Weak Solutions of Mean Field Game Master Equations

Size: px
Start display at page:

Download "Weak Solutions of Mean Field Game Master Equations"

Transcription

1 Weak Soluio of Mea Field Game Maer Equaio Cheche Mou ad Jiafeg Zhag March 5, 19 Abrac I hi paper we udy maer equaio ariig from mea field game problem, uder he Lary-Lio moooiciy codiio. Claical oluio of uch equaio ypically require very rog echical codiio. Moreover, ulike he equaio ariig from mea field corol problem, he mea field game maer equaio are o-local ad eve claical oluio ofe do o aify he compario priciple, o he adard vicoiy oluio approach eem ifeaible. We hall propoe wo oio of weak oluio for uch equaio: oe i i he piri of vaihig vicoiy oluio, relyig o he abiliy reul; ad he oher i i he piri of Sobolev oluio, baed o he iegraio by par formula. We hall prove exiece ad uiquee of weak oluio i boh ee. For he crucial regulariy i erm of he meaure, we coruc a mooh mollifer for fucio o Waerei pace, which i ew i he lieraure ad i iereig i i ow righ. I order o focu o he mai idea, i hi paper we coider oly a very pecial cae, ad he more geeral cae will be udied i a accompayig paper. Keyword. Mea field game, maer equaio, forward-backward SDE, weak oluio, Sobolev oluio, Waerei pace AMS Mahemaic ubjec claificaio: 35R15, 6H3, 93E Deparme of Mahemaic, Uiveriy of Califoria, Lo Agele, CA mucheche@mah.ucla.edu. Deparme of Mahemaic, Uiveriy of Souher Califoria, Lo Agele, CA jiafez@uc.edu. 1

2 1 Iroducio Iiiaed idepedely by Caie, Huag, & Malhame 6 ad Lary & Lio 16, mea field game ad he cloely relaed mea field corol problem have received very rog aeio i he pa decade. Such problem coider limi behavior of large yem where he age ierac wih each oher i cerai ymmeric way, wih he yemic rik a a oable applicaio. here have bee umerou publicaio o he ubjec, ee e.g. Cardaliague 7, Beoua, Frehe, & Yam 3, Carmoa & Delarue 9, 1, ad he referece herei. he maer equaio i a powerful ad ieviable ool i hi framework, which play he role of he PDE i he adard lieraure of corol ad game. he mai feaure of maer equaio i ha i ae variable coai probabiliy meaure, ypically he diribuio of cerai uderlyig ae proce, o i ca be viewed a a PDE o Waerei pace. By aure hi i a ifiie dimeioal problem. Maer equaio i alo a coveie ool for (adard) corol problem wih parial iformaio, ee e.g. Badii, Coo, Fuhrma, & Pham 1, ad Saporio & Zhag, ad for ime icoie problem, ee e.g. Wu & Zhag. Due o i ifiie dimeioaliy aure, claical oluio of maer equaio require very rog echical codiio, ee e.g. Buckdah, Li, Peg, & Raier 5, Cardaliague, Delarue, Lary, & Lio 8, Chaageux, Cria, & Delarue 11, ad Saporio & Zhag, a well a Gagbo & Swiech 14, 15 ad Beoua & Yam 4 for fir order maer equaio. here have alo bee ome eriou effor o vicoiy oluio for maer equaio ariig from corol problem, ee e.g. Pham & Wei 19 ad Wu & Zhag. However, mea field game maer equaio have a quie differe aure: i i o-local ad eve claical oluio ypically do o aify he compario priciple. herefore, he vicoiy oluio approach eem ifeaible. here i a cry for a appropriae oio of weak oluio for mea field game maer equaio, which i he mai goal of hi paper. A i adard lieraure, we hall aume he Lary-Lio moooiciy codiio o he coefficie. Noe ha he maer equaio i o characerize he value fucio of he mea field game problem a i equilibrium. he moooiciy codiio i o guaraee he uiquee of he equilibrium ad hu i eeial for he heory. Whe hi codiio i violaed, he mea field game problem may have muliple equilibrium wih muliple value, he he meaig of he value fucio i o clear, o o meio he maer equaio characerizig he value fucio. We remark ha Feiei, Rudloff, & Zhag 13 udy he e of all value for ozero um game problem wih muliple equilibrium, which could be a appropriae approach for mea

