( t) Cox regression part 2. Outline: Recapitulation. Estimation of cumulative hazards and survival probabilites. Ørnulf Borgan

Size: px
Start display at page:

Download "( t) Cox regression part 2. Outline: Recapitulation. Estimation of cumulative hazards and survival probabilites. Ørnulf Borgan"

Transcription

1 Outline: Cox regression part 2 Ørnulf Borgan Department of Mathematics University of Oslo Recapitulation Estimation of cumulative hazards and survival probabilites Assumptions for Cox regression and check of model assumptions NORBIS course University of Oslo 4-8 December Recapitulation Assume that we have a sample of n individuals, and let N i (t) count the observed occurrences of the event of interest for individual i as a function of (study) time t We have the decomposition dn ( t) = λ ( t) dt + dm ( t) i i i observation signal noise he intensity process for individual i may be given as λ i ( t) = Yi ( t) α( t xi ) at risk indicator hazard rate (intensity) (time-dependency of covariates suppressed in the notation) Assume that the hazard rate for individual i takes the form α ( t x ) = α ) (, x ( t)) i ( t rβ i he common choice of relative risk function is ( ) ( β1 1 β ) r( β, x ( t)) = exp β x ( t) = exp x ( t) + + x ( t) i i i p ip which gives Cox's regression model e β j baseline hazard hazard ratio (relative risk) is the hazard ratio (HR), often called relative risk, for one unit's increase in the j-th covariate, keeping all other covariates the same 4

2 Partial likelihood and estimation of β Ordinary ML-estimation does not work for the relative risk regression models (due to the nonparametric baseline) Instead we have to use Cox's partial likelihood Cumulative hazards and survival probabilities We will estimate the cumulative baseline hazard A t t ( ) ( ) = α We take the aggregated counting process as our starting point. u du Its intensity process is given by Here i j is the index of the individual who experiences an event at j, and is the risk set at j If we had knownβ, we could have repeated the argument we used to derive the Nelson-Aalen estimator to show that we could estimate A ( t) by 5 6 Since is unknown, we replace it by to obtain the Breslow estimator: he corresponding survival function is given by { } = exp A( t x ) and it may be estimated by If all covariates are fixed, the cumulative hazard corresponding to an individual with covariate vector and it may be estimated by x is 7 Alternatively we may use (as is done in R): { A ˆ t x } Sɶ ( t x ) = exp ( ) For practical purposes there is little difference between the two estimators he estimators of the cumulative hazards and survival functions are approximately normal and their variances may be estimated as described in section in ABG 8

3 Melanoma data We first compare Nelson-Aalen estimates (black lines) with the cumulative hazards obtained from a Cox model with sex as only covariate (red lines) Cumulative hazard Females Males Using R he results on the previous slide are obtained by the following commands: # We consider a model with sex as the only covariate and start by # making Nelson-Aalen plots for females and males: fit.ss=coxph(surv(lifetime,status==1)~strata(sex),data=melanoma) surv.ss=survfit(fit.ss) plot(surv.ss,fun="cumhaz", mark.time=false,xlim=c(,1),ylim=c(,.7), xlab="years since operation",ylab="cumulative hazard",lty=c(1,3),lwd=2) legend("topleft",c("females","males"),lty=c(1,3),lwd=2) # We then fit a Cox model with sex as the only covariate and plot # the model based estmates of the cumulative hazards in the same plot: fit.s=coxph(surv(lifetime,status==1)~factor(sex),data=melanoma) surv.s=survfit(fit.s,newdata=data.frame(sex=c(1,2))) lines(surv.s,fun="cumhaz", mark.time=f, lty=c(1,3),lwd=2,col="red") Years since operation 9 1 hen we consider a model with sex thickness and ulceration ˆβ HR se( ˆ β ) Z P Sex: hickness: Ulceration: Estimated cumulative hazards : We will estimate cumulative hazards and survival functions for females with the following combinations of tumor thickness and ulceration: 1) hickness: 1 mm, ulceration: absent 2) hickness: 2 mm, ulceration: absent 3) hickness: 2 mm, ulceration: present 4) hickness: 4 mm, ulceration: present 11 12

