 5 y 5 Self prctice prolems: As. Fid the vlue of the followig 7 () cos ( cos ) () t t 8 () t cot Aswers. () () 8 5 ()

8 Property - (D) (i) c o s e c si ;, (ii) sec cos ;, (iii) cot t t ; > ; < Solved Emple # 7 Fid the vlue of t cot Solutio Let y t cot cot ( ) cot, R equtio (i) c e writte s y t cot y t cot cot t if >...(i) y t t y Self prctice prolems: Fid the vlue of the followigs () sec Aswers. () Property - (E) cos () cosec () si (i) si cos, (ii) t cot, R (iii) cosec sec, Solved Emple # 8 Fid the vlue of si (cos si ) whe 5 Solutio. Let y si [cos si ] si cos, y si cos cos si cos cos (cos ) 5 y cos cos...(i) 5 cos (cos ) if [, ] 6

9 [, ] 5 cos cos 5 5 y 5. Self prctice prolems: Solve the followig equtios from equtio (i), we get (5) 5 t cot (6) si cos Aswers. (5) (6) Property - (F) (i) si (cos ) cos (si ), (ii) t (cot ) cot (t ), R, (iii) cosec (sec ) sec (cosec ) Solved Emple # 9 Fid the vlue of si t. Solutio. Let y si t Note : To fid y we use si(si ), For this we covert t i si Let θ t, >...(i) tθ d θ, si θ 5 si (si θ) si 5 θ, si (si θ) θ...(ii) equtio (ii) c e writte s : θ si 5 θ t from equtio (i), we get y si si 5 y 5 Solved Emple # Fid the vlue of t cos Solutio. Let y t cos (i) 7 t si 5

10 Let 5 5 cos θ θ, d cos θ equtio (i) ecomes θ y t...(ii) θ t cos θ cos θ ( 5) θ t ± 5...(iii) θ, θ, t θ > from equtio (iii), we get θ t 5 from equtio (ii), we get 5 y As. Solved Emple # Fid the vlue of cos (cos si ) whe 5 Solutio. Let y cos [cos si ] Aliter : Let si cos, y coscos cos cos cos si (cos ) 5 y si cos 5 si (cos ), si cos 5 5 from equtio (i), we get y (i) cos θ cos θ d θ, 5 5 siθ 5 si (si θ) si 5...(ii) 8 θ, si (si θ) θ

11 equtio (ii) c e writte s θ si θ cos 5 5 cos si 5 5 Now equtio (i) c e writte s y si si 5...(iii) [, ] si si 5 5 from equtio (iii), we get y Self prctice prolems: 5 5 Fid the vlue of the followigs : (7) t cosec (9) si cot Aswers : (7) 5 (8) (8) sec cot 6 () t t (9) 5 5. Idetities of Additio d Sustrctio: A. () 5 (i) si si y si y y,, y & ( y ) 7 7 si y y,, y & y > Note tht: y si si y y > < si si y < (ii) cos cos y cos y y,, y (iii) t t y t y, >, y > & y < y t y, >, y > & y > y, >, y > & y Note tht : y < < t t y < ;y > < t t y < B. (i) si si y si y y,, y (ii) cos cos y cos y y,, y, y 9

12 y (iii) t t y t y,, y Note: For < d y < these idetities c e used with the help of properties (C) i.e. chge d y to d y which re positive. Solved Emple # Solutio. 5 8 Show tht si si si >, > d si si si 5 7 Solved Emple # Evlute: Solutio. cos si t > si si Let z cos si t 5 6 si 5 cos 5 z cos cos 5 z cos cos 5 >, > d < t. 6 6 t 6 cos cos cos 5 5 equtio (i) c e writte s 6 6 z cos t z si t si t 65 6 from equtio (ii), we get 6 6 z t t (i) 6 69 cos 65...(ii) z As. Solved Emple #

13 Solutio. Evlute t 9 t >, > d 9 > 5 9 t 9 t t t ( ) Self prctice prolems: 5 t 9 t. 5 6 () Evlute si si si 5 65 () If t t 5 cot λ the fid λ () Prove tht cos Solve the followig equtios () t () t () 6 7 cot cos 6 5 (5) si si Aswers. () C. (i) si (ii) cos ( ) 9 () λ 9 si si ( si ) cos cos if if if if if () 6 (5) > < < (iii) t (iv) si (v) cos (See the grphs o pge ) t t ( t ) t t ( t ) t t if if if if if if if if < < < > > < Solved Emple # 5 Defie y cos ( ) i terms of cos d lso drw its grph. Solutio. Let y cos ( ) Note Domi : [, ] d rge : [, ]

14 Let cos θ θ [, ] d cos θ y cos ( cos θ cos θ ) y cos (cos θ)...(i) Fig.: Grph of cos (cos ) θ [, ] θ [, ] to defie y cos (cos θ), we cosider the grph of cos (cos ) i the itervl [, ]. Now, from the ove grph we c see tht (i) if θ cos (cos θ) θ from equtio (i), we get y θ if θ θ y θ if θ y cos if (ii) if < θ cos (cos θ) θ from equtio (i), we get y θ if < θ y θ if < θ y cos if < (iii) < θ cos (cos θ) θ from equtio (i), we get y θ if < θ y θ if < θ y cos if < from (i), (ii) & (iii), we get cos y cos ( ) cos cos Grph : For y cos ( ) domi : [, ] rge : [, ] (i) if, y cos. ; ; ; < < dy d ( ) /...(i) dy < if d, decresig if, gi if we differetite equtio (i) w.r.t., we get

15 d d y ( ) / d y < if, d cocvity dowwrds if, (ii) if <, y cos. (iii) dy d icresig if, d y () if, the < d dy > if d, d y d d cocvity dowwrds if, d y () if, the > d cocvity upwrds if, dy d y Similrly if < the < d d >. d the grph of y cos ( ) is s ) / ( Self prctice prolems: (6) Defie y si ( ) i terms of si d lso drw its grph. (7) Defie y t Aswers i terms of t d lso drw its grph. (6) y si ( ) si si si ; ; ; < < grph of y si ( )

16 (7) y t t t t ; ; ; < < < < < < D. Fig.: Grph of y t y z yz If t t y t z t y yz z if, >, y >, z > & (y yz z) < NOTE: (i) If t t y t z the y z yz (ii) If t t y t z the y yz z (iii) t t t (iv) t t t

17 Iverse Trigoometric Fuctios Some Useful Grphs. (i) y si,, y y, (ii) y cos,, y [, ] y O O (iii) y t, R, y,, y (iv) y cot, R, y (, ) y O O (v) y sec,, y, U, (vi) y cosec,, y O y, U, y O 5

18 Prt - (A) (i) y si (si ) cos (cos ), [, ], y [, ]; y is periodic y y )5º O (ii) y t (t - ) cot (cot - ), R, y R; y is periodic y )5º O y (iii) y cosec (cosec ) sec (sec ),, y ; y is periodic y y O y 6

19 Prt -(B) (i) y si (si ), R, y,, is periodic with period y y ( ) )5º O y y y y (ii) y cos (cos ), R, y [, ], is periodic with period y y y y y O (iii) y t (t ), R ( ), Ι, y, is periodic with period y y y y O y y (iv) y sec (sec ), y is periodic with period ; R ( ), Ι, y, U, y y y y y O 7

20 (v) y cot (cot ), y is periodic with period ; R {, Ι}, y,, (vi) y cosec (cosec ), y is periodic with period ; R {, Ι}, y, {} 8

21 Prt - (C) (i) g r p h o f y s i (ii) grph of y cos ( ) Note : I this grph it is dvisle ot to check its derivility just y the ispectio of the grph ecuse it is difficult to judge from the grph tht t there is shpr corer or ot. (iii) grph of y t (iv) grph of y si (v) grph of y cos 9

22 KEY CONCEPTS (INVERSE TRIGONOMETRY FUNCTION) GENERAL DEFINITION(S):. si, cos, t etc. deote gles or rel umers whose sie is, whose cosie is d whose tget is, provided tht the swers give re umericlly smllest ville. These re lso writte s rc si, rc cos etc. If there re two gles oe positive & the other egtive hvig sme umericl vlue, the positive gle should e tke.. PRINCIPAL VALUES AND DOMAINS OF INVERSE CIRCULAR FUNCTIONS : (i) y si where ; y d si y. (ii) y cos where ; y d cos y. (iii) y t where R ; < < d t y. (iv) y cosec where or ; y, y d cosec y. (v) y sec where or ; y ; y (vi) y cot where R, < y < d cot y. NOTE THAT : () st qudrt is commo to ll the iverse fuctios. () rd qudrt is ot used i iverse fuctios. d sec y. (c) th qudrt is used i the CLOCKWISE DIRECTION i.e. y.. PROPERTIES OF INVERSE CIRCULAR FUNCTIONS : P (i) si (si ), (ii) cos (cos ), (iii) t (t ), R (iv) si (si ), (v) cos (cos ) ; (vi) t (t ) ; < < P (i) cosec si ;, (ii) sec cos (iii) cot t t ;, ; > ; < P (i) si () si, (ii) t () t, R (iii) cos () cos, (iv) cot () cot, R P (i) si cos (ii) t cot R (iii) cosec sec P5 t t y t y y where >, y > & y <

