ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN

Size: px
Start display at page:

Download "ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN"

Transcription

1 Saiica Siica 4 4, doi:hp://dx.doi.org/.575/.3.83 ESTIMATION OF THE FINITE RIGHT ENDPOINT IN THE GUMBEL DOMAIN Iabel Fraga Alve ad Cláudia Neve Uiveriy of Libo ad Uiveriy of Aveiro Abrac: A imple eimaor for he fiie righ edpoi of a diribuio fucio i he Gumbel max-domai of aracio i propoed. Large ample properie uch a coiecy ad he aympoic diribuio are derived. A imulaio udy i preeed. Key word ad phrae: iferece. Edpoi eimaio, exreme value heory, aiical. Iroducio Le X, X, X, be he order aiic from he ample X, X,..., X of i.i.d. radom variable wih commo uow diribuio fucio F. Le x F deoe he righ edpoi of F. We aume ha he diribuio fucio F ha a fiie righ edpoi, x F := up{x : F x < } R. The fudameal reul for exreme value heory i due i variou degree of geeraliy o Fiher ad Tippe 98, Gedeo 943, de Haa 97 ad Balema ad de Haa 974. The exreme value heorem or exremal ype heorem reric he cla of all poible limiig diribuio fucio o oly hree ype. Thu, if here exi coa a >, b R uch ha for all x, G o-degeerae, he G mu be oe of lim F a x + b = Gx,. Ψ α x = exp{ x α }, x <, α >, Λx = exp{ exp x}, x R, Φ α x = exp{ x α }, x >, α >. Redefiig he coa a > ad b R, hee ca be eed i a oeparameer family of diribuio, he Geeralized Exreme Value GEV diribuio wih diribuio fucio G γ x := exp{ + γx /γ }, + γx >, γ R.

2 8 ISABEL FRAGA ALVES AND CLÁUDIA NEVES We coider F i he max-domai of aracio of G γ ad ue he oaio F D M G γ. For γ <, γ =, ad γ >, he GEV diribuio fucio reduce o he Weibull, Gumbel, ad Fréche diribuio fucio, repecively. A equivale exreme value codiio allow he limi relaio i. o ru over he real lie cf., Theorem..6 de Haa ad Ferreira 6: F D M G γ if ad oly if lim F a x + b = + γ x /γ,. for all x uch ha + γx >, a := a [] ad b := b [], wih [] deoig he ieger par of. The exreme value idex γ deermie variou degree of ail heavie. If F D M G γ wih γ >, he diribuio fucio F ha a power-law decayig ail wih ifiie righ edpoi, while γ < refer o hor ail wih a fiie righ edpoi. The Gumbel domai of aracio D M G ecloe a grea variey of diribuio, ragig from ligh-ailed diribuio, uch a he Normal, he expoeial, o moderaely heavy diribuio, uch a he Logormal. All he amed diribuio have a ifiie righ edpoi, bu a fiie edpoi i alo poible i he Gumbel domai. We give everal example i Secio. Ligh-ailed diribuio wih fiie edpoi, bu o o ligh ha hey are icluded i he Gumbel domai, have bee i demad a feaible diribuio uderlyig real life pheomea. A example i he exreme value aalyi by Eimahl ad Magu 8 of he be mar i Ahleic, aimed a aeig he ulimae record for everal eve. For iace, Table 3 i Eimahl ad Magu 8 ha everal miig value for he eimae of he edpoi which are due o a eimaed exreme value idex γ ear zero. A aemp o fill hee bla pace wih a appropriae framewor for iferece i he Gumbel domai ha bee provided by Fraga Alve, de Haa, ad Neve 3, alhough from he view poi of applicaio o he Log Jump daa e ued i Eimahl ad Magu 8. The eaive eimaor propoed by Fraga Alve, de Haa, ad Neve 3 i virually he ame a he oe we iroduce. The ovely here i i he developme of a imple cloed-from expreio for he eimaor. The problem of eimaig he righ edpoi x F of a diribuio fucio lyig i he Gumbel exremal domai of aracio i acled by he emiparameric aiic X, + X, log log or, i a more compac form, by i= i= + i + + i X i, ˆx F := X, + a i, X, X i,,.3

3 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 83 where a i, := log log + i log + i + >, uch ha i= a i, =. Here ad hroughou i i fac a equece of poiive ieger goig o ifiiy a bu a a much lower rae ha. Thu, we are defiig ˆx F a a fucioal of he op obervaio of he origial ample, relyig o a iermediae equece =, wih, = o, a. From he o-egaivee of he weighed pacig i.3, we ee ha ˆx F i greaer ha he maximum X, wih probabiliy oe. Thi i a advaage i compario wih he uual emiparameric eimaor for he righ edpoi of a diribuio fucio i he Weibull domai of aracio. We refer o Hall 98, Fal 995, Hall ad Wag 999, ad o de Haa ad Ferreira 6 ad referece herei. To he be of our owledge, oe of hee eimaor have eured he exrapolaio beyod he ample rage. There have bee, however, ome developme of edpoi eimaor coeced wih γ < i he ee of bia reducio ad/or correcio. Li ad Peg 9, Li, Peg, ad Xu ad Cai, de Haa, ad Zhou 3 are a few of he wor. Recely, Girard, Guillou, ad Supfler devied a edpoi eimaor from he high-order mome peraiig o a diribuio wih γ < ; Li ad Peg propoed a boorap eimaor for he edpoi evolvig from he oe of Hall 98 i cae γ /,. The pree paper addree he cla of diribuio fucio belogig o he Gumbel domai of aracio, for which o correpodig ha ye bee provided. The appropriae framewor i developed i Secio. The remaider of he paper i a follow. The raioale behid he propoal of he ew eimaor for he righ edpoi i expouded i Secio 3. Coiecy ad he aympoic diribuio of he eimaor, are wored ou i Secio 4, aig advaage of a form of eparabiliy bewee he maximum ad he um of higher order aiic. I order o perform aympoic, we require ome baic codiio i he coex of he heory of regular variaio. Thee are laid ou i Secio. I Secio 5 we gaher ome imulaio reul. Secio 6 i devoed o ome applicaio ad cocluio.. Framewor Le F be a diribuio fucio d.f. wih righ edpoi x F := up{x : F x < }. For ow we aume x F. Suppoe F aifie he exreme value codiio F + x f lim = + γ x /γ,. x x F F for all x R uch ha + γ x >, wih a uiable poiive fucio f hi i equivale o., ee Theorem..6 of de Haa ad Ferreira 6. For γ = he limi i. read a e x.