4 Estimated survival functions: Using R he results on the previous slides are obtained by the following commands: # We consider the model with sex, ulceration and thickness: fit.stu=coxph(surv(lifetime,status==1)~factor(sex)+factor(ulcer)+thickn, data=melanoma) summary(fit.stu) # We plot the cumulative hazards for females for four covariate combinations: # 1) thickn=1, ulcer=2 2) thickn=2, ulcer=2 # 3) thickn=2, ulcer=1 4) thickn=4, ulcer=1 new.covariates=data.frame(sex=c(1,1,1,1), ulcer=c(2,2,1,1), thickn=c(1,2,2,4)) surv.stu=survfit(fit.stu,newdata=new.covariates) plot(surv.stu,fun="cumhaz", mark.time=false, xlim=c(,1), xlab="years since operation",ylab="cumulative hazard",lty=1:4,lwd=2) legend("topleft",c("female, 1 mm, absent","female, 2 mm, absent", "female 2 mm, present","female, 4 mm, present"), lty=1:4,lwd=2) 13 # o plot the survival functions for females for the same combinations of the # covariates we just omit the "cumhaz" option Assumptions for Cox regression We consider a Cox regression model with fixed covariates: α( t x) = α( t) exp( β x) Note that the model assumes: 1) Log-linearity: log{ α( t x)} = log{ α ( t)} + β x Check of log-linearity We check log-linearity for a numeric covariate, say covariate 1, assuming that log-linearity is ok for the other covariates We may fit a penalized smoothing spline s( x1 ) for the effect of covariate 1 : α( t x) = α ( t) exp { s( x ) + β x } and see if the spline estimate becomes fairly linear 2) Proportional hazards: α( t x2) = exp{ β ( x2 x1)} (independent of time) α( t x ) 1 A number of methods exist for checking these assumption, and we will have a look at two of them (this material is not in the ABG-book, cf page 134) 15 Melanoma data: Checking log-linearity by using a spline for tumor thickness in a model with sex and ulceration as the other covariates he non-linear parts of the smoothing spline have a significant effect (P=.38) Partial for pspline(thickn) thickn

5 When the effect of a numeric covariate is not log-linear, we may transform the covariate or use a grouped version of it For the melanoma data, the plots indicate that we may use log-thickness as covariate (and then log2 is a good choice) Melanoma data: Checking log-linearity by using a spline for log2 of tumor thickness in a model with sex and ulceration as the other covariates Partial for pspline(log2thick) he non-linear parts of the smoothing spline do not have a significant effect (P=.41) log2thick Using R he results on the previous slide are obtained by the following commands: # o check log-linearity for thickness, we fit a model with sex, ulceration # and penalized smoothing spline for the effect of thickness: fit.spstu=coxph(surv(lifetime,status==1)~factor(sex)+factor(ulcer)+pspline(thickn), data=melanoma) print(fit.spstu) termplot(fit.spstu,se=,terms=3) # o check log-linearity for log2(thickness) [which has to be defined as a # new covariate], we fit a model with sex, ulceration and penalized smoothing # spline for the effect of log2(thickness): melanoma$log2thick=log2(melanoma$thickn) fit.spslogtu=coxph(surv(lifetime,status==1)~factor(sex)+factor(ulcer)+pspline(log2thick), data=melanoma) print(fit.spslogtu) termplot(fit.spslogtu,se=,terms=3) 18 Check of proportional hazards One way to check if we have proportional hazard is to fit a model of the form { 11 i1 12 i1 p1 ip p2 ipg t } α( t x) = α ( t) exp β x + β x g( t) + + β x + β x ( ) for a known function g(t), e.g. g(t) = log t Melanoma data: Plots that indicate possible time dependent effects of the covariates We then test the null hypotesis that one or all of β j 2 = For the melanoma data: chisq p factor(sex) factor(ulcer) log2thick GLOBAL he test and plots indicate that there may be a non-proportional (i.e. time-dependent) effect of log-thickness 2

6 Using R he results on the previous slides are obtained by the commands below. # We will do a formal test for proportionality of the covariates. his is done by, # for each covariate x, adding time-dependent covariate x*log(t), and testing # whether the time-dependent covariates are significant using a score test: cox.zph(fit.slogtu,transform='log') # he test indicates that the effect of tumor-thickness is not proportional. # he estimate we get for log-thicness in then a weighted average of the # time-varying effect # We also make plots that give nonparametric estimates of the (possible) # time dependent effect of the covariates: par(mfrow=c(1,3)) plot(cox.zph(fit.slogtu)) par(mfrow=c(1,1) 21

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science

Log-linearity for Cox s regression model. Thesis for the Degree Master of Science Log-linearity for Cox s regression model Thesis for the Degree Master of Science Zaki Amini Master s Thesis, Spring 2015 i Abstract Cox s regression model is one of the most applied methods in medical

More information

More on Cox-regression

More on Cox-regression More on Cox-regression p. 1/45 More on Cox-regression STK4080 H16 1. Repetition 2. Left truncation 3. Time-dependent covariates 4. Stratified Cox-regression 5. Residuals - Model check 6. How to handle