23 t y y where >, y > & y > t t y t y y where >, y > P6 (i) si si y si y y where, y & ( y ) Note tht : y si si y (ii) si si y si y y where, y & y > Note tht : y > < si si y < (iii) si si y si [ y y ] where >, y > (iv) cos cos y cos [ ] y y where, y P7 If t t y t z t y z y z if, >, y >, z > & y yz z < y y z z Note : (i) If t t y t z the y z yz (ii) If t t y t z the y yz z P8 t si Note very crefully tht : cos t si t if t if > ( t ) if < cos t if t if < t REMEMBER THAT : t t ( t ) if if if < < > (i) si si y si z y z (ii) cos cos y cos z y z (iii) t t t d t t t INVERSE TRIGONOMETRIC FUNCTIONS SOME USEFUL GRAPHS. y si,, y,. y cos,, y [, ]

24 . y t, R, y,. y cot, R, y (, ) 5. y sec,, y,, 6. y cosec,, y,, 7. () y si (si ), R, y,, 7.() y si (si ), Periodic with period [, ], y [, ], y is periodic

25 8. () y cos (cos ), R, y [, ], periodic with period 8. () y cos (cos ), [, ], y [, ], y is periodic 9. () y t (t ), R, y R, y is periodic 9. () y t (t ), R ( ) I periodic with period, y,,. () y cot (cot ),. () y cot (cot ), R { }, y (, ), periodic with R, y R, y is periodic. () y cosec (cosec ),. () y cosec (cosec ), ε R {, ε I }, y y is periodic with period,,, y, y is periodic. () y sec (sec ),. () y sec (sec ), y is periodic with period ; ; y ], y is periodic R ( ) I y,,

26 Q. Fid the followig (i) tcos t EXERCISE (iv) t t (v) cos t Q. Fid the followig : (ii) si si (iii) cos cos 7 6 (i) si si (ii) cos cos 6 (v) sicos Q. Prove tht: 5 () cos cot 6 6 cos 7 5 (vi) t si (vi) t si α t t α 5 cos α 5 cot (iii) t t (iv) cos cos where < α < () cos cos si (c) rc cos rc cos 6 6 (d) Solve the iequlity: (rc sec ) 6(rc sec ) 8 > Q. Fid the domi of defiitio the followig fuctios. ( Red the symols [*] d {*} s gretest itegers d frctiol prt fuctios respectively.) (i) f() rc cos (iii) f () si log ( ) (iv) f() si cos ( { }) log ( ) 5 (ii) cos(si ) si, where {} is the frctiol prt of. 6 5 (v) f () cos log ( ) si ( log ) (vi) f () log ( log 7 ( 5 )) cos 9 si si ( ) (vii) f() e t ( [ ] ) l (viii) f() si(cos ) l ( cos cos ) e cos si si Q.5 Fid the domi d rge of the followig fuctios. (Red the symols [*] d {*} s gretest itegers d frctiol prt fuctios respectively.) (i) f () cot ( ²) (ii) f () sec (log t log t ) 6 5

27 (iii) f() cos (iv) f () t log ( 5 8 ) 5 ( ). Q.6 Fid the solutio set of the equtio, cos si Q.7 Prove tht: () si cos (si ) cos si (cos ), () t (cosec t t cot ) t ( ) (c) t m m pq t t MN p q M N where M mp q, N p mq, q N < ; < d < m p M (d) t (t t y t z) cot (cot cot y cot z) Q.8 Fid the simplest vlue of, rc cos rc cos, Q.9 If cos cos y α the prove tht.y α y cos si α. Q. If rc si rc siy rc siz the prove tht : (, y, z > ) () y y z z yz () y z y z ( y y z z ), Q. If > > c > the fid the vlue of : cot c cot c c cot. c Q. Solve the followig equtios / system of equtios: () si si () t t t (c) t () t () t () t () (d) si 5 cos (e) cos t (f) si si y & cos cos y (g) t cos cos ( >, > ). Q. Let l e the lie y d l e the lie y 8. L is the lie formed y reflectig l cross the lie y d L is the lie formed y reflectig l cross the -is. If θ is the cute gle etwee L d L such tht t θ, where d re coprime the fid ( ). Q. Let y si (si 8) t (t ) cos (cos ) sec (sec 9) cot (cot 6) cosec (cosec 7). If y simplifies to the fid ( ). Q.5 Show tht : si si cos cos t t cot cot

28 Q.6 Let α si 6, β cos d γ t 8, fid (α β γ) d hece prove tht (i) cot α α cot, (ii) t α tβ Q.7 Prove tht : si cot t cos si cosec cot t where (, ] Q.8 If si si y < for ll, y R the prove tht si (t. ty),. y Q.9 Fid ll the positive itegrl solutios of, t cos y si. Q. Let f () cot ( α α) e fuctio defied R, the fid the complete set of rel vlues of α for which f () is oto. EXERCISE Q. Prove tht: () t cos t cos () cos cos cosy cos cosy t y t. t (c) t. t cos cos cos Q. If y t prove tht ² si y. Q. If u cot cosθ t cosθ the prove tht si u t θ. Q. If α rc t & β rc si vlue of α β will e if >. for < <, the prove tht α β, wht the Q.5 If, the epress the fuctio f () si ( ) cos ( ) i the form of cos, where d re rtiol umers. Q.6 Fid the sum of the series: () si si... si... 6 ( ) () t t 9... t... (c) cot 7 cot cot cot... to terms. (d) t t t t (e) t t 8 t 8 t... Q.7 Solve the followig () cot cot (² ) cot ( ) 6 to terms.

29 () sec sec sec sec ;,. (c) t t t 6 β Q.8 Epress cosec t α β α sec t α β s itegrl polyomil i α & β. Q.9 Fid the itegrl vlues of K for which the system of equtios ; K rccos ( rcsi y) ( rcsi y). ( rccos ) 6 possesses solutios & fid those solutios. Q. If the vlue of (k )k(k )(k ) Lim cos is equl to, fid the vlue of k. k k(k ) k Q. If X cosec. t. cos. cot. sec. si & Y sec cot si t cosec cos ; where. Fid the reltio etwee X & Y. Epress them i terms of. Q. Fid ll vlues of k for which there is trigle whose gles hve mesure t, t k, d t k. Q. Prove tht the equtio,(si ) (cos ) α hs o roots for α < d α > 7 8 Q. Solve the followig iequlities : () rc cot 5 rc cot 6 > () rc si > rc cos (c) t (rc si ) > Q.5 Solve the followig system of iequtios rc t 8rc t < & rc cot rc cot > Q.6 Cosider the two equtios i ; cos si (i) si (ii) cos y y T h e s e t s X, X [, ] ; Y, Y I {} re such tht X : the solutio set of equtio (i) X : the solutio set of equtio (ii) Y : the set of ll itegrl vlues of y for which equtio (i) possess solutio Y : the set of ll itegrl vlues of y for which equtio (ii) possess solutio Let : C e the correspodece : X Y such tht C y for X, y Y & (, y) stisfy (i). C e the correspodece : X Y such tht C y for X, y Y & (, y) stisfy (ii). Stte with resos if C & C re fuctios? If yes, stte whether they re ijjective or ito? cos ( si( )) Q.7 Give the fuctios f() e, g() cosec cos & the fuctio h() f() defied oly for those vlues of, which re commo to the domis of the fuctios f() & g(). Clculte the rge of the fuctio h(). Q.8 () If the fuctios f() si their domi & rge. () & g() cos re ideticl fuctios, the compute If the fuctios f() si ( ) & g() si re equl fuctios, the compute the mimum rge of. 7

30 Q.9 Show tht the roots r, s, d t of the cuic ( )( 7), re rel d positive. Also compute the vlue of t (r) t (s) t (t). Q. Solve for : si si <. EXERCISE Q. The umer of rel solutios of t ( ) si is : (A) zero (B) oe (C) two (D) ifiite [JEE '99, (out of )] Q. Usig the pricipl vlues, epress the followig s sigle gle : Q. Solve, si c t t 5 si 65 5 Q. Solve the equtio: cos ( ) cos ( 6 ). [ REE '99, 6 ] si c si, where c, c. [REE (Mis), out of ] Q.5 If si... cos [ REE (Mis), out of ] 6... for < < the equls to [JEE (screeig)] (A) / (B) (C) / (D) Q.6 Prove tht cos t si cot [JEE (mis) 5] Q.7 Domi of f () si () 6 is (A), (B), (C), (D), [JEE (Screeig) ] Q.8 If si( cot ( ) ) cos(t ), the (A) (B) (C) (D) 9 [JEE (Screeig)] 8