4 84 ISABEL FRAGA ALVES AND CLÁUDIA NEVES Le U be he geeralized ivere fucio of / F. If F aifie. wih γ = he we ca aume here exi a poiive fucio a uch ha, for all x >, Ux U lim = log x.. a Hece U belog o he cla Π ee Defiiio B..4 of de Haa ad Ferreira 6 ad a i a meaurable fucio uch ha lim a x/a = for all x >. The a i a lowly varyig fucio ad we wrie a RV ee Theorem B..7 of de Haa ad Ferreira 6. The fucio a ad f of. ad. are relaed o each oher by a = f U ee Theorem B.. of de Haa ad Ferreira 6. We ue he oaio U Πa o emphaize he auxiliary fucio a. We aume he followig: A U Πa. A U = U + a d + o a, for ome, wih a poiive fucio a RV aifyig a a a. B x F := U = lim U exi fiie. Uder A, Propoiio B..53 of de Haa ad Ferreira 6 guaraee he exiece of a wice differeiable fucio f, wih f RV, uch ha U = f + o a. Le f = f + f d be hi fucio. Hece, U = U + f f + o a, wih a a, ad where we e f = a/. Thi i A. Coverely, A implie A by Propoiio B..55 of de Haa ad Ferreira 6 wih g = a/ RV herei. Uder codiio A ad B, we have a U U = d + o a,,.3 x lim U/d U/d = log x,.4 a/d for all x >. Hece U d/ i alo Π-varyig wih he auxiliary fucio q := a d = a d = a d..5 I he uual oaio, he above i U d/ Πq. The q i lowly varyig while.3 eail ha q a cf., Lemma C. from Appedix C. Some example of diribuio belogig o he Gumbel domai of aracio wih fiie righ edpoi, where.3 hold, are lied below.

5 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 85 Example. A radom variable X i Negaive Fréche wih parameer β > if i ha diribuio fucio F x = exp{ x F x β }, x x F, β >. The aociaed ail quaile fucio i U = F / = x F log /β, he arrow ad for he geeralized ivere. The U Πa wih a = /βlog /β, a. The auxiliary fucio i.4 i q = log /β, β >. Example. Le F x = exp{ ax/β}, x < βπ/, β >. The U = β arcalog,. Hece U aifie.3 wih a = / log +β ad U Πa where U = βπ/ = x F. Example 3. Le F x = exp{π/ β arci x/β β }, x < β, β >. The U = β { i [ /π β + log ] /β },, ad.3 hold wih a = log /β+ colog /β, U Πa ad U = β = x F. 3. Saiic Le X, X,..., X be a radom ample of ize from he uderlyig diribuio fucio F wih fiie righ edpoi x F. Le X, X,... X, be he correpodig order aiic. We iroduce he eimaor ˆq/ for he auxiliary fucio q a i.5, evaluaed a = /. Thi eimaor ha he propery ha, a, =, ad / provided ome uiable, mild rericio o he ecod order refieme of U/ d hold, q / ˆq / a / q / d N, where N i a o-degeerae radom variable. Several eimaor for he righ edpoi x F = U < ca be devied from.3, i he ee ha hee migh evolve from a uiable eimaor ˆq/ for q/, a ˆx F = Û + ˆq = X, + ˆq. 3. Here ˆx F carrie aalogou large ample properie o ˆq/. I paricular, he coiecy of ˆx F i eeially eured by he coiecy of ˆq/. Theorem i Secio 4 accou for hi. We evaluae relaio.4 a x = /, ogeher wih q a = / ee la equaliy i.5, ad wrie, for large eough, U d U q log. Eimaio of q/ arie aurally from he empirical couerpar Û /θ = X [θ],,, ], θ =,, o

6 86 ISABEL FRAGA ALVES AND CLÁUDIA NEVES ˆq := log X [], X [], d. 3. Simple calculaio yield he aleraive expreio ˆq = X, + + i log X i,. 3.3 log + i + i= Combiig 3. wih 3.3 lead o he righ edpoi eimaor ˆx F := X, + X, + + i log X i,. 3.4 log + i + Afer rearragig compoe, i i poible o expre ˆx F a he maximum X, added o ome weighed mea of o-egaive ummad a ˆx F = X, + a i, X, X i,, i= wih a i, := log log + i log + i + >, i =,,..., N, uch ha i= a i, =. Remar. The propoed eimaor for he righ edpoi reur value alway larger ha x,. Thi coiue a major advaage i compario o he available emi-parameric eimaor for he edpoi i he cae of Weibull domai of aracio, for which he exrapolaio beyod he ample rage i o guaraeed. Thi iadequacy of he exiig eimaor ofe lead o ome diappoiig reul i pracical applicaio, wih eimae-yield ha may be lower ha he oberved maximum from he daa. i= 4. Aympoic Reul Our reaoig here i ha he large ample properie of he eimaor ˆx F are eeially govered by he aympoic properie of he eimaor ˆq/. Thi how up i Theorem wih repec o coiecy. The coiecy of ˆq/ i acled i Appedix A, wih ˆq/ defied i 3. ee alo 3.3, for a iermediae equece =. Similarly, he limiig diribuio of ˆq/ i Theorem reder he aympoic diribuio of ˆx F via Propoiio. Thee proof regardig ˆq/ are popoed o Appedix A. Theorem. Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig A ad B. Suppoe = i a equece of poiive ieger uch ha, /, a, ad ˆq//q/. p The ˆx F := X, + ˆq/ i a coie eimaor for x F <, ˆx F p xf.