More information

Survival Analysis Math 434 Fall 2011

Survival Analysis Math 434 Fall 2011 Survival Analysis Math 434 Fall 2011 Part IV: Chap. 8,9.2,9.3,11: Semiparametric Proportional Hazards Regression Jimin Ding Math Dept. www.math.wustl.edu/ jmding/math434/fall09/index.html Basic Model Setup

More information

Faculty of Health Sciences. Cox regression. Torben Martinussen. Department of Biostatistics University of Copenhagen. 20. september 2012 Slide 1/51

Faculty of Health Sciences. Cox regression. Torben Martinussen. Department of Biostatistics University of Copenhagen. 20. september 2012 Slide 1/51 Faculty of Health Sciences Cox regression Torben Martinussen Department of Biostatistics University of Copenhagen 2. september 212 Slide 1/51 Survival analysis Standard setup for right-censored survival

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen

Definitions and examples Simple estimation and testing Regression models Goodness of fit for the Cox model. Recap of Part 1. Per Kragh Andersen Recap of Part 1 Per Kragh Andersen Section of Biostatistics, University of Copenhagen DSBS Course Survival Analysis in Clinical Trials January 2018 1 / 65 Overview Definitions and examples Simple estimation

More information

PhD course in Advanced survival analysis. One-sample tests. Properties. Idea: (ABGK, sect. V.1.1) Counting process N(t)

PhD course in Advanced survival analysis. One-sample tests. Properties. Idea: (ABGK, sect. V.1.1) Counting process N(t) PhD course in Advanced survival analysis. (ABGK, sect. V.1.1) One-sample tests. Counting process N(t) Non-parametric hypothesis tests. Parametric models. Intensity process λ(t) = α(t)y (t) satisfying Aalen

More information

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics

Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Analysis of Time-to-Event Data: Chapter 6 - Regression diagnostics Steffen Unkel Department of Medical Statistics University Medical Center Göttingen, Germany Winter term 2018/19 1/25 Residuals for the

More information

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics

Faculty of Health Sciences. Regression models. Counts, Poisson regression, Lene Theil Skovgaard. Dept. of Biostatistics Faculty of Health Sciences Regression models Counts, Poisson regression, 27-5-2013 Lene Theil Skovgaard Dept. of Biostatistics 1 / 36 Count outcome PKA & LTS, Sect. 7.2 Poisson regression The Binomial

More information

β j = coefficient of x j in the model; β = ( β1, β2,

β j = coefficient of x j in the model; β = ( β1, β2, Regression Modeling of Survival Time Data Why regression models? Groups similar except for the treatment under study use the nonparametric methods discussed earlier. Groups differ in variables (covariates)

More information

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables

ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES. Cox s regression analysis Time dependent explanatory variables ADVANCED STATISTICAL ANALYSIS OF EPIDEMIOLOGICAL STUDIES Cox s regression analysis Time dependent explanatory variables Henrik Ravn Bandim Health Project, Statens Serum Institut 4 November 2011 1 / 53

More information

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model

Other Survival Models. (1) Non-PH models. We briefly discussed the non-proportional hazards (non-ph) model Other Survival Models (1) Non-PH models We briefly discussed the non-proportional hazards (non-ph) model λ(t Z) = λ 0 (t) exp{β(t) Z}, where β(t) can be estimated by: piecewise constants (recall how);

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis SK48/98 Survval and event hstory analyss Lecture 7: Regresson modellng Relatve rsk regresson Regresson models Assume that we have a sample of n ndvduals, and let N (t) count the observed occurrences of

More information

9 Estimating the Underlying Survival Distribution for a

9 Estimating the Underlying Survival Distribution for a 9 Estimating the Underlying Survival Distribution for a Proportional Hazards Model So far the focus has been on the regression parameters in the proportional hazards model. These parameters describe the

More information

Survival Regression Models

Survival Regression Models Survival Regression Models David M. Rocke May 18, 2017 David M. Rocke Survival Regression Models May 18, 2017 1 / 32 Background on the Proportional Hazards Model The exponential distribution has constant

More information

Cox s proportional hazards/regression model - model assessment

Cox s proportional hazards/regression model - model assessment Cox s proportional hazards/regression model - model assessment Rasmus Waagepetersen September 27, 2017 Topics: Plots based on estimated cumulative hazards Cox-Snell residuals: overall check of fit Martingale

More information

MAS3301 / MAS8311 Biostatistics Part II: Survival

MAS3301 / MAS8311 Biostatistics Part II: Survival MAS3301 / MAS8311 Biostatistics Part II: Survival M. Farrow School of Mathematics and Statistics Newcastle University Semester 2, 2009-10 1 13 The Cox proportional hazards model 13.1 Introduction In the