31 Q. (i), (ii), (iii) 5, (iv) 6, (v) 5, (vi) 7 6 INVERSE TRIGONOMETRY EXERCISE Q. (d) (, sec ) [, ) Q. (i) / (ii) {, } (iii) < < (iv) (/, /), (v) (/, ] Q. (i), (ii), (iii), (iv), (v) 5, (vi) α (vi) {7/, 5/9} (vii) (, ) {,, } (viii) { 6, I} Q5. (i) D : ε R R : [/, ) Q 6. (ii) D:, I ; R :, (iii) D : R R :, (iv) D : R R :,, Q. () 7 Q 8. Q. () (c),, (e) or (f), y (g) Q. 57 Q. 5 Q 9. ; y & ; y 7 Q. EXERCISE (d) ± 7 Q. Q5. 6 cos 9 9, so 6, Q 6. () () (c) rc cot 5 (d) rc t ( ) rc t (e) Q 7. () ² or () (c) Q 8. (α β ) (α β) Q 9. K ; cos, & cos, Q. 7 Q. X Y Q. k Q. () (cot, ) (, cot ) () F H G, O Q P (c),, Q5. t, cot Q6. C is ijective fuctio, C is my to my correspodece, hece it is ot fuctio Q7. [e /6, e ] Q 8.() D : [, ], R : [, /] () (c) D : [, ], R : [, ] Q.9 Q. (, ) EXERCISE Q. C Q. Q. {,, } Q. Q.5 B Q.7 D Q.8 A 9

32 EXERCISE (Iv. Trigoo.) Prt : (A) Oly oe correct optio. If cos λ cos µ cos v the λµ µv vλ is equl to (A) (B) (C) (D). Rge of f() si t sec is (A), (B), (C), (D) oe of these. The solutio of the equtio si t si 6 is (A) (B) (C) (D) oe of these. The vlue of si [cos{cos (cos) si (si )}], where, is (A) (B) (C) (D) 5. The set of vlues of k for which k si (si ) > for ll rel is (A) { } (B) (, ) (C) R (D) oe of these 6. si (cos(si )) cos (si (cos )) is equl to (A) (B) (C) (D) 7. cos. cos cos holds for (A) (B) R (C) (D) 8. t t, where >, >, >, is equl to (A) t (C) t (B) t (D) t 9. The set of vlues of for which the formul si si ( ) is true, is (A) (, ) (B) [, ] (C), (D),. The set of vlues of for which si ( 5) cos ( 5) hs t lest oe solutio is (A) (, (C) R ] [, ) (B) (, ) (, ) (D) oe of these. All possile vlues of p d q for which cos p cos p cos q holds, is (A) p, q (B) q >, p (C) p, q (D) oe of these. If [cot ] [cos ], where [.] deotes the gretest iteger fuctio, the complete set of vlues of is (A) (cos, ] (B) (cot, cos ) (C) (cot, ] (D) oe of these. The complete solutio set of the iequlity [cot ] 6 [cot ] 9, where [.] deotes gretest iteger fuctio, is (A) (, cot ] (B) [cot, cot ] (C) [cot, ) (D) oe of these. t cos t cos, is equl to (A) (B) (C) (D) siθ 5. If si, the t θ is equl to 5 cosθ (A) / (B) (C) (D)

33 u 6. If u cot t α t t α, the t (A) is equl to t α (B) cot α (C) t α (D) cot α si si 7. The vlue of cot, < <, is: si si (A) (B) (C) (D) 8. The umer of solutio(s) of the equtio, si cos ( ) si ( ), is/re (A) (B) (C) (D) more th 9. The umer of solutios of the equtio t t t is (A) (B) (C) (D). If t t t.... t. t ( ) θ, the θ is equl to (A) (B) (C) (D). If cot >, N, the the mimum vlue of is: 6 (A) (B) 5 (C) 9 (D) oe of these. The umer of rel solutios of (, y) where, y si, y cos (cos ),, is: (A) (B) (C) (D). The vlue of cos cos is equl to 8 (A) / (B) / (C) /6 (D) / Prt : (B) My hve more th oe optios correct. α, β d γ re three gles give y α t ( ), β si si d γ cos. The (A) α > β (B) β > γ (C) α < γ (D) α > γ 5. cos t the (A) 5 (B) 5 (C) si (cos ) 5 (D) t (cos ) 6. For the equtio t ( t ) t (t t ), which of the followig is ivlid? (A) (B) (C) (D), 7. The sum t is equl to: (A) t t (B) t (C) / (D) sec ( ) 8. If the umericl vlue of t (cos (/5) t (/)) is / the (A) (B) (C) (D) 9. If α stisfies the iequtio >, the vlue eists for (A) si α (B) cos α (C) sec α (D) cosec α. If f () cos cos the: (A) f (B) f cos 5 (C) f (D) f cos m

34 . Fid the vlue of the followig : (i) si si EXERCISE 8 (ii) t cos t (iii) si cos si. Solve the equtio : cot t. Solve the equtio : t t. Solve the followig equtios : (i) t t, ( > ) (ii) t t t 5. Fid the vlue of t si cos y y, if > y >. 6. If si ( t ) d y si t the fid the reltio etwee d y. 7. If rc si rc siy rc siz the prove tht:(, y, z > ) (i) y y z z yz (ii) y z y z ( y y z z ) 8. Solve the followig equtios : (i) sec sec sec sec ;,. (ii) si si si (iii) Solve for, if (t ) (cot ) 9. If α t & β si >? 5 8 for < <, the prove tht α β. Wht the vlue of α β will e if. If X cosec t cos cot sec si & Y sec cot si t cosec cos ; where. Fid the reltio etwee X & Y. Epress them i terms of ''.. Solve the followig iequlities: (i) cos > cos (ii) si > cos (iii) t > cot. (iv) si (si 5) >. (v) t (rc si ) > (vi) rccot 5 rccot 6 > (vii) t t. Fid the sum of ech of the followig series : (i) cot cos cot... cot. (ii) t t... t Prove tht the equtio, (si ) (cos ) α hs o roots for α <.. (i) Fid ll positive itegrl solutios of the equtio, t cot y t. (ii) If 'k' e positive iteger, the show tht the equtio: t t y t k hs o ozero itegrl solutio.

35 FUNCTIONS (ASSERTION AND REASON) Some questios (Assertio Reso type) re give elow. Ech questio cotis Sttemet (Assertio) d Sttemet (Reso). Ech questio hs choices (A), (B), (C) d (D) out of which ONLY ONE is correct. So select the correct choice : Choices re : (A) Sttemet is True, Sttemet is True; Sttemet is correct epltio for Sttemet. (B) Sttemet is True, Sttemet is True; Sttemet is NOT correct epltio for Sttemet. (C) Sttemet is True, Sttemet is Flse. (D) Sttemet is Flse, Sttemet is True.. Let f() cos si. Sttemet : f() is ot periodic fuctio. Sttemet : L.C.M. of rtiol d irrtiol does ot eist. Sttemet : If f() d the equtio f() f () is stisfied y every rel vlue of, the R d. Sttemet : If f() d the equtio f() f () is stisfied y every rel vlue of, the d R.. Sttemets-: If f() d F(), the F() f() lwys Sttemets-: At, F() is ot defied.. Sttemet : If f(),,, the the grph of the fuctio y f (f(f()), > is stright Sttemet : f(f()))) lie 5. Let f( ) f( ) d f( ) f( ) Sttemet : f() is periodic with period 6 Sttemet : 6 is ot ecessrily fudmetl period of f() {} 6. Sttemet : Period of the fuctio f() si e does ot eist Sttemet : LCM of rtiol d irrtiol does ot eist 7. Sttemet : Domi of f() is (, ) Sttemet : > for R 8. Sttemet : Rge of f() is [, ] Sttemet : f() is icresig for d decresig for. 9. Let, R, d let f(). Sttemet : f is oe oe fuctio. Sttemet : Rge of f is R {}. Sttemet : si cos () is o periodic fuctio. Sttemet : Lest commo multiple of the periods of si d cos () is irrtiol umer.. Sttemet : The grph of f() is symmetricl out the lie, the, f( ) f( ). Sttemet : eve fuctios re symmetric out the y-is. cos is ()!!!. Sttemet : Period of f() si ( ) Sttemet : Period of cos si is.. Sttemet : Numer of solutios of t( t ) cos equls Sttemet :?. Sttemet : Grph of eve fuctio is symmetricl out y is Sttemet : If f() cos hs ()ve solutio the totl umer of solutio of the ove equtio is. (whe f() is cotiuous eve fuctio).