7 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 87 Proof. Le U +, be he + -h acedig order aiic from he radom ample U, U,..., U of uiformly diribued radom variable o he ui ierval. The X, d = U /U+,, where U i he uderlyig ail quaile fucio ad = d ad for equaliy i diribuio. Wrie x F ˆx F d = U U q U U U +, q ˆq/ q/ = I II III, where I := U U/ q/ = o a/, from.3. We have II := U U U +, = o p a becaue U Πa ad Smirov Lemma eure / U +,..3 i de Haa ad Ferreira 6. Moreover, ˆq / III := q/ q / = o p by Propoiio ad he fac ha.3 implie q/ = o. P ee Lemma The limiig diribuio of ˆq/ ad, laer o, he aympoic diribuio of ˆx F i aaied uder a uiable ecod order refieme of.: uppoe here exi fucio a, poiive, ad A edig o zero a, uch ha for all x >, Ux U/a log x lim = A log x. 4. Remar. 4. follow direcly from Theorem B.3.6, Remar B.3.7, ad Corollary.3.5 of de Haa ad Ferreira 6 becaue he former ae ha, i our eup of γ = ad x F <, he oly cae allowed i he cae of he ecod order parameer ρ equal o zero. The ecod order auxiliary fucio A coverge o zero, o chagig ig for ear ifiiy, ad for every x >, Ax/A, oaio: A RV. Example 4. Coider he Negaive Fréche diribuio fucio F x = exp{ x F x β }, x x F, β >. The auxiliary fucio here i q = log /β, β >, while raighforward calculaio yield A = + /β log, which implie ha a /q = A / + β, for ear ifiiy. Theorem. Aume A, B ad 4. hold. Le = be uch ha, a,, /, a/a/, ad A/ = O. If U / U / d lim A/ q/ log = λ R, 4.

8 88 ISABEL FRAGA ALVES AND CLÁUDIA NEVES he q/ ˆq/ a/ q/ d Λ log where Λ ha he Gumbel diribuio exp{ e x } for all x R. λ log, 4.3 Here 4. cocer a ecod order refieme of.4, x U/d U/d /q log x lim = Q log x, 4.4 ae i he poi x = for large eough = /. Thu 4. em from he heory of exeded regular variaio. We refer o Appedix B of de Haa ad Ferreira 6 for a good caalog of reul i he heory of exeded regular variaio. The aumpio ha a//a a i more rericive i erm of creeig for a adequae value o deermie he umber of op order aiic o which o bae our iferece. For example, for he Negaive Fréche wih = p, p,, a a/ = log /β+ = p /β+, log which i approximaely if ad oly if p approache zero. A more appropriae choice i = log r, r, ], for which a a/ = log log /β+ = r log log log /β+ +. log The upper boud r i impoed i order o comply wih he aumpio A/ = O. We believe ha uch a choice for =, wih log = olog, i a feaible oe for mo model aifyig.3. We brig forward he fac here ha a mi-pecificaio of, i he ee ha a/ /a coverge o a coa differe ha, ha a direc impac o he aympoic variace of he ormalized relaive error preeed i Theorem raher ha upo he aympoic bia. Remar 3. The aumpio log = olog i a commo oe i he heoreical aalyi of eimaor for Weibull-ype ail, which form a rich ubcla of he Gumbel max-domai of aracio, albei wih x F =, ee Goegebeur, Beirla, ad De We ad Garde, Girard, ad Guillou. Example 5. The Negaive Fréche diribuio ha a ail quaile fucio give by U = x F log /β,, < β <, aifyig 4.4, wih Q = β log.

9 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 89 Propoiio. Uder he codiio of Theorem, ˆx F x F q/ ˆq/ a/ a/ q/ P. Proof. We wrie ˆx F x F a/ q/ ˆq/ a/ q/ = ˆxF ˆq/ xf q/ a/ a/ = X, U/ U U/ q/. a/ a/ Uder 4., Theorem.4. of de Haa ad Ferreira 6 eure ha X, U/ /a/ = O p / = op, ad he re follow from.3. The ex reul give a aleraive formulaio of he reul of Theorem ad Propoiio aimed a providig cofidece bad for ˆx F. Theorem 3. Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig 4.. Le â/ be a coie eimaor for a/. Suppoe = i a equece of poiive ieger uch ha, a,, /, a/a/, ad A/ = O. If U / U / he lim A/ â/ ˆx F x F q/ d Λ log d log = λ R, λ log. Proof. The reul follow from Theorem ad Propoiio, applyig Sluy heorem. There are everal poibiliie for eimaig he auxiliary fucio a/. A obviou choice i he Maximum Lielihood Eimaor MLE, preedig ha he exceedace over a cerai high radom hrehold follow a Geeralized Pareo diribuio cf., Secio 3.4 of de Haa ad Ferreira 6: â/ = ˆσ MLE := X i, X,. i=

10 8 ISABEL FRAGA ALVES AND CLÁUDIA NEVES Figure. row: Righ ail for probabiliy deiy fucio of Negaive Fréche Model wih righ edpoi x F = ad β = olid lie, β =.7 dahed lie, β =.5 doed lie, β =.3 dodah lie. d row: Mea eimae lef ad empirical Mea Squared Error righ of ˆx F defied i 3.4, for he referred model wih ample ize =,. All plo are depiced agai he umber = of op obervaio ued i he eimaor. The aive maximum eimaor, x F := X,, i alo depiced horizoal lie. 5. Simulaio The Negaive Fréche diribuio fucio F x = exp{ x F x β }, x x F, β >, ha he ail quaile fucio U = x F log /β,, wih a = β log /β, β >. The rage of β offer variou ail hape, a how i he graphic draw i Figure row. We imulaed, ample of ize =,,,,, from he Negaive Fréche wih righ edpoi x F = for β =.3,.5,.7,. The reul for =, are depiced i Figure d row. The commo approach o elecig he umber of op order aiic ued