More information

A Regression Model For Recurrent Events With Distribution Free Correlation Structure

A Regression Model For Recurrent Events With Distribution Free Correlation Structure A Regression Model For Recurrent Events With Distribution Free Correlation Structure J. Pénichoux(1), A. Latouche(2), T. Moreau(1) (1) INSERM U780 (2) Université de Versailles, EA2506 ISCB - 2009 - Prague

More information

The coxvc_1-1-1 package

The coxvc_1-1-1 package Appendix A The coxvc_1-1-1 package A.1 Introduction The coxvc_1-1-1 package is a set of functions for survival analysis that run under R2.1.1 [81]. This package contains a set of routines to fit Cox models

More information

Survival Analysis I (CHL5209H)

Survival Analysis I (CHL5209H) Survival Analysis Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca January 7, 2015 31-1 Literature Clayton D & Hills M (1993): Statistical Models in Epidemiology. Not really

More information

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?

You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What? You know I m not goin diss you on the internet Cause my mama taught me better than that I m a survivor (What?) I m not goin give up (What?) I m not goin stop (What?) I m goin work harder (What?) Sir David

More information

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL

Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL Lecture 6 PREDICTING SURVIVAL UNDER THE PH MODEL The Cox PH model: λ(t Z) = λ 0 (t) exp(β Z). How do we estimate the survival probability, S z (t) = S(t Z) = P (T > t Z), for an individual with covariates

More information

STAT331. Cox s Proportional Hazards Model

STAT331. Cox s Proportional Hazards Model STAT331 Cox s Proportional Hazards Model In this unit we introduce Cox s proportional hazards (Cox s PH) model, give a heuristic development of the partial likelihood function, and discuss adaptations

More information

Residuals and model diagnostics

Residuals and model diagnostics Residuals and model diagnostics Patrick Breheny November 10 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/42 Introduction Residuals Many assumptions go into regression models, and the Cox proportional

More information

Building a Prognostic Biomarker

Building a Prognostic Biomarker Building a Prognostic Biomarker Noah Simon and Richard Simon July 2016 1 / 44 Prognostic Biomarker for a Continuous Measure On each of n patients measure y i - single continuous outcome (eg. blood pressure,

More information

Reduced-rank hazard regression

Reduced-rank hazard regression Chapter 2 Reduced-rank hazard regression Abstract The Cox proportional hazards model is the most common method to analyze survival data. However, the proportional hazards assumption might not hold. The

More information

Relative-risk regression and model diagnostics. 16 November, 2015

Relative-risk regression and model diagnostics. 16 November, 2015 Relative-risk regression and model diagnostics 16 November, 2015 Relative risk regression More general multiplicative intensity model: Intensity for individual i at time t is i(t) =Y i (t)r(x i, ; t) 0

More information

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen

A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1. By Thomas H. Scheike University of Copenhagen The Annals of Statistics 21, Vol. 29, No. 5, 1344 136 A GENERALIZED ADDITIVE REGRESSION MODEL FOR SURVIVAL TIMES 1 By Thomas H. Scheike University of Copenhagen We present a non-parametric survival model

More information

Cox s proportional hazards model and Cox s partial likelihood

Cox s proportional hazards model and Cox s partial likelihood Cox s proportional hazards model and Cox s partial likelihood Rasmus Waagepetersen October 12, 2018 1 / 27 Non-parametric vs. parametric Suppose we want to estimate unknown function, e.g. survival function.

More information

Model Adequacy Test for Cox Proportional Hazard Model

Model Adequacy Test for Cox Proportional Hazard Model Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Master of Science Thesis Model Adequacy Test for Cox Proportional

More information

DAGStat Event History Analysis.

DAGStat Event History Analysis. DAGStat 2016 Event History Analysis Robin.Henderson@ncl.ac.uk 1 / 75 Schedule 9.00 Introduction 10.30 Break 11.00 Regression Models, Frailty and Multivariate Survival 12.30 Lunch 13.30 Time-Variation and

More information

Modelling geoadditive survival data

Modelling geoadditive survival data Modelling geoadditive survival data Thomas Kneib & Ludwig Fahrmeir Department of Statistics, Ludwig-Maximilians-University Munich 1. Leukemia survival data 2. Structured hazard regression 3. Mixed model

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Dynamic analysis of binary longitudinal data

Dynamic analysis of binary longitudinal data Dynamic analysis of binary longitudinal data Ørnulf Borgan Department of Mathematics University of Oslo Based on joint work with Rosemeire L. Fiaccone, Robin Henderson and Mauricio L. Barreto 1 Outline:

More information

Philosophy and Features of the mstate package

Philosophy and Features of the mstate package Introduction Mathematical theory Practice Discussion Philosophy and Features of the mstate package Liesbeth de Wreede, Hein Putter Department of Medical Statistics and Bioinformatics Leiden University

More information

Beyond GLM and likelihood

Beyond GLM and likelihood Stat 6620: Applied Linear Models Department of Statistics Western Michigan University Statistics curriculum Core knowledge (modeling and estimation) Math stat 1 (probability, distributions, convergence

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

TMA 4275 Lifetime Analysis June 2004 Solution

TMA 4275 Lifetime Analysis June 2004 Solution TMA 4275 Lifetime Analysis June 2004 Solution Problem 1 a) Observation of the outcome is censored, if the time of the outcome is not known exactly and only the last time when it was observed being intact,

More information

Goodness-of-Fit Tests With Right-Censored Data by Edsel A. Pe~na Department of Statistics University of South Carolina Colloquium Talk August 31, 2 Research supported by an NIH Grant 1 1. Practical Problem

More information

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation

Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Part IV Extensions: Competing Risks Endpoints and Non-Parametric AUC(t) Estimation Patrick J. Heagerty PhD Department of Biostatistics University of Washington 166 ISCB 2010 Session Four Outline Examples

More information

Maximum likelihood estimation for Cox s regression model under nested case-control sampling

Maximum likelihood estimation for Cox s regression model under nested case-control sampling Biostatistics (2004), 5, 2,pp. 193 206 Printed in Great Britain Maximum likelihood estimation for Cox s regression model under nested case-control sampling THOMAS H. SCHEIKE Department of Biostatistics,

More information

The nltm Package. July 24, 2006

The nltm Package. July 24, 2006 The nltm Package July 24, 2006 Version 1.2 Date 2006-07-17 Title Non-linear Transformation Models Author Gilda Garibotti, Alexander Tsodikov Maintainer Gilda Garibotti Depends

More information

1 Glivenko-Cantelli type theorems

1 Glivenko-Cantelli type theorems STA79 Lecture Spring Semester Glivenko-Cantelli type theorems Given i.i.d. observations X,..., X n with unknown distribution function F (t, consider the empirical (sample CDF ˆF n (t = I [Xi t]. n Then

More information

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data

Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Dynamic Prediction of Disease Progression Using Longitudinal Biomarker Data Xuelin Huang Department of Biostatistics M. D. Anderson Cancer Center The University of Texas Joint Work with Jing Ning, Sangbum

More information

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis

STAT 6350 Analysis of Lifetime Data. Failure-time Regression Analysis STAT 6350 Analysis of Lifetime Data Failure-time Regression Analysis Explanatory Variables for Failure Times Usually explanatory variables explain/predict why some units fail quickly and some units survive

More information

11 Survival Analysis and Empirical Likelihood

11 Survival Analysis and Empirical Likelihood 11 Survival Analysis and Empirical Likelihood The first paper of empirical likelihood is actually about confidence intervals with the Kaplan-Meier estimator (Thomas and Grunkmeier 1979), i.e. deals with

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses

ST3241 Categorical Data Analysis I Multicategory Logit Models. Logit Models For Nominal Responses ST3241 Categorical Data Analysis I Multicategory Logit Models Logit Models For Nominal Responses 1 Models For Nominal Responses Y is nominal with J categories. Let {π 1,, π J } denote the response probabilities

More information

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see Title stata.com stcrreg postestimation Postestimation tools for stcrreg Description Syntax for predict Menu for predict Options for predict Remarks and examples Methods and formulas References Also see

More information

Goodness-Of-Fit for Cox s Regression Model. Extensions of Cox s Regression Model. Survival Analysis Fall 2004, Copenhagen

Goodness-Of-Fit for Cox s Regression Model. Extensions of Cox s Regression Model. Survival Analysis Fall 2004, Copenhagen Outline Cox s proportional hazards model. Goodness-of-fit tools More flexible models R-package timereg Forthcoming book, Martinussen and Scheike. 2/38 University of Copenhagen http://www.biostat.ku.dk

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models

Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Introduction to Empirical Processes and Semiparametric Inference Lecture 25: Semiparametric Models Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

e 4β e 4β + e β ˆβ =0.765

e 4β e 4β + e β ˆβ =0.765 SIMPLE EXAMPLE COX-REGRESSION i Y i x i δ i 1 5 12 0 2 10 10 1 3 40 3 0 4 80 5 0 5 120 3 1 6 400 4 1 7 600 1 0 Model: z(t x) =z 0 (t) exp{βx} Partial likelihood: L(β) = e 10β e 10β + e 3β + e 5β + e 3β