36 5. If f is polyomil fuctio stisfyig f().f(y) f() f(y) f(y), y R Sttemet-: f() 5 which implies f(5) 6 Sttemet-: If f() is polyomil of degree '' stisfyig f() f(/) f(). f(/), the f() 6. Sttemet-: The rge of the fuctio si - cos - t - is [/, /] Sttemet-: si -, cos - re defied for d t - is defied for ll ''. where is rtiol 7. A fuctio f() is defied s f() where is irrtiol Sttemet- : f() is discotiuous t ll R Sttemet- : I the eighourhood of y rtiol umer there re irrtiol umers d i the vicity of y irrtiol umer there re rtiol umers. 8. Let f() si ( ) cos( ) Sttemet- : f() is periodic fuctio Sttemet-: LCM of two irrtiol umers of two similr kid eists. 9. Sttemets-: The domi of the fuctio f() cos - t - si - is [-, ] Sttemets-: si -, cos - re defied for d t - is defied for ll.. Sttemet- : The period of f() si cos [] cos si [] is / Sttemets-: The period of [] is, where [ ] deotes gretest iteger fuctio.. Sttemets-: If the fuctio f : R R e such tht f() [], where [ ] deotes the gretest iteger less th or equl to, the f - () is equls to [] Sttemets-: Fuctio f is ivertile iff is oe-oe d oto.. Sttemets- : Period of f() si {} t [] were, [ ] & { } deote we G.I.F. & frctiol prt respectively is. Sttemets-: A fuctio f() is sid to e periodic if there eist positive umer T idepedet of such tht f(t ) f(). The smllest such positive vlue of T is clled the period or fudmetl period.. Sttemets-: f() is oe-oe fuctio Sttemets-: is mootoiclly decresig fuctio d every decresig fuctio is oe-oe.. Sttemets-: f() si ( si - cos ) is periodic with fudmetl period / Sttemets-: Whe two or more th two fuctios re give i sutrctio or multiplictio form we tke the L.C.M. of fudmetl periods of ll the fuctios to fid the period. 5. Sttemets-: e l hs oe solutio. Sttemets-: If f() f() f () hve solutio o y. 6. Sttemets-: F() si. G() - H() F(X) G(), is periodic fuctio. Sttemets-: If F() is o-periodic fuctio & g() is o-periodic fuctio the h() f() ± g() will e periodic fuctio., 7. Sttemets-: f () is odd fuctio., < Sttemets-: If y f() is odd fuctio d lies i the domi of f() the f() ; Q 8. Sttemets-: f () is oe to oe d o-mootoic fuctio. C ; Q Sttemets-: Every oe to oe fuctio is mootoic. 5

37 9. Sttemet : Let f : [, ] [5, 6] [, ] [5, 6] defied s, [, ] f () 7, [5, 6] equtio f() f () hs two solutios. Sttemets-: f() f () hs solutios oly o y lie.. Sttemets-: The fuctio p q r s (ps qr ) cot tti the vlue p/r. Sttemets-: The domi of the fuctio g(y) q sy ry p is ll rel ecept /c.. Sttemets-: The period of f() si [] cos [] cos si [] is / Sttemets-: The period of [] is.. Sttemets-: If f is eve fuctio, g is odd fuctio the g (g ) is odd fuctio. the the Sttemets-: If f( ) f() for every of its domi, the f() is clled odd fuctio d if f( ) f() for every of its domi, the f() is clled eve fuctio.. Sttemets-: f : A B d g : B C re two fuctio the (gof) f og. Sttemets-: f : A B d g : B C re ijectios the f & g re lso ijectios.. Sttemets-: The domi of the fuctio f () log si is ( ), N. Sttemets-: Epressio uder eve root should e 5. Sttemets-: The fuctio f : R R give f () log ( ) >, is ivertile. Sttemets-: f is my oe ito. 6. Sttemets-: φ() si (cos ), is oe-oe fuctio. Sttemets-: φ'(), 7. Sttemets-: For the equtio k ( k) k R {} ectly oe root lie i (, ). Sttemets-: If f(k ) f(k ) < (f() is polyomil) the ectly oe root of f() lie i (k, k ). 8. Sttemets-: Domi of f () si is {, } Sttemets-: whe > d whe <. 9. Sttemets-: Rge of f() ( ) is [, ) Sttemets-: If fuctio f() is defied R d for if f() d f() is eve fuctio th rge of f() f() is [, ].. Sttemets-: Period of {}. Sttemets-: Period of []. Sttemets-: Domi of f φ. If f() [] Sttemets-: [] R. Sttemets-: The domi of the fuctio si cos t is [, ] Sttemets-: si, cos re defied for d t is defied for ll ANSWER KEY. A. D. A. C 5. A 6. A 7. A 8. C 9. B. C. A. C. B. A 5. A 6. A 7. A 8. A 9. A. A. D 6 5

38 . A. A. A 5. D 6. C 7. D 8. C 9. C. A. A. A. D. A 5. C 6. A 7. C 8. A 9. A. A. A. A SOLUTIONS. f(f()) f () f(f(f())) f (f ()) 5. f( ) f( )... () f( ) f( )... () i () f( ) f()... () i () f( ) f(8 ) f()... () () d () f( ) f(8 )... (5) Use i (5), we get f() f(6 ) f() is periodic with period 6 Oviously 6 is ot ecessry the fudmetl period. As. C As. A 6. L.C.M. of {, } does ot eist (A) is the correct optio. 7. () Clerly oth re true d sttemet II is correct epltio of Sttemet I. 8. (c) f () f() is icresig for d decresig for. 9. Suppose >. Sttemet II is true s i its cotiuous prt. Also f () lim f () d ( ), which is lwys egtive d hece mootoic lim f (). Moreover lim f () d lim f (). Hece rge of f is R {}. F is oviously oe oe s f( ) f( ). However sttemet II is ot correct resoig for sttemet I Hece () is the correct swer.. Sttemet I is true, s period of si d cos re d respectively whose L.C.M does ot eist. Oviously sttemet II is flse Hece (c) is the correct swer.. Grph of f() is symmetric out the lie if f(- ) f() i.e. if f( ) f( ) Grph of y f() is symmetric out, if f( ) f( ). Hece () is the correct swer. 7 6

39 !. Period of si ( ) ( )! Period of cos ( )!! Period of f() L.C.M of ( )! Ad ()! (!) Now, f() cops si si f() is periodic fuctio with period. Hece (c) is the correct swer.. t( t ), sice t t Oviously cos d meets t ectly two poits (B) is the correct optio.. (A)Sice cos is lso eve fuctio. Therefore solutio of cos f() is lwys sym. lso out y is. 9. () Both A d R re oviously correct.. () f() [] f( ) ([] ) [] So, period of [] is. Let f() si ( []) f si si ( [] ) si ( []) So, period is /. f() f() f is ot oe-oe f - () is ot defied As. (D). Clerly t [] R d period of si {}. As. (A). f() ( ) ( ) f () < ( ) ( ) So f() is mootoiclly decresig & every mootoic fuctio is oe-oe. So is correct.. f() si ( si - cos ) is periodic with period / ecuse f(/ ) si (/ ) ( si (/ ) - cos (/ ) ) si ( ) ( cos - si ) -si ( cos - si ) si ( si - cos ) Sometimes f( r) f() where r is less th the L.C.M. of periods of ll the fuctio, ut ccordig to defiitio of periodicity, period must e lest d positive, so r is the fudmetl period. So f is correct. 7. (D) If f() is odd fuctio, the f() f() D f 8. (C) For oe to oe fuctio if f( ) f( ) for ll, D f > ut f ( ) < f () d > f(5) > f() f() is oe-to-oe ut o-mootoic 8 7

40 9. (C), d, () there re two solutios d they do ot lie o y.. If we tke y p q the q s does ot eist if y p/r r s r p Thus sttemet- is correct d follows from sttemet- (A). f() si( [] f( /) si si ( [] ] si ( [].) i.e., period is /. f() [] f( ) ([] ) [] i.e., period is. (A). (A) Let h() f () g() h( ) f ( ) f () f () h() g( ) g( ) g() h() f g is odd fuctio.. (D) Assertio : f : A B, g : B C re two fuctios the (gof) f og (sice fuctios eed ot posses iverses. Reso : Bijective fuctios re ivertiles.. (A) for f() to e rel log (si ) si º si ( ), N. 5. (C) f is ijective sice y (, y R) log { } log { y y } f() f(y) f is oto ecuse ( ) log y. Sice {} [] { } [ ] [] [] [] Period of []. f() [] [] [] [] > It is imposile or [] So the domi of f is φ ecuse reso [] y y. As (A) As. (A) 9 8