11 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 8 i he eimaio or = i he pree cae i o loo for a regio where he plo are relaively able. Give he coiecy propery of he adoped eimaor, oe hould i priciple be away from mall value of ha are uually aociaed wih a large variace, ad o o far off i he ail a o iduce bia due o large. A appropriae choice for a iermediae = i = log r, wih r, ]. If we are uig =, ad e r =, he maximum allowed for r, we obai 48 ad hu 96. Wih aroud, he plo i Figure loo quie able i a viciiy of he arge value x F = repreeed by he olid horizoal blac lie. Hece, he low covergece impoed by = log eem o have lile effec o he fiie ample behavior of he eimaor ˆx F. Thi i paricular rue i cae < β <. The graph i Figure d row ugge beer eimaio uder he Negaive Fréche model if he parameer β i le ha, which correpod o he cae where he ihere ecod order codiio are aified. If β, he Negaive Fréche diribuio aifie he fir order codiio bu o he ecod order. Moreover, he geeral paer for he mea eimae of ˆx F ivolve a moderaed bia wih i he upper par of he ample, ad a quicly icreaig bia wih aroud 4% of he ample ize. Similar imulaio have bee carried ou for he oher wo model i Example ad 3, leadig alo o favorable reul. For ay model wih fiie righ edpoi, he ample pah of ˆx F depar from he ample maximum, alway reurig value beyod he ample. We hould highligh ha our eimaor ˆx F yield beer reul ha he maximum eimaor x F := X,, which alway udereimae he rue value x F. The relaive performace of boh x F ad ˆx F ca alo be eaily oberved if we compare he MSE graphic i Figure d row, righ: for he op par he ample, depedig o he β value, he eimaor ˆx F alway ouperform he maximum x F, preeig he ew eimaor a lower mea quared error ha he aive maximum eimaor. 6. Cae Sudy ad Cocluio Thi ecio i dedicaed o he eimaio of he fiie righ edpoi i he Gumbel maximum domai of aracio, which embrace ligh-ailed diribuio wih fiie edpoi. Here exreme value aalyi demad he eimaio of he righ edpoi, alhough he uderlyig diribuio ail i o o ligh a o be icluded i Weibull domai of aracio. Fraga Alve, de Haa, ad Neve 3, worig wih ahleic record daa, filled he gap, highlighed i Eimahl ad Magu 8, o aeig he ulimae record for everal ahleic eve. We here coider a applicaio o aiical exreme value aalyi of Achorage Ieraioal Airpor ANC Taxiway Ceerlie Deviaio for Boeig 747

12 8 ISABEL FRAGA ALVES AND CLÁUDIA NEVES Figure. ANCr daa: EVI eimaio wih Mome eimaor ad 95% cofidece badwidh, ploed agai. Aircraf, ee Scholz 3. The goal wa o provide a bai for uderadig he exreme behavior of ceerlie deviaio of he Boeig-747. Tha repor addreed he ri of a aircraf deviaig a a fixed locaio alog he axiway beyod a cerai hrehold diace from he axiway ceerlie. The B-747 axiway deviaio daa were colleced from 9/4/ o 9/7/ a ANC; durig hi period, 9,767 deviaio were recorded a ANC wih a rage of [-8.5, 8.863] fee, i boh direcio of he axiway. Baed o he exreme value limiig aumpio, poiive deviaio ANCr daa wih ample ize = 4, 9 were exrapolaed uig he = 385 mo exreme deviaio a ANC, he choe value of op obervaio o EVI eimaio, amely ˆγ =.395, Scholz 3. Figure depic he ample pah of ˆγ, he EVI eimae, uig he Mome eimaor of Deer, Eimahl, ad de Haa 989, alog wih he 95% cofidece badwidh, for he ANCr daa. I i eaily checed ha he raigh lie correpodig γ = i iide he cofidece badwidh for a very large upper par of he ample, i he graphic,. Coequely, he Gumbel domai of aracio cao be dicarded. Moreover, he eig procedure for deecig a fiie righ edpoi cf., Neve ad Pereira ugge he preece of a diribuio wih fiie righ edpoi uderlyig he ANC deviaio daa. Figure 3 depic he ample pah of our edpoi eimaor ˆx F agai. I he rage of 65, 3 he graph i quie able. If we rely o ha

13 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 83 Figure 3. edpoi eimaio. regio we ugge for a edpoi eimae a value of approximaely 9. f, hi for he period 9/4/ o 9/7/. We coclude ha he propoed eimaor ˆx F perform reaoably well for pare diribuio i he Gumbel domai wih fiie righ edpoi x F. The robue of he edpoi eimaor.3, uder Weibull domai of aracio, i a opic of furher reearch, bu beyod he pree cope. Acowledgeme We are graeful o Profeor Laure de Haa for iroducig he appropriae characerizaio of diribuio wih fiie righ edpoi i he Gumbel domai, a he origi of he propoed eimaor. We ha Friz Scholz Uiveriy of Wahigo, George Legarrea FAA, ad Jerry Robio Boeig for harig he axiway deviaio daa a he Achorage Ieraioal Airpor. We ha he aoymou referee for heir comme ad uggeio. Reearch parially uppored by FCT: PE-OE/MAT/UI6/ ad 4, EXTREMA-PTDC/MAT/736/8, DEXTE - EXPL/MAT-STA/6/3. Appedix A: Coiecy of ˆq/ Le U,..., U be idepede ad ideically diribued uiform radom variable o he ui ierval ad le U, U,... U, be heir order aiic. Sice = i a iermediae equece = o a, we ca