3 field game wihou he moooiciy codiio. We hall propoe wo ew oio of weak oluio for mea field game maer equaio ad eablih heir wellpoede. he fir oe i i he piri of vaihig vicoiy oluio, ad we hall call i a vaihig weak oluio. Roughly peakig, we fir mollify he coefficie of he maer equaio ad le V deoe he claical oluio o he mollified maer equaio. Uder cerai abiliy propery, he limi of V will be he deired weak oluio of he origial maer equaio. here are ome major difficulie i hi approach hough. Fir, for fucio of probabiliy meaure, i mooh mollifier i by o mea eay ad doe o eem o be udied i he lieraure, o he be of our kowledge. hu we hall fir coruc a mooh mollifier for fucio o Waerei pace of probabiliy meaure. Our mai idea i o fir dicreize he uderlyig meaure ad he o mollify he coefficie of he ivolved Dirac meaure. he mai feaure of our mollifier i ha i keep he Lipchiz coa for Lipchiz coiuiy uder 1-Waerei diace (bu o for -Waerei diace). We hall obai he uiform covergece for V ielf ad cerai L 1 -ype of covergece for µ V, provided i exiece ad coiuiy. We believe our mollifier i iereig i i ow righ ad could be ueful for relae field beyod mea field game. A more fudameal difficuly i ha he exiece of claical oluio for he mollified maer equaio over arbirary ime ierval require he moooiciy codiio. Uforuaely, our mollifier doe o maiai hi codiio, ad we are o opimiic for fidig aoher mollifier which could do o. o overcome hi difficuly, we iead uilize he local (i ime) claical oluio for he mollified maer equaio, whoe exiece doe o require he moooiciy codiio. We ex pach he local oluio io a global oe. Such idea ha bee ued uccefully i he lieraure of forward backward SDE, ee e.g. Delarue 1, Zhag 3, ad Ma, Wu, Zhag, & Zhag 17. he key i o obai ome uiform eimae, uder he moooiciy codiio o he coefficie of he origial maer equaio. We hall eablih hee eimae a well a he crucial abiliy reul, uder weaker codiio ha hoe required for claical oluio heory, which will imply he exiece ad uiquee of our vaihig weak oluio. We ex propoe Sobolev oluio for maer equaio, by uig he iegraio by par formula. We remark ha, ulike he mea field corol maer equaio which are ofe oliear o µ V, he parial derivaive of he value fucio V wih repec o he probabiliy meaure, he mea field game equilibrium i defied hrough cerai fixed poi procedure ad coequely he mea field game maer equaio i alway liear i erm of µ V a well a i furher derivaive. hi make i appropriae o apply he iegraio 3

4 by par formula, a lea whe here i oly drif corol o ha he erm xx V i alo liear. We hall alo eablih boh he exiece ad uiquee of Sobolev oluio. We remark ha i our eig he Sobolev oluio require he exiece of µ V. A a by produc, we eablih a poiwie probabiliic repreeaio formula for µ V. A aleraive formula i implied i 8 by uig a forward backward PDE yem whoe iiial codiio i he derivaive of a Dirac meaure. Our repreeaio formula ue he rog oluio o a forward backward SDE yem ad hold uder weak codiio. However, he coecio bewee he wo formulae i o clear. We alo remark ha, while boh he exiece ad uiquee of our Sobolev oluio rely o he moooiciy codiio, for our vaihig weak oluio he moooiciy codiio i required oly for he exiece bu o for he uiquee. Fially, we oe ha he heory ivolve may oaio ad very echical argume. I order o focu o he mai idea, i hi paper we coider oly a very pecial maer equaio. We hall exed our reul o more geeral cae i a accompayig paper. he re of he paper i orgaized a follow. I Secio we coruc a mooh mollifier for fucio of probabiliy meaure. I Secio 3 we iroduce he mea field game ad he aociaed maer equaio, i a heuriic way. Secio 4 i devoed o he uiform regulariy of he value fucio ad he abiliy reul. I Secio 5 we udy claical oluio V of maer equaio over mall ime ierval. I paricular, we provide a poiwie probabiliic repreeaio formula for µ V. Fially, i Secio 6 ad 7 we propoe wo oio of weak oluio for our maer equaio ad eablih heir wellpoede. A mooh mollifier o Waerei pace.1 he baic eig Le, be a fiie ime horizo, := R/Z he (1-dimeioal) oru. Noe ha ay fucio ϕ o ca be viewed a a periodic fucio o R wih period 1: ϕ(x + 1) = ϕ(x) for all x R. hroughou he paper we hall o diiguih hee wo equivale view. Le P deoe he e of all probabiliy meaure o. I paricular, for x, δ x P deoe he Dirac-meaure. Noe ha, ice i bouded, x p µ(dx) < for all p 1 ad µ P. Iroduce he p-waerei diace: { (E X W p (µ, ν) := if Y p ) } 1 p : for all r.v. X, Y uch ha L X = µ, L Y = ν. (.1) 4