41 STUDY PACKAGE Trget: IIT-JEE (Advced) SUBJECT: MATHEMATICS TOPIC: 9 XII M. Determits d Mtrices Ide:. Key Cocepts. Eercise I to X. Aswer Key. Assertio d Resos 5. Yrs. Que. from IIT-JEE 6. Yrs. Que. from AIEEE

42 . D e fi i t i o : Let us cosider the equtios y, y y we epress this elimit s The symol Determit is clled the determit of order two. DET. & MATRICES/Pge : of 5 Its vlue is give y: D. E p sio of D etermi t : c The symol c is clled the determit of order three. c Its vlue c e foud s: c D c c c c c c c D c c c... & so o. I this mer we c epd determit i 6 wys usig elemets of ; R, R, R or C, C, C.. M i o r s : The mior of give elemet of determit is the determit of the elemets which remi fter deletig the row & the colum i which the give elemet stds. For emple, the mior of i c c c c is & the mior of c is. c c Hece determit of order two will hve miors & determit of order three will hve 9 miors.. Cofctor: Cofctor of the elemet ij is C ij () ij. M ij ; Where i & j deotes the row & colum i which the prticulr elemet lies. Note tht the vlue of determit of order three i terms of Mior & Cofctor c e writte s: D M M M OR D C C C & so o. 5. Trspose of Det ermit: The trspose of determit is determit otied fter iterchgig the rows & colums. c T D c D c c c c 6. Sy mm et ric, Skew-Sym metric, Asy mm et ric D et ermi t s: (i) A determit is symmetric if it is ideticl to its trspose. Its i th row is ideticl to its i th (ii) colum i.e. ij ji for ll vlues of ' A determit is skew-symmetric if i it ' d is ideticl ' j ' to its trspose hvig sig of ech elemet iverted i.e. ij ji for ll vlues of ' i ' d ' j '. A skew-symmetric determit hs ll elemets zero i its pricipl digol. (iii) A determit is symmetric if it is either symmetric or skew-symmetric. 7. Prop erties of Det ermits: (i) The vlue of determit remis ultered, if the rows & colums re iter chged, c i.e. D c D c c c c (ii) If y two rows (or colums) of determit e iterchged, the vlue of determit is chged i sig oly. e.g. c c Let D c & D c The D D. c c NOTE : A skew-symmetric detemit of odd order hs vlue zero. OR

43 DET. & MATRICES/Pge : of 5 (iii) If determit hs ll the elemets zero i y row or colum the its vlue is zero, i.e. D c c. (iv) If determit hs y two rows (or colums) ideticl, the its vlue is zero, i.e. D c c c. (v) If ll the elemets of y row (or colum) e multiplied y the sme umer, the the determit is multiplied y tht umer, i.e. D c c c d D c c Kc K K The D KD (vi) If ech elemet of y row (or colum) c e epressed s sum of two terms the the determit c e epressed s the sum of two determits, i.e. c c z y c c c c c z c y (vii) The vlue of determit is ot ltered y ddig to the elemets of y row (or colum) costt multiple of the correspodig elemets of y other row (or colum), i.e. D c c c d D c c c mc c m m. The D D. Emple : Simplify c c c Solutio. Let R R R R c c c c c ( c) c c Apply C C C, C C C ( c) c c c ( c) (( c) ( ) (c ) ) ( c) ( c c c c ) ( c) ( c c c ) c c Emple : Simplify c c c c Solutio. Give deteremit is equl to c c c c c c c c c c Apply C C C, C C C c c c c

44 DET. & MATRICES/Pge : of 5 ( ) ( c) c c c c c ( ) ( c) [ c c C c c c c] ( ) ( c) [c( c c) ( c c)] ( ) ( c) (c ) ( c c) Use of fctor theorem. USE OF FACTOR THEOREM TO FIND THE VALUE OF DETERMINANT If y puttig the vlue of determit vishes the ( ) is fctor of the determit. Emple : Prove tht c c c c ( ) ( c) (c ) ( c c) y usig fctor theorem. Solutio. Let D c c c c Hece ( ) is fctor of determit Similrly, let c, D c, D Hece, ( ) ( c) (c ) is fctor of determit. But the give determit is of fifth order so c c c c ( ) ( c) (c ) (λ ( c ) µ ( c c)) Sice this is idetity so i order to fid the vlues of λ d µ. Let,, c () (λ µ) (λ µ)....(i) Let,, c ( ) ( ) (5λ µ) 5λ µ...(ii) from (i) d (ii) λ d µ Hece c c c c ( ) ( c) (c ) ( c c). Self Prctice Prolems. Fid the vlue of c c c c. As.. Simplify c c c c c c. As.. Prove tht c c c c c ( c).. Show tht c c c ( ) ( c) (c ) y usig fctor theorem M ultip lic t io Of Two Determi ts: M ultip lic t io Of Two Determi ts: M ultip lic t io Of Two Determi ts: M ultip lic t io Of Two Determi ts: m m m m m m l l l l l l c c c m m m l l l c m c m m c c m c m m c c m c m m c l l l l l l l l l

45 DET. & MATRICES/Pge : 5 of 5 We hve multiplied here rows y rows ut we c lso multiply rows y colums, colums y rows d colums y colums. If ij is deteremit of order, the the vlue of the determit A ij. This is lso kow s power cofctor formul. Emple : Fid the vlue of d prove tht it is equl to 6 8. Solutio. ) ( Emple : Prove tht y y y y y y y y y Solutio. Give determit c e splitted ito product of two determits i.e. y y y y y y y y y c c c y y y Emple : Prove tht ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ). Solutio. ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) Emple : Prove tht R) cos(c Q) cos(c P) cos(c R) cos(b Q) cos(b P) cos(b R) cos(a Q) cos(a P) cos(a Solutio. R) cos(c Q) cos(c P) cos(c R) cos(b Q) cos(b P) cos(b R) cos(a Q) cos(a P) cos(a sicsir cosccosr sicsiq cosccosq sicsip cosccosp sib sir cosbcosr sib siq cosbcosq sib sip cosbcosp sia sir cosacosr sia siq cosacosq sia sip cosacosp sic cosc sib cosb sia cosa sir siq sip cosr cosq cosp. 5

46 DET. & MATRICES/Pge : 6 of 5 Self Prctice Prolems. Fid the vlue of c c c c c As. (c c ). If A, B, C re rel umers the fid the vlue of C) cos(b C) cos(a B) cos(c B) cos(a A) cos(c A) cos(b. As Su mm tio of D et erm i ts Su mm tio of D et erm i ts Su mm tio of D et erm i ts Su mm tio of D et erm i ts Let (r) h(r) g(r) f(r) where,,,,, re costts idepedet of r, the r r) ( r r r h(r) g(r) (r) f Here fuctio of r c e the elemets of oly oe row or colum. Noe of the elemets other the tht row or colum should e depedet o r. If more th oe colum or row hve elemets depedet o r the first epd the determit d the fid the summtio. Emple : Evlute r y cos r r C r θ Solutio : r r D y cos ) (r r r r C r r θ y cos θ Emple : D r C C C r r r evlute r D r Solutio : r r D r C C C r r r C... C C C... C C C... C C C C C 6

47 ( ) r Emple : If r r r, fid r r r Solutio. O epsio of determiet, we get D r (r ) ( r) 7 r r 8r r ( ) Self Prctice Prolem. r 6 Evlute D r (r ) y r (r ) z. Iteg rtio of determ it r As. DET. & MATRICES/Pge : 7 of 5 f() g() h() Let () c c where,, c,,, c re costts idepedet of. Hece ( ) d f() d g() d h() d c c Note : If more th oe row or oe colum re fuctio of the first epd the determit d the itegrte it. cos Emple : If f() cos, the fid / f() d cos Solutio. Here f() cos ( cos ) cos cos cos cos Emple : If / so cos d α 6 si / β γ, the fid () d Solutio. ( ) d α 6 d β d γ d 6. Differe tit io of D et ermi t: f () f () f () Let () g () h () g h α () () g h β () () γ α 6 6 β γ 7