14 84 ISABEL FRAGA ALVES AND CLÁUDIA NEVES defie a equece of Browia moio { W } uch ha, for each ε >, 3 up +ε θ θ θ U [θ]+, W = o p, A. for all θ cf., Lemma.4. of de Haa ad Ferreira 6, wih γ =. Le X, X,... be i.i.d radom variable wih diribuio fucio F DG, wih fiie righ edpoi x F, uch ha.3 hold. Noe ha U/U i d =X i, i =,,.... I view of relaio.3, he followig hold: Ux U a = /x a a d + ax o + o, a for all x >. Give ha a RV, we obai for ufficiely large ha X [θ], U θ a U θ d θ U U [θ]+, θ = θ a a θ x θ a dx x. θ U [θ]+, θ The uiform iequaliie i Lemma C..ii ell u ha, for ay ε >, a /θ/ a /θ = ± ε ε, <. Sice U [θ]+, [, ] ad for every, ], we ge he upper boud X [θ], U /θ a /θ log log + = log U [θ]+, θ U[θ]+, θ U[θ]+, θ U [θ]+, θ + P, U[θ]+, θ ε + op + ε + o p, wih he o p -erm edig o zero uiformly for [θ, ]. A imilar lower boud i alo poible. We ca apply Cramér δ-mehod o relaio A. o obai X [θ], U a θ θ = log + θ W +o p / ε ± ε +o p, A.

15 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 85 a, uiformly for θ, θ. We coider he ormalized differece bewee a ample iermediae quaile ad correpodig heoreical quaile R θ := X [θ], U θ a A.3 θ = X [θ], U θ a X [θ], U θ + θ + U θ U θ. a θ a θ a θ a θ Bearig o A. combied wih he uiform iequaliie i Lemma C., we hu ge for ay ε >, R θ = log + W + / ε o p θ ± ε + o p ± ε ε log + log ± ε ε = W ± ε + o p ε ε log, A.4 θ for [θ, ], all θ. Thu he diribuio of deviaio bewee high large ample quaile ad heir heoreical couerpar i aaiable, wih a vaihig bia, by mea of a differe ormalizaio ha o he lef had-ide of A.. The wea covergece of ˆq/ i uppored o he laer. Propoiio. Le X, X,... be i.i.d. radom variable wih ail quaile fucio U aifyig.3. Suppoe = i a equece of poiive ieger uch ha, /, a. The ˆq / q / Proof. We begi by oig ha ˆq / q / = Û / Û / log q / = log p. d { X [], U q d X, U q We wrie ee Eq. A.3 wih θ = X [], U q d d + X [], U q d U U q X [], U q d d A.5 }.A.6

16 86 ISABEL FRAGA ALVES AND CLÁUDIA NEVES where = X [], U q I, = a/ { q R d + d =: I,, a a/ R d A.7 }. A.8 From Lemma C.., X [], U I, = q d a/ q R d a/ + R log d q/ a/ q + a/ q/ log R d, A.9 wih high probabiliy, for ufficiely large. We ca provide a imilar lower boud. Owig o A.4, for ay poiive ε, R d Sice ε > i arbirary, meaig ha W d + < ε ε log d. ε d = ε ε ε d ε d log ε, ca be dicarded. A imilar lie of reaoig applie o Le ε ε log d = ε log ε. ε ε Y := W d, be a equece of ormal radom variable wih zero mea, ad V ary = log. +op

17 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 87 Thu {Y } i a equece of degeerae radom variable, eveually, ad he wo iegral i A.5 vaih wih probabiliy edig o oe a. A a//q/ = o, oe ha a/ a/ I, = o p = o p = O p. q/ q/ For he fir iegral i A.6, X, U I, := q X, U = / d = a q/ d d q { U U, U a = a { log U, log + q/ log U U a log d } + op = a q/ log log U, log + op. The he probabiliy iegral raformaio yield } d log U, d = E, log, A. where E, i he maximum of i.i.d. adard expoeial radom variable. Hece, he radom variable A. coverge i diribuio o a Gumbel radom variable wih diribuio fucio exp{ e x }, x R. Moreover, a/q/, a, becaue a//q/ = o ee Lemma C. i Appedix C, where he auxiliary poiive fucio a aifie a, a, by aumpio. Therefore a I, = o p = O p. A. q/ We how ha he la iegral i A.6 i bouded. boud, U U d q/ U ad he lower boud, U / U / q/ d U q/ We eablih he upper d, A.

18 88 ISABEL FRAGA ALVES AND CLÁUDIA NEVES = U / + / U / + q / U +/ U + q d + d + / U +/ U q + d +. Maig = / ru o he real lie oward ifiiy, he Π variaio.4 follow lim U x d U d = log x, x >, A.3 q ad clearly eail he limi for he upper boud i A.: U d U d U d U q/ = Regardig he lower boud, we wrie U U d U q/ q q + U q/ U + q U + + d log. d + d + ad oe ha, for every ε >, here exi N uch ha for, + / < ε. I ur, U + U q + d + > U + U q + A.4, A.5 A.6 ε d. For he fir par of he righ-had ide here we ue A.3, while he ecod par i deal by Theorem B..9 of de Haa ad Ferreira 6 ivolvig he fac ha U Πa: U U + + q = log + o ε a / d + εa q U q / log + o log. + U a + d