More information

Chapter 7: Hypothesis testing

Chapter 7: Hypothesis testing Chapter 7: Hypothesis testing Hypothesis testing is typically done based on the cumulative hazard function. Here we ll use the Nelson-Aalen estimate of the cumulative hazard. The survival function is used

More information

USING MARTINGALE RESIDUALS TO ASSESS GOODNESS-OF-FIT FOR SAMPLED RISK SET DATA

USING MARTINGALE RESIDUALS TO ASSESS GOODNESS-OF-FIT FOR SAMPLED RISK SET DATA USING MARTINGALE RESIDUALS TO ASSESS GOODNESS-OF-FIT FOR SAMPLED RISK SET DATA Ørnulf Borgan Bryan Langholz Abstract Standard use of Cox s regression model and other relative risk regression models for

More information

Time-dependent covariates

Time-dependent covariates Time-dependent covariates Rasmus Waagepetersen November 5, 2018 1 / 10 Time-dependent covariates Our excursion into the realm of counting process and martingales showed that it poses no problems to introduce

More information

Regularization in Cox Frailty Models

Regularization in Cox Frailty Models Regularization in Cox Frailty Models Andreas Groll 1, Trevor Hastie 2, Gerhard Tutz 3 1 Ludwig-Maximilians-Universität Munich, Department of Mathematics, Theresienstraße 39, 80333 Munich, Germany 2 University

More information

Frailty Models and Copulas: Similarities and Differences

Frailty Models and Copulas: Similarities and Differences Frailty Models and Copulas: Similarities and Differences KLARA GOETHALS, PAUL JANSSEN & LUC DUCHATEAU Department of Physiology and Biometrics, Ghent University, Belgium; Center for Statistics, Hasselt

More information

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520

REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 REGRESSION ANALYSIS FOR TIME-TO-EVENT DATA THE PROPORTIONAL HAZARDS (COX) MODEL ST520 Department of Statistics North Carolina State University Presented by: Butch Tsiatis, Department of Statistics, NCSU

More information

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models

Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models NIH Talk, September 03 Efficient Semiparametric Estimators via Modified Profile Likelihood in Frailty & Accelerated-Failure Models Eric Slud, Math Dept, Univ of Maryland Ongoing joint project with Ilia

More information

ST745: Survival Analysis: Cox-PH!

ST745: Survival Analysis: Cox-PH! ST745: Survival Analysis: Cox-PH! Eric B. Laber Department of Statistics, North Carolina State University April 20, 2015 Rien n est plus dangereux qu une idee, quand on n a qu une idee. (Nothing is more

More information

Analysis of competing risks data and simulation of data following predened subdistribution hazards

Analysis of competing risks data and simulation of data following predened subdistribution hazards Analysis of competing risks data and simulation of data following predened subdistribution hazards Bernhard Haller Institut für Medizinische Statistik und Epidemiologie Technische Universität München 27.05.2013

More information

1 Introduction. 2 Residuals in PH model

1 Introduction. 2 Residuals in PH model Supplementary Material for Diagnostic Plotting Methods for Proportional Hazards Models With Time-dependent Covariates or Time-varying Regression Coefficients BY QIQING YU, JUNYI DONG Department of Mathematical

More information

FULL LIKELIHOOD INFERENCES IN THE COX MODEL

FULL LIKELIHOOD INFERENCES IN THE COX MODEL October 20, 2007 FULL LIKELIHOOD INFERENCES IN THE COX MODEL BY JIAN-JIAN REN 1 AND MAI ZHOU 2 University of Central Florida and University of Kentucky Abstract We use the empirical likelihood approach

More information

Lecture 2: Poisson and logistic regression

Lecture 2: Poisson and logistic regression Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 11-12 December 2014 introduction to Poisson regression application to the BELCAP study introduction

More information

Consider Table 1 (Note connection to start-stop process).