48 f () f () f () the () g() g() g() h () h () h () Emple : If f() Solutio. f () Emple : 6 6 f() f() f() g () g () g () h () h () h (), the fid the vlue of f (). f () g() h () f () g() h () f () g() h () f () f (). Let α e repeted root of qudrtic equtio f() d A(), B() d C() e polyomil of degree, d 5 respectively, the show tht A() B() C() A( α) A ( α) Solutio. Let g() B( α) B ( α) A() A( α) A ( α) A () C( α) C ( α) B() B( α) B ( α) B () g () A( α) B( α) A ( α) B ( α) Sice g(α) g (α) C() C( α) C ( α) C () C( α) C ( α) divisile y f(). g() ( α) h() i.e. α is the repeted root of g() d h() is y polyomil epressio of degree. Also f() hve repeted root α. So g() is divisile y f(). Emple : Prove tht F depeds oly o, d F DET. & MATRICES/Pge : 8 of 5 Solutio : d simplify F. df d Hece F is idepedet of. Emple : Solutio : df df Similrly. d d Hece F is idepedet of d lso. So F is depedet oly o,, Put,, F ( ) ( ) ( ). e si If cos l( ) Put i e si cos l( ) A B C..., the fid the vlue of A d B. A B C... 8

49 A A. Differetitig the give determit w.r.t, we get e cos cos l( ) Put, we get B A, B Self Prctice Prolem si si B C... e. If c d. Fid (i) d As. [ ] (ii) c d As. [ 5]. (iii) As. [ ] Crmer's s Rule: System of Lier Eq utios (i) Two Vriles () () Cosistet Equtios: Defiite & uique solutio. [ itersectig lies ] Icosistet Equtio: No solutio. [ Prllel lie ] (c) Depedet equtio: Ifiite solutios. [ Ideticl lies ] Let y c & y c the: c c Give equtios re icosistet & (ii) c Give equtios re depedet c Three Vriles DET. & MATRICES/Pge : 9 of 5 Let, y c z d... (I) y c z d... (II) y c z d... (III) The, D, Y D, Z D. D D D (iii) () () (c) c d c Where D c d ; D c ; D d c & D d c d c d c d Cosistecy of system of Equtios If D d ltest oe of D, D, D, the the give system of equtios re cosistet d hve uique o trivil solutio. If D & D D D, the the give system of equtios re cosistet d hve trivil solutio oly. If D D D D, the the give system of equtios hve either ifiite solutios or o solutio. d c d (d) (e) (Refer Emple & Self Prctice Prolem with*) If D ut tlest oe of D, D, D is ot zero the the equtios re icosistet d hve o solutio. If give system of lier equtios hve Oly Zero Solutio for ll its vriles the the give equtios re sid to hve TRIVIAL SOLUTION. (iv) Three equtio i two vriles : If d y re ot zero, the coditio for y c ; y c & c y c to e cosistet i d y is 9 c c.

50 Emple: Solutio. Let D Fid the ture of solutio for the give system of equtios. y z y z y 5z 5 pply C C C, C C C D Now, D 5 D 5 DET. & MATRICES/Pge : of 5 *Emple : C C C D R R R, R R R D 5 D But D Hece o solutio Solve the followig system of equtios y z y z y z Solutio. D D, D, D Let z t y t y t Sice oth the lies re prllel hece o vlue of d y Hece there is o solutio of the give equtio. *Emple : Solve the followig system of equtios y z y z y z 6 Solutio. D D, D, D All the cofctors of D, D, D d D re ll zeros, hece the system will hve ifiite solutios. Let z t, y t t t where t, t R. Emple : Cosider the followig system of equtios y z 6 y z y λz µ Fid vlues of λ d µ if such tht sets of equtio hve (i) uique solutio (ii) ifiite solutio (iii) o solutio Solutio. y z 6 y z y λz µ D λ Here for λ secod d third rows re ideticl hece D for λ.

51 D D 6 µ 6 µ λ λ 6 D µ If λ the D D D for µ (i) For uique solutio D i.e. λ (ii) For ifiite solutios D λ D D D µ. (iii) For o solutio D λ Atlest oe of D, D or D is o zero µ. Self Prctice Prolems *. Solve the followig system of equtios y z y z y 5z As. t y t z t where t R. Solve the followig system of equtios y z y z y z As., y, z. Solve: ( c) (y z) c, (c ) (z ) y c, ( ) ( y) cz where c. As. c c, y c c, z c. Let y ; 5y 6, 6y 5y 8 y t, if the system of equtios i d y re cosistet the fid the vlue of t. As. t 7. Ap plic tio of Det ermit s: Followig emples of short hd writig lrge epressios re: (i) Are of trigle whose vertices re ( r, y r ); r,, is: y (ii) D y y If D the the three poits re collier. Equtio of stright lie pssig through (, y ) & (, y ) is (iii) The lies: y c... () y c... () y c... () c (iv) re cocurret if, c. y y y c Coditio for the cosistecy of three simulteous lier equtios i vriles. ² hy y² g fy c represets pir of stright lies if: h g c fgh f² g² ch² h g f f c DET. & MATRICES/Pge : of 5

52 Mtrices Ay rectgulr rrgemet of umers (rel or comple) (or of rel vlued or comple vlued epressios) is clled mtri. If mtri hs m rows d colums the the order of mtri is sid to e m y (deoted s m ). The geerl m mtri is... j j A i i i... ij... i m m m... mj... m where ij deote the elemet of i th row & j th colum. The ove mtri is usully deoted s [ ij ] m. Note : (i) The elemets,,,... re clled s digol elemets. Their sum is clled s trce of A deoted s T r (A) (ii) Cpitl letters of Eglish lphets re used to deote mtri.. Bsic Defiitios (i) Row mtri : A mtri hvig oly oe row is clled s row mtri (or row vector). Geerl form of row mtri is A [,,,..., ] (ii) Colum mtri : A mtri hvig oly oe colum is clled s colum mtri. (or colum vector) Colum mtri is i the form A... m (iii) Squ re m tri : A m tri i whi c h um er of rows & colums re equl is clled squre mtri. Geerl form of squre mtri is... A which we deote s A [ ij ]. (iv) Zero mtri : A [ ij ] m is clled zero mtri, if ij i & j. (v) Upper trigulr mtri : A [ ij ] m is sid to e upper trigulr, if ij for i > j (i.e., ll the elemets elow the digol elemets re zero). (vi) Lower trigulr mtri : A [ ij ] m is sid to e lower trigulr mtri, if ij for i < j. (i.e., ll the elemets ove the digol elemets re zero.) (vii) Digol mtri : A squre mtri [ ij ] is sid to e digol mtri if ij for i j. (i.e., ll the elemets of the squre mtri other th digol elemets re zero) (viii) Note : Digol mtri of order is deoted s Dig (,,... ). Sclr mtri :Sclr mtri is digol mtri i which ll the digol elemets re sme A [ ij ] is sclr mtri, if (i) ij for i j d (ii) ij k for i j. (i) Uit mtri (Idetity mtri) : Uit mtri is digol mtri i which ll the digol elemets re uity. Uit mtri of order '' is deoted y Ι (or Ι). i.e. A [ ij ] is uit mtri whe ij for i j & ii eg. Ι, Ι. () Comprle mtrices : Two mtrices A & B re sid to e comprle, if they hve the sme order (i.e., umer of rows of A & B re sme d lso the umer of colums). (i) Equlity of mtrices : Two mtrices A d B re sid to e equl if they re comprle d ll the correspodig elemets re equl. Let A [ ij ] m & B [ ij ] p q A B iff (i) m p, q (ii) ij ij i & j. (ii) Multiplictio of mtri y sclr : Let λ e sclr (rel or comple umer) & A [ ij ] m e mtri. Thus the product λa is defied s λa [ ij ] m where ij λ ij i & j. Note : If A is sclr mtri, the A λι, where λ is the digol elemet. (iii) Additio of mtrices : Let A d B e two mtrices of sme order (i.e. comprle mtrices). DET. & MATRICES/Pge : of 5