19 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 89 For he laer, we recall ha a/ = o q/. Now we wrie δ = / > everywhere i A.5. Furhermore, we aume ha here exi N uch ha, for, he erm δ i large eough ad he iegral i A.5 ca rephraed a Iδ := δ U +δ δ U δ a d +δ δ d +δ. A.7 For every fixed δ >, from he Π-variaio of U wih for he umeraor of Iδ properly recaled by aδ cf., Theorem B..9 i de Haa ad Ferreira 6: δ U +δ δ U +δ δ d +δ log d = log + δ log. aδ δ + δ For arbirary mall δ, he laer approache zero. We he apply Cauchy rule o obai lim δ Iδ we recall ha δ implie. Apply Eq.. of Chiag o he umeraor of Iδ o ge δ U +δ δ U +δ 3 +δ δ d +δ 3 lim δ I δ = lim δ { + lim δ δ δ U δ +δ aδ δ U δ +δ aδ d Uδ Uδ } δ. + δ aδ Sice U = a/, he limi become equal o he he limi of a δ/ + δ a δ/ + δ d δ aδ aδ + δ U δ/ + δ U δ/ + δ +δ aδ δ d Uδ Uδ + δ aδ We ca ow ae ay arbirary mall δ maig i order o apply he uiform covergece of a RV ad U Πa o ha he above iegral are eured fiie ad he equal o zero by defiiio. Hece, all he erm are egligible a δ coverge o zero meaig ha lim δ Iδ U / U / q / d log. Coiecy of ˆq/ follow by oig ha q/ q /. Appedix B: Aympoic diribuio of ˆq/. become ull. Therefore, I order o eablih he aympoic diribuio of he propoed eimaor for q/ we eed iigh abou he diribuioal repreeaio obaied from

20 83 ISABEL FRAGA ALVES AND CLÁUDIA NEVES A.. Specifically, if he ail quaile fucio aifie 4., he Theorem.4. of de Haa ad Ferreira 6 acerai ha, for each ε >, up X [θ], U θ θ a + log W θa log θ θ θ /+ε p, provided =, / = o ad A / = O. We have he followig reul cf.,.4.7 of de Haa ad Ferreira 6. B. Propoiio B.. Give.3, uppoe 4. hold. Le =, / = o ad A/ λ R, a. The, for θ ad for each ε > ufficiely mall, up /+ε θ X [θ], U /θ θ a /θ W = o p. Proof. A wih he equaliy righ afer A.3, we have ha R θ := X [θ], U θ a = a { θ θ a X [θ], U θ θ a U θ U } θ θ a. θ Noig ha a a / = a a a a /, for all >, Lemma C. combied wih Remar C.. yield he expaio a a = a a a a q log + o = a + A log + o A, q a B. for all >. Here A RV ad a /a = + o A. Havig e /θ, we hu have from B., he uiform boud i C., ad he ecod equaliy i B., ha θ Rθ = W + A θ log ±ε ε log θ A θ W ε ε θ A θ + op ε + o p ε log A θ uiformly i. Hece, he aumpio ha A/ = O eail ha log/a /θ, wherea ε ε θa /θ virually become o / ε for each ε > arbirarily mall ad uiformly i [θ, ]. The o p -erm,

21 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 83 are uiform i [/θ, ]. Hece he followig repreeaio i valid for ε,, θ Rθ = W + o p / ε. Proof of he Theorem. We have q/ ˆq/ a/ q/ = { X a/ log [], U U / U / q d { J, J, } + q / q = log d log } a / log J 3,. X, U d B.3 By mimicig he ep from A.7 o A.8, we obai for he fir iegral above ha J, := = X [], U / a / R d + d a / a / R d. Hece, Propoiio B., while aumig ha a//q/ = O cf., Remar C. ad applicaio of he uiform boud i C.3 wih a := a + oa ad A := A, imply ha for each ε >, J, = W log d +o p log 3/+ε d + op A. Sice he iegral / W log d coverge o a um of idepede ormal radom variable, hi allow u o coclude ha he fir radom compoe i B.3 i egligible wih high probabiliy becaue J, = O p. We ow have ha J, := X, U a d

22 83 ISABEL FRAGA ALVES AND CLÁUDIA NEVES = a { log log a U, + a/ a +A log ±ε ε d }. log d We have ha a /a = o A ad A = A; hece a/ a log J, = log U, log = log U, log + log A + o. log ± ε ε d + o A Furhermore, aumig ha = i uch ha a/a/, he a/ a log J d, Λ log, where Λ deoe a Gumbel radom variable wih diribuio fucio exp{ e x }, x R cf., A.. If a/a/ coverge o a coa differe ha, he a chage i he cale i performed. The followig alo hold give C.3 ad ha A/ = O: log J d, Λ log. We ur o he bia erm J 3,. By aumpio, J 3, A/ = U / U / A/ q / d log λ, a. Therefore, ice A/ a//q/ cf., Remar C., he deermiiic erm J 3, reder a coribuio o he aympoic bia of q/ a/ log J 3, λ log. Appedix C: Auxiliary Reul Lemma C... Suppoe U Πa. The,

23 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 833 i here exi a poiive fucio a aifyig a a, a, uch ha for ay ε > here exi = ε uch ha, for,,, ], U U log a ε maxε, ε ; ii a RV ad for ay ε > here exi = ε uch ha, for,,, ], a a ε maxε, ε.. Suppoe a > i a lowly varyig fucio, iegrable over fiie ierval of R + uch ha a d < for every >. The a, a, ad lim a a d =. Proof. Par.i of he Lemma come from de Haa ad Ferreira 6 cf., Propoiio B..7, while ii i a reul from Dree 998 cf., Propoiio B.. of de Haa ad Ferreira 6. The ecod par follow from Karamaa heorem for regularly varyig fucio cf., Theorem B..5 of de Haa ad Ferreira 6. Lemma C.. Uder A ad B, ax/a lim = log x, x >. a/q Proof. The uderlyig aumpio ha U Πa eail q ax a a q Ux U ax = Ux U a a q ax = Ux U log x a + o. Furhermore, accordig o.3, q Ux U = x a d a d = + + o x x a d a d C. + o. By aig he limi of he laer erm whe, we ge from Cauchy rule ogeher wih he fudameal heorem of iegral calculu ha x lim x a d a d ax ax = lim ax a = lim a.