Consider Table 1 (Note connection to start-stop process). Discrete-Time Data and Models Discretized duration data are still duration data! Consider Table 1 (Note connection to start-stop process). Table 1: Example of Discrete-Time Event History Data Case Event

More information

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times

Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Part [1.0] Measures of Classification Accuracy for the Prediction of Survival Times Patrick J. Heagerty PhD Department of Biostatistics University of Washington 1 Biomarkers Review: Cox Regression Model

More information

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data

Outline. Frailty modelling of Multivariate Survival Data. Clustered survival data. Clustered survival data Outline Frailty modelling of Multivariate Survival Data Thomas Scheike ts@biostat.ku.dk Department of Biostatistics University of Copenhagen Marginal versus Frailty models. Two-stage frailty models: copula

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Lecture 8 Stat D. Gillen

Lecture 8 Stat D. Gillen Statistics 255 - Survival Analysis Presented February 23, 2016 Dan Gillen Department of Statistics University of California, Irvine 8.1 Example of two ways to stratify Suppose a confounder C has 3 levels

More information

9. Estimating Survival Distribution for a PH Model

9. Estimating Survival Distribution for a PH Model 9. Estimating Survival Distribution for a PH Model Objective: Another Goal of the COX model Estimating the survival distribution for individuals with a certain combination of covariates. PH model assumption:

More information

ST495: Survival Analysis: Maximum likelihood

ST495: Survival Analysis: Maximum likelihood ST495: Survival Analysis: Maximum likelihood Eric B. Laber Department of Statistics, North Carolina State University February 11, 2014 Everything is deception: seeking the minimum of illusion, keeping

More information

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis

Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Statistics 262: Intermediate Biostatistics Non-parametric Survival Analysis Jonathan Taylor & Kristin Cobb Statistics 262: Intermediate Biostatistics p.1/?? Overview of today s class Kaplan-Meier Curve

More information

PASS Sample Size Software. Poisson Regression

PASS Sample Size Software. Poisson Regression Chapter 870 Introduction Poisson regression is used when the dependent variable is a count. Following the results of Signorini (99), this procedure calculates power and sample size for testing the hypothesis

More information

Power and Sample Size Calculations with the Additive Hazards Model

Power and Sample Size Calculations with the Additive Hazards Model Journal of Data Science 10(2012), 143-155 Power and Sample Size Calculations with the Additive Hazards Model Ling Chen, Chengjie Xiong, J. Philip Miller and Feng Gao Washington University School of Medicine

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Survival analysis in R

Survival analysis in R Survival analysis in R Niels Richard Hansen This note describes a few elementary aspects of practical analysis of survival data in R. For further information we refer to the book Introductory Statistics

More information

STAT Sample Problem: General Asymptotic Results

STAT Sample Problem: General Asymptotic Results STAT331 1-Sample Problem: General Asymptotic Results In this unit we will consider the 1-sample problem and prove the consistency and asymptotic normality of the Nelson-Aalen estimator of the cumulative

More information

Lecture 7 Time-dependent Covariates in Cox Regression

Lecture 7 Time-dependent Covariates in Cox Regression Lecture 7 Time-dependent Covariates in Cox Regression So far, we ve been considering the following Cox PH model: λ(t Z) = λ 0 (t) exp(β Z) = λ 0 (t) exp( β j Z j ) where β j is the parameter for the the

More information

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations

Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Hypothesis Testing Based on the Maximum of Two Statistics from Weighted and Unweighted Estimating Equations Takeshi Emura and Hisayuki Tsukuma Abstract For testing the regression parameter in multivariate

More information

Goodness-of-fit test for the Cox Proportional Hazard Model

Goodness-of-fit test for the Cox Proportional Hazard Model Goodness-of-fit test for the Cox Proportional Hazard Model Rui Cui rcui@eco.uc3m.es Department of Economics, UC3M Abstract In this paper, we develop new goodness-of-fit tests for the Cox proportional hazard

More information

Outline. Cox's regression model Goodness-of-t methods. Cox's proportional hazards model: Survival analysis

Outline. Cox's regression model Goodness-of-t methods. Cox's proportional hazards model: Survival analysis Outline Cox's regression model Goodness-of-t methods Giuliana Cortese gico@biostat.ku.dk Advanced Survival Analysis 21 Copenhagen Cox's proportional hazards model: assumptions Goodness-of-t for Cox's model:

More information

Multinomial Logistic Regression Models

Multinomial Logistic Regression Models Stat 544, Lecture 19 1 Multinomial Logistic Regression Models Polytomous responses. Logistic regression can be extended to handle responses that are polytomous, i.e. taking r>2 categories. (Note: The word

More information

Chapter 4 Regression Models

Chapter 4 Regression Models 23.August 2010 Chapter 4 Regression Models The target variable T denotes failure time We let x = (x (1),..., x (m) ) represent a vector of available covariates. Also called regression variables, regressors,

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 9: Basis Expansions Department of Statistics & Biostatistics Rutgers University Nov 01, 2011 Regression and Classification Linear Regression. E(Y X) = f(x) We want to learn

More information

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky

A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky A COMPARISON OF POISSON AND BINOMIAL EMPIRICAL LIKELIHOOD Mai Zhou and Hui Fang University of Kentucky Empirical likelihood with right censored data were studied by Thomas and Grunkmier (1975), Li (1995),