5 A above X, Y are -valued radom variable o arbirary probabiliy pace ad L i he law of he radom variable. I paricular, whe p = 1 we have he dual repreeaio: { } W 1 (µ, ν) = up ϕ(x)µ(dx) ν(dx) : ϕ C 1 (; R) uch ha ϕ() =, ϕ 1.(.) We deoe P p := (P, W p ) whe here i a eed o emphaize he diace W p. Coider a fucio U : P R. By 7, 1, he derivaive of U ake he form µ U : P R aifyig: for all -valued radom variable ξ, η uch ha L ξ = µ, U(L ξ+η ) U(µ) = E µ U(µ, ξ)η + o( η ). (.3) Remark.1 (i) For ay p 1, P p i compac, coequely ay µ C (P p ) i bouded ad uiformly coiuou. However, hi i o rue whe i replaced wih R. (ii) For fixed µ, µ U(µ, ) i uique µ-a.. However, for U C 1 (P ), amely µ U exi ad i coiuou o P, he µ U(µ, x) i uique for all (µ, x). Give U C 1 (P ), we may defie x µ U ad µ µ U i obviou ee, ad we may defie higher order derivaive i he ame maer. Oe crucial propery of mooh U i he Iô formula, which play a impora role i he heory. o be precie, deoe Θ :=, P, ad le U C 1,, (Θ), amely U : Θ R i coiuou, U, x U, xx U, µ U(, x, µ, x), ad x µ U(, x, µ, x) exi ad are coiuou. he for ay dx = b d + σ db, where B i a Browia moio, he followig Iô formula hold (cf., e.g., 5, 11): du(, X, L X ) = U + x Ub + 1 xxuσ (, X, L X )d + x U(, X, L X )σ db +Ẽ µ U(, X, L X, X ) b + 1 x µ U(, X, L X, X ) σ d, (.4) where ( X, b, σ) i a idepede copy of (X, b, σ), ad wih repec o ( X, b, σ) for give X. Ẽ i he codiioal expecaio. Corucio of a mooh mollifier he mai purpoe of hi ubecio i o coruc a mooh mollifier for U C (P 1 ), which i ew i he lieraure, o our be kowledge. he idea work for C (P 1 (R d )), bu for impliciy we focu o C (P 1 ()) here. We proceed i wo ep. Sep 1. Dicreizaio of µ P. Fix 3 ad deoe x i := i, i =,,. Oe aive corucio i o approximae µ wih 1 ψ i= i (µ)δ xi, where ψ i (µ) := µ(x i, x i+1 )). 5