24 834 ISABEL FRAGA ALVES AND CLÁUDIA NEVES Afer C., we ge q ax a a = log x + x x d a a d ax a + o ax = log x + log x a + o. I addiio o he ecod order codiio 4., Theorem.3.6 of de Haa ad Ferreira 6 acerai he exiece of fucio a ad A aifyig, a, A A ad a /a = o A, wih he propery ha for ay ε >, here exi = ε uch ha for all, x, Ux U/a log x A log x ε maxx ε, x ε, C. a x/a log x A ε maxxε, x ε. C.3 Remar C.. Relaio C.3, combied wih Lemma C., acerai ha a /q = ca, wih c becaue ρ = γ = cf., Eq. B.3.4 ad Remar B.3.5 i de Haa ad Ferreira 6. Hece he aumpio i hi paper ha he fucio q ca be redefied i order ha a/q A i aified. Referece Balema, A. A. ad de Haa, L Reidual life ime a grea age. A. Probab., Cai, J. J., de Haa, L., ad Zhou, C. 3. Bia correcio i exreme value aiic wih idex aroud zero. Exreme 6, 73-. Chiag, A. C.. Eleme of Dyamic Opimizaio. Wavelad Pre. de Haa, L. 97. O Regular Variaio ad i Applicaio o he Wea Covergece of Sample Exreme. Mahemaich Cerum Amerdam. de Haa, L. ad Ferreira, A. 6. Exreme Value Theory: A Iroducio. Spriger. Deer, A., Eimahl, J. ad de Haa, L A mome eimaor for he idex of a exreme value diribuio. A. Sai. 7, Dree, H O mooh aiical ail fucioal. Scad. J. Saic. 5, 87-. Eimahl, J. H. J. ad Magu, J. R. 8. Record i Ahleic hrough Exreme-Value Theory. J. Amer. Sai. Aoc. 3, Fal, M Some be parameer eimae for diribuio wih fiie edpoi. Saiic 7, 5-5. Fiher, R. A. ad Tippe, L. H. C. 98. Limiig form of he frequecy diribuio of he large ad malle member of a ample. Cambridge Philoophical Sociey. Mahemaical Proceedig 4, 8-9. Fraga Alve, I., de Haa, L. ad Neve, C. 3. How far ca Ma go? I Advace i Theoreical ad Applied Saiic, Torelli, N., Peari, F., ad Bar-He, A., edior, Spriger, Berli Heidelberg.

25 ENDPOINT ESTIMATION IN GUMBEL DOMAIN 835 Garde, L., Girard, S. ad Guillou, A.. Weibull ail-diribuio reviied: A ew loo a ome ail eimaor. J. Sai. Pla. Iferece 4, Girard, S., Guillou, A. ad Supfler, G.. Eimaig a edpoi wih high-order mome. TEST, Gedeo, B. V Sur la diribuio limie du erme maximum d ue érie aléaoire. Aal. Mah. 44, Goegebeur, Y., Beirla, J. ad De We, T.. Geeralized erel eimaor for he Weibull ail coefficie. Comm. Sai. Theory Mehod 39, Hall, P. 98. O eimaig he edpoi of a diribuio. A. Sai., Hall, P. ad Wag, J. Z Eimaig he ed-poi of a probabiliy diribuio uig miimum-diace mehod. Beroulli 5, Li, D. ad Peg, L. 9. Doe bia reducio wih exeral eimaor of ecod order parameer wor for edpoi? J. Sai. Pla. Iferece 39, Li, D., Peg, L. ad Xu, X.. Bia reducio for edpoi eimaio. Exreme 44, Li, Z. ad Peg, L.. Boorappig edpoi. Sahyā 74, 6-4. Neve, C. ad Pereira, A.. Deecig fiiee i he righ edpoi of ligh-ailed diribuio. Sai. Probab. Le. 8, Scholz, F. W. 3. Saiical exreme value aalyi of ANC axiway ceerlie deviaio for 747 aircraf. FAA/Boeig Cooperaive Reearch ad Developme Agreeme - CRDA-64. hp:// ANC_747.pdf CEAUL ad DEIO, Faculy of Sciece Uiveriy of Libo, Libo -38, Porugal. iabel.alve@fc.ul.p Deparameo de Maemáica, Uiveridade de Aveiro, Campu Uiveriario Saiago, Porugal. claudia.eve@ua.p Received July 3; acceped Jauary 4

arxiv: v1 [math.st] 6 Jun 2013

arxiv: v1 [math.st] 6 Jun 2013 Eimaio of he fiie righ edpoi i he Gumbel domai Iabel Fraga Alve CEAUL ad DEIO Cláudia Neve CEAUL ad Uiveriy of Aveiro arxiv:306.45v [mah.st] 6 Ju 03 FCUL, Uiveriy of Libo Abrac A imple eimaor for he fiie

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

B. Maddah INDE 504 Simulation 09/02/17

B. Maddah INDE 504 Simulation 09/02/17 B. Maddah INDE 54 Simulaio 9/2/7 Queueig Primer Wha is a queueig sysem? A queueig sysem cosiss of servers (resources) ha provide service o cusomers (eiies). A Cusomer requesig service will sar service

More information

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May

Exercise 3 Stochastic Models of Manufacturing Systems 4T400, 6 May Exercise 3 Sochasic Models of Maufacurig Sysems 4T4, 6 May. Each week a very popular loery i Adorra pris 4 ickes. Each ickes has wo 4-digi umbers o i, oe visible ad he oher covered. The umbers are radomly

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Fresnel Dragging Explained

Fresnel Dragging Explained Fresel Draggig Explaied 07/05/008 Decla Traill Decla@espace.e.au The Fresel Draggig Coefficie required o explai he resul of he Fizeau experime ca be easily explaied by usig he priciples of Eergy Field