53 (iv) The A B is defied to e. A B [ ij ] m [ ij ] m. [c ij ] m where c ij ij ij i & j. Sustrctio of mtrices : Let A & B e two mtrices of sme order. The A B is defied s A B where B is ( ) B. (v) Properties of dditio & sclr multiplictio : Cosider ll mtrices of order m, whose elemets re from set F (F deote Q, R or C). Let M m (F) deote the set of ll such mtrices. The () A M m (F) & B M m (F) A B M m (F) (vi) () A B B A (c) (A B) C A (B C) (d) O [o] m is the dditive idetity. (e) For every A M m (F), A is the dditive iverse. (f) λ (A B) λa λb (g) λa Aλ (h) (λ λ ) A λ A λ A Multiplictio of mtrices : Let A d B e two mtrices such tht the umer of colums of A is sme s umer of rows of B. i.e., A [ ij ] m p & B [ ij ] p. The AB [c ij ] m where c ij colum vector of B. p ik kj k, which is the dot product of i th row vector of A d j th DET. & MATRICES/Pge : of 5 Note - : The product AB is defied iff umer of colums of A equls umer of rows of B. A is clled s premultiplier & B is clled s post multiplier. AB is defied / BA is defied. Note - : I geerl AB BA, eve whe oth the products re defied. Note - : A (BC) (AB) C, wheever it is defied. (vii) Properties of mtri multiplictio : Cosider ll squre mtrices of order ''. Let M (F) deote the set of ll squre mtrices of order. (where F is Q, R or C). The () A, B M (F) AB M (F) () I geerl AB BA (c) (AB) C A(BC) (d) Ι, the idetity mtri of order, is the multiplictive idetity. AΙ A Ι A A M (F) (e) For every o sigulr mtri A (i.e., A ) of M (F) there eist uique (prticulr) mtri B M (F) so tht AB Ι BA. I this cse we sy tht A & B re multiplictive iverse of oe other. I ottios, we write B A or A B. (f) If λ is sclr (λa) B λ(ab) A(λB). (g) A(B C) AB AC A, B, C M (F) (h) (A B) C AC BC A, B, C M (F). Note : (i) Let A [ ij ] m. The AΙ A & Ι m A A, where Ι & Ι m re idetity mtrices of order & m respectively. (ii) For squre mtri A, A deotes AA, A deotes AAA etc. Solved Emple # Solutio. Let A siθ / cosθ / / cosθ & B cosθ tθ cosθ siθ cosθ. Fid θ so tht A B. By defiitio A & B re equl if they hve the sme order d ll the correspodig elemets re equl. Thus we hve si θ, cosθ & t θ θ ( ). Solved Emple # f() is qudrtic epressio such tht f() f() for three uequl umers,, c. Fid f(). c c f( ) c Solutio. The give mtri equtio implies f() f() f( ) f() f() f( ) c f() cf() f( ) c f() f() f( ) for three uequl umers,, c...(i)

54 (i) is idetity f(), f() & f( ) &. f() ( ) & f(). Self Prctice Prolems : cos θ siθ. If A(θ), vrify tht A(α) A(β) A(α β). siθ cos θ Hece show tht i this cse A(α). A(β) A(β). A(α). 6. Let A, B d C [ ]. 5 The which of the products ABC, ACB, BAC, BCA, CAB, CBA re defied. Clculte the product whichever is defied. As. oly CAB is defied. CAB [5 ]. Trspose of Mtri DET. & MATRICES/Pge : of 5 Let A [ ij ] m. The the trspose of A is deoted y A ( or A T ) d is defied s A [ ij ] m where ij ji i & j. i.e. A is otied y rewritig ll the rows of A s colums (or y rewritig ll the colums of A s rows). (i) For y mtri A [ ij ] m, (A ) A (ii) Let λ e sclr & A e mtri. The (λa) λa (iii) (A B) A B & (A B) A B for two comprle mtrices A d B. (iv) (A ± A ±... ± A ) A ± A ±... ± A, where A i re comprle. (v) Let A [ ij ] m p & B [ ij ] p, the (AB) B A (vi) (A A...A ) A. A...A. A, provided the product is defied. (vii) Symmetric & skew symmetric mtri : A squre mtri A is sid to e symmetric if A A i.e. Let A [ ij ]. A is symmetric iff ij ji i & j. A squre mtri A is sid to e skew symmetric if A A i.e. Let A [ ij ]. A is skew symmetric iff ij ji i & j. h g e.g. A h f is symmetric mtri. g f c o y B o z is skew symmetric mtri. y z Note- I skew symmetric mtri ll the digol elemets re zero. ( ii ii ii ) Note- For y squre mtri A, A A is symmetric & A A is skew symmetric. Note- Every squre mtri c e uiquly epressed s sum of two squre mtrices of which oe is symmetric d other is skew symmetric. A B C, where B (A A ) & C (A A ). Solved Emple # Show tht BAB is symmetric or skew symmetric ccordig s A is symmetric or skew symmetric (where B is y squre mtri whose order is sme s tht of A). Solutio. Cse - Ι A is symmetric A A (BAB ) (B ) A B BAB BAB is symmetric. Cse - ΙΙ A is skew symmetric (BAB ) (B ) A B A A B ( A) B Self Prctice Prolems : (BAB ) BAB is skew symmetric. For y squre mtri A, show tht A A & AA re symmetric mtrices.. If A & B re symmetric mtrices of sme order, th show tht AB BA is symmetric d AB BA is skew symmetric.. Sumtri, Miors, Cofctors & Determit of Mtri (i) of Sumtri : Let A e give mtri. The mtri otied y deletig some rows or colums A is clled s sumtri of A. eg. c d A y z w p q r s The c c d z,, p r p q s y z re ll sumtrices of A. p q r

55 (ii) Determit of squre mtri : Let A [] e mtri. Determit A is defied s A. e.g. A [ ] A Let A, the A is defied s d c. c d 5 e.g. A, A (iii) Miors & Cofctors : Let A [ ij ] e squre mtri. The mior of elemet ij, deoted y M ij is defied s the determit of the sumtri otied y deletig i th row & j th colum of A. Cofctor of elemet ij, deoted y C ij (or A ij ) is defied s C ij ( ) i j M ij. e.g. A c d M d C M c, C c M, C M C c e.g. A p q r y z q r M qz yr C y z. M y y, C (y ) y etc. DET. & MATRICES/Pge : 5 of 5 (iv) Determit of y order : Let A [ ij ] e squre mtri ( > ). Determit of A is defied s the sum of products of elemets of y oe row (or y oe colum) with correspodig cofctors. e.g. A A C C C (usig first row). A C C C (usig secod colum).. (v) Some properties of determit () A A for y squre mtri A. () If two rows re ideticl (or two colums re ideticl) the A. (c) (d) (e) Let λ e sclr. Th λ A is otied y multiplyig y oe row (or y oe colum) of A y λ Note : λa λ A, whe A [ ij ]. Let A [ ij ]. The sum of the products of elemets of y row with correspodig cofctors of y other row is zero. (Similrly the sum of the products of elemets of y colum with correspodig cofctors of y other colum is zero). If A d B re two squre mtrices of sme order, the AB A B. Note : As A A, we hve A B AB (row - row method) A B A B (colum - colum method) A B A B (colum - row method) (vi) (vii) Sigulr & o sigulr mtri : A squre mtri A is sid to e sigulr or o sigulr ccordig s A is zero or o zero respectively. Cofctor mtri & djoit mtri :Let A [ ij ] e squre mtri. The mtri otied y replcig ech elemet of A y correspodig cofctor is clled s cofctor mtri of A, deoted s cofctor A. The trspose of cofctor mtri of A is clled s djoit of A, deoted s dj A. 5

56 i.e. if A [ ij ] the cofctor A [c ij ] whe c ij is the cofctor of ij i & j. Adj A [d ij ] where d ij c ji i & j. (viii) Properties of cofctor A d dj A: () A. dj A A Ι (dj A) A where A [ ij ]. () dj A A, where is order of A. I prticulr, for mtri, dj A A (c) If A is symmetric mtri, the dj A re lso symmetric mtrices. (d) If A is sigulr, the dj A is lso sigulr. (i) Remrks : Iverse of mtri (reciprocl mtri) : Let A e o sigulr mtri. The the mtri dj A is the multiplictive iverse of A (we cll it iverse of A) d is deoted y A A. We hve A (dj A) A Ι (dj A) A A dja Ι A dja A, for A is o sigulr A A dj A. A DET. & MATRICES/Pge : 6 of 5. The ecessry d sufficiet coditio for eistece of iverse of A is tht A is o sigulr.. A is lwys o sigulr.. If A di (,,..., ) where ii i, the A dig (,,..., ).. (A ) (A ) for y o sigulr mtri A. Also dj (A ) (dj A). 5. (A ) A if A is o sigulr. 6. Let k e o zero sclr & A e o sigulr mtri. The (ka) k A. 7. A A for A. 8. Let A e osigulr mtri. The AB AC B C & BA CA B C. 9. A is o-sigulr d symmetric A is symmetric.. I geerl AB does ot imply A or B. But if A is o sigulr d AB, the B. Similrly B is o sigulr d AB A. Therefore, AB either oth re sigulr or oe of them is. Solved Emple # For skew symmetric mtri A, show tht dj A is symmetric mtri. Solutio. A c c dj A (cof A) c c c c c c c cof A c c c which is symmetric. Solved Emple # 5 For two osigulr mtrices A & B, show tht dj (AB) (dj B) (dj A) Solutio. We hve (AB) (dj (AB)) AB Ι A B Ι A (AB)(dj (AB)) A B A B dj (AB) B dj A ( A B B dj (AB) B B dj A dj (AB) (djb) (dj A) A dj A) 6

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1 NOD6 (\Dt\04\Kot\J-Advced\SMP\Mths\Uit#0\NG\Prt-\0.Determits\0.Theory.p65. INTRODUCTION : If the equtios x + b 0, x + b 0 re stisfied by the sme vlue of x, the b b 0. The expressio b b is clled determit