More information

Stat 642, Lecture notes for 04/12/05 96

Stat 642, Lecture notes for 04/12/05 96 Stat 642, Lecture notes for 04/12/05 96 Hosmer-Lemeshow Statistic The Hosmer-Lemeshow Statistic is another measure of lack of fit. Hosmer and Lemeshow recommend partitioning the observations into 10 equal

More information

Chapter 2 Inference on Mean Residual Life-Overview

Chapter 2 Inference on Mean Residual Life-Overview Chapter 2 Inference on Mean Residual Life-Overview Statistical inference based on the remaining lifetimes would be intuitively more appealing than the popular hazard function defined as the risk of immediate

More information

Generalized logit models for nominal multinomial responses. Local odds ratios

Generalized logit models for nominal multinomial responses. Local odds ratios Generalized logit models for nominal multinomial responses Categorical Data Analysis, Summer 2015 1/17 Local odds ratios Y 1 2 3 4 1 π 11 π 12 π 13 π 14 π 1+ X 2 π 21 π 22 π 23 π 24 π 2+ 3 π 31 π 32 π

More information

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016

Lecture 12. Multivariate Survival Data Statistics Survival Analysis. Presented March 8, 2016 Statistics 255 - Survival Analysis Presented March 8, 2016 Dan Gillen Department of Statistics University of California, Irvine 12.1 Examples Clustered or correlated survival times Disease onset in family

More information

Lecture 5: Estimation of time series

Lecture 5: Estimation of time series Lecture 5, page 1 Lecture 5: Estimation of time series Outline of lesson 5 (chapter 4) (Extended version of the book): a.) Model formulation Explorative analyses Model formulation b.) Model estimation

More information

A Hierarchical Perspective on Lee-Carter Models

A Hierarchical Perspective on Lee-Carter Models A Hierarchical Perspective on Lee-Carter Models Paul Eilers Leiden University Medical Centre L-C Workshop, Edinburgh 24 The vantage point Previous presentation: Iain Currie led you upward From Glen Gumbel

More information

Estimation for Modified Data

Estimation for Modified Data Definition. Estimation for Modified Data 1. Empirical distribution for complete individual data (section 11.) An observation X is truncated from below ( left truncated) at d if when it is at or below d

More information

Multi-state Models: An Overview

Multi-state Models: An Overview Multi-state Models: An Overview Andrew Titman Lancaster University 14 April 2016 Overview Introduction to multi-state modelling Examples of applications Continuously observed processes Intermittently observed

More information

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model

STAT331. Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model STAT331 Combining Martingales, Stochastic Integrals, and Applications to Logrank Test & Cox s Model Because of Theorem 2.5.1 in Fleming and Harrington, see Unit 11: For counting process martingales with

More information

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016

Lecture 7. Proportional Hazards Model - Handling Ties and Survival Estimation Statistics Survival Analysis. Presented February 4, 2016 Proportional Hazards Model - Handling Ties and Survival Estimation Statistics 255 - Survival Analysis Presented February 4, 2016 likelihood - Discrete Dan Gillen Department of Statistics University of

More information

Lecture 5: Poisson and logistic regression

Lecture 5: Poisson and logistic regression Dankmar Böhning Southampton Statistical Sciences Research Institute University of Southampton, UK S 3 RI, 3-5 March 2014 introduction to Poisson regression application to the BELCAP study introduction

More information

Efficiency of Profile/Partial Likelihood in the Cox Model

Efficiency of Profile/Partial Likelihood in the Cox Model Efficiency of Profile/Partial Likelihood in the Cox Model Yuichi Hirose School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, New Zealand Summary. This paper shows

More information

Models for Multivariate Panel Count Data

Models for Multivariate Panel Count Data Semiparametric Models for Multivariate Panel Count Data KyungMann Kim University of Wisconsin-Madison kmkim@biostat.wisc.edu 2 April 2015 Outline 1 Introduction 2 3 4 Panel Count Data Motivation Previous

More information

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University

Survival Analysis: Weeks 2-3. Lu Tian and Richard Olshen Stanford University Survival Analysis: Weeks 2-3 Lu Tian and Richard Olshen Stanford University 2 Kaplan-Meier(KM) Estimator Nonparametric estimation of the survival function S(t) = pr(t > t) The nonparametric estimation

More information

Tests of independence for censored bivariate failure time data

Tests of independence for censored bivariate failure time data Tests of independence for censored bivariate failure time data Abstract Bivariate failure time data is widely used in survival analysis, for example, in twins study. This article presents a class of χ

More information