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science MAY 2006 EXAMINATIONS ECO220Y1Y PART 1 OF 2. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science MAY 2006 EXAMINATIONS ECO220Y1Y PART 1 OF 2. Duration - 3 hours UNIVERSITY OF TORONTO Faculy of Ar ad Sciece MAY 6 EXAMINATIONS ECOYY PART OF Duraio - hour Eamiaio Aid: Calculaor, wo piece of paper wih ay yped or hadwrie oe (ma. ize: 8.5 ; boh ide of paper ca be ued)

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Review Exercises for Chapter 9

Review Exercises for Chapter 9 0_090R.qd //0 : PM Page 88 88 CHAPTER 9 Ifiie Series I Eercises ad, wrie a epressio for he h erm of he sequece..,., 5, 0,,,, 0,... 7,... I Eercises, mach he sequece wih is graph. [The graphs are labeled

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE

TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE TESTING FOR STRUCTURAL STABILITY IN THE WHOLE SAMPLE JAVIER HIDALGO AND MYUNG HWAN SEO Abrac. Teig for rucural abiliy ha araced a lo of aeio i heoreical ad applied reearch. Ofeime he e i baed o he upremum

More information

Department of Mathematical and Statistical Sciences University of Alberta

Department of Mathematical and Statistical Sciences University of Alberta MATH 4 (R) Wier 008 Iermediae Calculus I Soluios o Problem Se # Due: Friday Jauary 8, 008 Deparme of Mahemaical ad Saisical Scieces Uiversiy of Albera Quesio. [Sec.., #] Fid a formula for he geeral erm

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Comparisons Between RV, ARV and WRV

Comparisons Between RV, ARV and WRV Comparisos Bewee RV, ARV ad WRV Cao Gag,Guo Migyua School of Maageme ad Ecoomics, Tiaji Uiversiy, Tiaji,30007 Absrac: Realized Volailiy (RV) have bee widely used sice i was pu forward by Aderso ad Bollerslev

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA

A Generalized Cost Malmquist Index to the Productivities of Units with Negative Data in DEA Proceedigs of he 202 Ieraioal Coferece o Idusrial Egieerig ad Operaios Maageme Isabul, urey, July 3 6, 202 A eeralized Cos Malmquis Ide o he Produciviies of Uis wih Negaive Daa i DEA Shabam Razavya Deparme

More information

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications

Functional Weak Laws for the Weighted Mean Losses or Gains and Applications Applied Mahemaic 5 6 847-863 Publihed Olie May 5 i SciRe hp://wwwcirporg/joural/am hp://dxdoiorg/436/am56579 Fucioal Wea Law for he Weighed Mea Loe or Gai ad Applicaio Gae Samb Lo Serige Touba Sall 3 Pape

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Weak Solutions of Mean Field Game Master Equations

Weak Solutions of Mean Field Game Master Equations Weak Soluio of Mea Field Game Maer Equaio Cheche Mou ad Jiafeg Zhag March 5, 19 Abrac I hi paper we udy maer equaio ariig from mea field game problem, uder he Lary-Lio moooiciy codiio. Claical oluio of

More information

THE HORIZON OF PREDICTION FOR EXCHANGE RATE EUR-LEU

THE HORIZON OF PREDICTION FOR EXCHANGE RATE EUR-LEU Aal of he Uiveriy of Peroşai Ecoomic 12(2) 212 85-92 85 THE HORIZON OF PREDICTION FOR EXCHANGE RATE EUR-LEU DUMITRU CIOBANU ABSTRACT: For he chaoic yem he fac ha hey are deermiiic doe o make hem predicable

More information

F D D D D F. smoothed value of the data including Y t the most recent data.

F D D D D F. smoothed value of the data including Y t the most recent data. Module 2 Forecasig 1. Wha is forecasig? Forecasig is defied as esimaig he fuure value ha a parameer will ake. Mos scieific forecasig mehods forecas he fuure value usig pas daa. I Operaios Maageme forecasig

More information

Calculus BC 2015 Scoring Guidelines

Calculus BC 2015 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies 5 The College Board. College Board, Advaced Placeme Program, AP, AP Ceral, ad he acor logo are regisered rademarks of he College Board. AP Ceral is he official olie home

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

LIMITS OF FUNCTIONS (I)

LIMITS OF FUNCTIONS (I) LIMITS OF FUNCTIO (I ELEMENTARY FUNCTIO: (Elemeary fucios are NOT piecewise fucios Cosa Fucios: f(x k, where k R Polyomials: f(x a + a x + a x + a x + + a x, where a, a,..., a R Raioal Fucios: f(x P (x,

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM

Approximating Solutions for Ginzburg Landau Equation by HPM and ADM Available a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 193-9466 Vol. 5, No. Issue (December 1), pp. 575 584 (Previously, Vol. 5, Issue 1, pp. 167 1681) Applicaios ad Applied Mahemaics: A Ieraioal Joural

More information

Chapter Chapter 10 Two-Sample Tests X 1 X 2. Difference Between Two Means: Different data sources Unrelated. Learning Objectives

Chapter Chapter 10 Two-Sample Tests X 1 X 2. Difference Between Two Means: Different data sources Unrelated. Learning Objectives Chaper 0 0- Learig Objecives I his chaper, you lear how o use hypohesis esig for comparig he differece bewee: Chaper 0 Two-ample Tess The meas of wo idepede populaios The meas of wo relaed populaios The

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists

CSE 241 Algorithms and Data Structures 10/14/2015. Skip Lists CSE 41 Algorihms ad Daa Srucures 10/14/015 Skip Liss This hadou gives he skip lis mehods ha we discussed i class. A skip lis is a ordered, doublyliked lis wih some exra poiers ha allow us o jump over muliple

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is Exercise 7 / page 356 Noe ha X i are ii from Beroulli(θ where 0 θ a Meho of momes: Sice here is oly oe parameer o be esimae we ee oly oe equaio where we equae he rs sample mome wih he rs populaio mome,

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION

REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information