6 However, ice 1 xi,x i+1 ) i dicoiuou, oe ca eaily check ha ψ i / C 1 (P ), which i a obacle for he moohe of U we will coruc. o ge aroud of hi difficuly, we iroduce a fucio I = I C (, 1) uch ha I(x) = 1 for x 1 3, I(x) = 1 x for 1 x 1 1, I(x) = for x ; I 1, I, ad I(x) + I(1 x) = 1. We ex defie, for i =,,, ad x, (.5) φ i (x) := I ( x x i ) 1 xi 1,x i+1 (x). (.6) he oe ca verify raighforwardly ha φ i C (), φ i 1, ad for ay x x i, x i+1 : φ i (x) + φ i+1 (x) = 1, φ j (x) = for j i, i + 1. (.7) For each µ P, deoe µ := ψ i (µ)δ xi, where ψ i (µ) := φ i (x)µ(dx). (.8) Noe ha µ ψ i (µ, x) = φ i (x), he clearly ψ i C (P ). Moreover, µ () = φ i (x)µ(dx)δ xi () = φ i (x)µ(dx) = µ() = 1. hi implie ha µ P. Sep. Mollificaio of U. We fir defie Ũ (µ) := U(µ ) = U ( ) ψ i (µ)δ xi. (.9) Sice µ i a dicree meaure, oe ca mollify Ũ hrough he coefficie ψ i (µ). However, oe ha {ψ i (µ)} 1 i i a (dicree) probabiliy ad U i defied oly o probabiliy meaure, we eed ome pecial reame for he mollificaio. o be precie, deoe := {y = (y 1,, y 1 ) : y i 1 } R 1, ad we alway deoe y 3 := 1 y i. he y i = ad y 1. Defie µ (y) := ψ i (µ, y)δ xi, where ψi (µ, y) := ψ i(µ) + y i. (.1) Noe ha ψ i (µ, y), ψ i (µ, y) = ψ i (µ) + y i = = 1. ha i, µ (y) P for all y. Now le ζ be a mooh deiy fucio wih uppor, ad defie U (µ) := ζ (y)u ( µ (y) ) dy. (.11) 6

7 .3 he covergece reul heorem. Le U C (P 1 ) ad U be defied by (.11). he (i) U C (P ) ad lim U U =, where U := up µ P U(µ). (ii) If U i Lipchiz coiuou uder W 1 wih Lipchiz coa L, he U i uiformly Lipchiz coiuou uder W 1 wih he ame Lipchiz coa L. (iii) If U C 1 (P ), he lim up µ U (µ, x) µ U(µ, x) dx =. µ P Remark.3 (i) If U i Lipchiz coiuou uder W wih Lipchiz coa L, we are o able o how ha U i uiformly Lipchiz coiuou uder W wih he ame L. Neverhele, ice W 1 W, o uder he codiio i heorem. (ii) we ee ha U i alo uiformly Lipchiz coiuou uder W wih he ame Lipchiz coa L. (ii) I heorem. (iii), our U doe o aify (recallig Remark.1 (ii)) lim up (µ,x) P µ U (µ, x) µ U(µ, x) =. See Example.4 below. I will be iereig o kow if here exi a aleraive mollifier uch ha he above uiform covergece hold for U C 1 (P ). Neverhle, he covergece of µ U we obai here i ufficie for our udy of Sobolev oluio i Secio 7. Example.4 Le U(µ) = g(x)µ(dx) for ome mooh fucio g. he U (µ) = = ζ (y) + 1 Noe ha µ U(µ, x) = g (x) ad µ U (µ, x) = ψ i(µ) + y i g(x i )dy 1 + ψ i(µ) g(x i ) + ζ (y) + 1 R 1 µ ψ i (µ, x)g(x i ) = + 1 y i g(x i )dy. φ i(x)g(x i ) By (.5) ad (.6), we ee ha φ i (x j) = for all i, j, ad hu µ U (µ, x j ) =. herefore, aumig g 1, µ U(µ, x j ) µ U (µ, x j ) = g (x j ) 1. Proof of heorem.. (i) For z R 1, deoe κ i (µ, z) := z i ψ i (µ) 1, κ(µ, z) := (κ 1(µ, z),, κ 1 (µ, z)), z := + 1 z i. 1 7