More information

Objective Mathematics

Objective Mathematics . o o o o {cos 4 cos 9 si cos 65 } si 7º () cos 6º si 8º. If x R oe of these, the mximum vlue of the expressio si x si x.cos x c cos x ( c) is : () c c c c c c. If ( cos )cos cos ; 0, the vlue of 4. The

More information

The total number of permutations of S is n!. We denote the set of all permutations of S by

The total number of permutations of S is n!. We denote the set of all permutations of S by DETERMINNTS. DEFINITIONS Def: Let S {,,, } e the set of itegers from to, rrged i scedig order. rerrgemet jjj j of the elemets of S is clled permuttio of S. S. The totl umer of permuttios of S is!. We deote

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006 Sttistics for Ficil Egieerig Sessio : Lier Algebr Review rch 8 th, 6 Topics Itroductio to trices trix opertios Determits d Crmer s rule Eigevlues d Eigevectors Quiz The cotet of Sessio my be fmilir to

More information

Elementary Linear Algebra

Elementary Linear Algebra Elemetry Lier Alger Ato & Rorres, th Editio Lecture Set Chpter : Systems of Lier Equtios & Mtrices Chpter Cotets Itroductio to System of Lier Equtios Gussi Elimitio Mtrices d Mtri Opertios Iverses; Rules

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning Hdout # Title: FAE Course: Eco 8/ Sprig/5 Istructor: Dr I-Mig Chiu Itroductio to Mtrix: Mtrix opertios & Geometric meig Mtrix: rectgulr rry of umers eclosed i pretheses or squre rckets It is covetiolly

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information

For all Engineering Entrance Examinations held across India. Mathematics

For all Engineering Entrance Examinations held across India. Mathematics For ll Egieerig Etrce Exmitios held cross Idi. JEE Mi Mthemtics Sliet Fetures Exhustive coverge of MCQs subtopic wise. 95 MCQs icludig questios from vrious competitive exms. Precise theory for every topic.

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Lesson 4 Linear Algebra

Lesson 4 Linear Algebra Lesso Lier Algebr A fmily of vectors is lierly idepedet if oe of them c be writte s lier combitio of fiitely my other vectors i the collectio. Cosider m lierly idepedet equtios i ukows:, +, +... +, +,

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM Bsic Mths Fiorell Sgllri Uiversity of Bolog, Itly Fculty of Egieerig Deprtmet of Mthemtics - CIRM Mtrices Specil mtrices Lier mps Trce Determits Rk Rge Null spce Sclr products Norms Mtri orms Positive

More information

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER

Westchester Community College Elementary Algebra Study Guide for the ACCUPLACER Westchester Commuity College Elemetry Alger Study Guide for the ACCUPLACER Courtesy of Aims Commuity College The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and

Section 7.3, Systems of Linear Algebraic Equations; Linear Independence, Eigenvalues, Eigenvectors (the variable vector of the system) and Sec. 7., Boyce & DiPrim, p. Sectio 7., Systems of Lier Algeric Equtios; Lier Idepedece, Eigevlues, Eigevectors I. Systems of Lier Algeric Equtios.. We c represet the system...... usig mtrices d vectors

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Lecture 2: Matrix Algebra

Lecture 2: Matrix Algebra Lecture 2: Mtrix lgebr Geerl. mtrix, for our purpose, is rectgulr rry of objects or elemets. We will tke these elemets s beig rel umbers d idicte elemet by its row d colum positio. mtrix is the ordered

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory SMH Uit Polyomils, Epoets, Rdicls & Comple Numbers Notes.1 Number Theory .1 Addig, Subtrctig, d Multiplyig Polyomils Notes Moomil: A epressio tht is umber, vrible, or umbers d vribles multiplied together.

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation Algorithm Desig d Alsis Victor Admchi CS 5-45 Sprig 4 Lecture 3 J 7, 4 Cregie Mello Uiversit Outlie Fst Fourier Trsform ) Legedre s Iterpoltio ) Vdermode Mtri 3) Roots of Uit 4) Polomil Evlutio Guss (777

More information

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Assessment Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Assessmet Ceter Elemetr Alger Stud Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetr Alger test. Reviewig these smples will give

More information

Dynamics of Structures

Dynamics of Structures UNION Dymis of Strutures Prt Zbigiew Wójii Je Grosel Projet o-fied by Europe Uio withi Europe Soil Fud UNION Mtries Defiitio of mtri mtri is set of umbers or lgebri epressios rrged i retgulr form with

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: APPENDEX I. THE RAW ALGEBRA IN STATISTICS A I-1. THE INEQUALITY Exmple A I-1.1. Solve ech iequlity. Write the solutio i the itervl ottio..) 2 p - 6 p -8.) 2x- 3 < 5 Solutio:.). - 4 p -8 p³ 2 or pî[2, +

More information

Lesson-2 PROGRESSIONS AND SERIES

Lesson-2 PROGRESSIONS AND SERIES Lesso- PROGRESSIONS AND SERIES Arithmetic Progressio: A sequece of terms is sid to be i rithmetic progressio (A.P) whe the differece betwee y term d its preceedig term is fixed costt. This costt is clled

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT) Studet Success Ceter Elemetry Algebr Study Guide for the ACCUPLACER (CPT) The followig smple questios re similr to the formt d cotet of questios o the Accuplcer Elemetry Algebr test. Reviewig these smples

More information

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range.

(1) Functions A relationship between two variables that assigns to each element in the domain exactly one element in the range. -. ALGEBRA () Fuctios A reltioship etwee two vriles tht ssigs to ech elemet i the domi ectly oe elemet i the rge. () Fctorig Aother ottio for fuctio of is f e.g. Domi: The domi of fuctio Rge: The rge of

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

denominator, think trig! Memorize the following two formulas; you will use them often!

denominator, think trig! Memorize the following two formulas; you will use them often! 7. Bsic Itegrtio Rules Some itegrls re esier to evlute th others. The three problems give i Emple, for istce, hve very similr itegrds. I fct, they oly differ by the power of i the umertor. Eve smll chges

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii)

RULES FOR MANIPULATING SURDS b. This is the addition law of surds with the same radicals. (ii) SURDS Defiitio : Ay umer which c e expressed s quotiet m of two itegers ( 0 ), is clled rtiol umer. Ay rel umer which is ot rtiol is clled irrtiol. Irrtiol umers which re i the form of roots re clled surds.

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

M.A. (ECONOMICS) PART-I PAPER - III BASIC QUANTITATIVE METHODS

M.A. (ECONOMICS) PART-I PAPER - III BASIC QUANTITATIVE METHODS M.A. (ECONOMICS) PART-I BASIC QUANTITATIVE METHODS LESSON NO. 9 AUTHOR : SH. C.S. AGGARWAL MATRICES Mtrix lger eles oe to solve or hdle lrge system of simulteous equtios. Mtrices provide compct wy of writig

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms

Unit 1 Chapter-3 Partial Fractions, Algebraic Relationships, Surds, Indices, Logarithms Uit Chpter- Prtil Frctios, Algeric Reltioships, Surds, Idices, Logriths. Prtil Frctios: A frctio of the for 7 where the degree of the uertor is less th the degree of the deoitor is referred to s proper

More information

Advanced Algorithmic Problem Solving Le 6 Math and Search

Advanced Algorithmic Problem Solving Le 6 Math and Search Advced Algorithmic Prolem Solvig Le Mth d Serch Fredrik Heitz Dept of Computer d Iformtio Sciece Liköpig Uiversity Outlie Arithmetic (l. d.) Solvig lier equtio systems (l. d.) Chiese remider theorem (l.5

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Synopsis Grade 12 Math Part II

Synopsis Grade 12 Math Part II Syopsis Grde 1 Mth Prt II Chpter 7: Itegrls d Itegrtio is the iverse process of differetitio. If f ( ) g ( ), the we c write g( ) = f () + C. This is clled the geerl or the idefiite itegrl d C is clled

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Math 3B Midterm Review

Math 3B Midterm Review Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 643u Office Hours: R 11:00 m - 1:00 pm Lst updted /15/015 Here re some short otes o Sectios 7.1-7.8 i your ebook. The best idictio of wht

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

ECE 102 Engineering Computation

ECE 102 Engineering Computation ECE Egieerig Computtio Phillip Wog Mth Review Vetor Bsis Mtri Bsis System of Lier Equtios Summtio Symol is the symol for summtio. Emple: N k N... 9 k k k k k the, If e e e f e f k Vetor Bsis A vetor is

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Interpolation. 1. What is interpolation?

Interpolation. 1. What is interpolation? Iterpoltio. Wht is iterpoltio? A uctio is ote give ol t discrete poits such s:.... How does oe id the vlue o t other vlue o? Well cotiuous uctio m e used to represet the + dt vlues with pssig through the

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information