8 Le := {z R 1 : κ(µ, z) }. I i clear ha +1 z iδ xi P for z, ad U (µ) = ζ (κ(µ, z))u( z i δ xi )dz. (.1) + 1 Sice φ i (x) i mooh, he clearly ψ i C (P ) ad hu κ i (, z) C (P ) for ay z. Now ice ζ i alo mooh, we ee ha U C (P ). Nex, recall (.) ad le ϕ C 1 (; R) aify ϕ() =, ϕ 1. he, for ay y, ϕ(x)µ (y)(dx) µ(dx) = ψ i (µ, y)ϕ(x i ) ϕ(x)µ(dx) = 1 ψ i (µ)ϕ(x i ) ϕ(x)µ(dx) + ψ i (µ)ϕ(x i ) ψ i (µ)ϕ(x i ) y i ϕ(x i ) xi+1 ϕ(x i ) φ i (x)µ(dx) ϕ(x)µ(dx) + C x i 1 xi+1 ϕ(x i )φ i (x) + ϕ(x i+1 )φ i+1 (x)µ(dx) φ i (x) + φ i+1 (x)ϕ(x)µ(dx) + C x i xi+1 x i xi+1 ϕ(x i ) ϕ(x) φ i (x) + ϕ(x i+1 ) ϕ(x) φ i+1 (x)µ(dx) + C x i φ i (x) + φ i+1 (x)µ(dx) + C C. hi implie ha W 1 (µ, µ) C. By Remark.1 (i), U i uiformly coiuou i P 1, he we ee ha U (µ) = U(µ ) coverge o U(µ) uiformly. (ii) Le µ, ν P 1. For ϕ C 1 (; R) aifyig ϕ() =, ϕ 1 ad y, we have ϕ(x)µ (y)(dx) ν (y)(dx) = ψ i (µ, y) ψ i (ν, y)ϕ(x i ) = + 1 ψ i (µ) ψ i (ν)ϕ(x i ) = ϕ(x)µ(dx) ν(dx) (.13) where ϕ(x) := +1 φ i(x)ϕ(x i ). Noe ha, for x x i, x i+1, we have ϕ(x) = φi (x)ϕ(x i ) + φ i+1 (x)ϕ(x i+1 ) = φi (x)ϕ(x i ) + 1 φ i (x)ϕ(x i+1 ) he, by (.5), ϕ (x) = φ + 1 i(x)ϕ(x i ) ϕ(x i+1 ) φ i(x) + 1 I ((x x i )) + 1 (1 + 1 ) = 1. 8

9 hi, ogeher wih (.13), implie ha W 1 (µ (y), ν (y)) W 1 (µ, ν). he U (µ) U (ν) ζ (y) U(µ (y)) U(ν (y)) dy ζ (y)lw 1 (µ (y), ν (y))dy ζ (y)lw 1 (µ, ν)dy = LW 1 (µ, ν). hi i he deired uiform Lipchiz coiuiy. (iii) We fir expre µ U i erm of µ U. Recall (.3). Fix ξ ad η uch ha L ξ = µ. For each y ad > mall, le ξ (y) be a dicree radom variable uch ha L ξ(y) = µ (y), amely P(ξ (y) = x i ) = ψ i (µ, y). We hall coruc a radom variable η (, y) uch ha P(ξ (y) + η (, y) = x i ) = ψ i (L ξ+η, y). For hi purpoe, we hall fir coruc ome fucio p i (, y) aifyig p i (, y) ψ i (µ, y), ad he e η (, y) akig wo value: ad 1 wih P(ξ (y) = x i, η (, y) = 1 ) = p i(, y). Noe ha ψ i (L ξ+η, y) = P(ξ (y) + η (, y) = x i ) = P(ξ (y) = x i, η (, y) = ) + P(ξ (y) = x i 1, η (, y) = 1 ) = ψ i (µ, y) p i (, y) + p i 1 (, y). Le C be a coa which will be pecified laer. For i = 1,,, e p i (, y) := C i j=1 ψ j (L ξ+η, y) ψ j (µ, y) = C + 1 i ψ j (L ξ+η ) ψ j (µ),(.14) Oe ca eaily how ha i j=1 ψ j(l ξ+η ) ψ j (µ) C, for a coa C > which may deped o ad η, bu idepede of. he p i (, y). Moreover, oe ha y i 1 3 for i = 1,, 1 ad y 1 y i 1, by (.1) we have ψ i (µ, y) = j=1 1 ( + 1), he p i (, y) C ψ i (µ, y) for mall. hu he deired η (, y) ca be coruced. Now by (.3), we have U (L ξ+η ) U (L ξ ) = ζ (y)u(l ξ(y)+η(,y)) U(L ξ )dy 1 = ζ (y) E µ U(L ξ(y)+θη(,y), ξ + θη (, y))η (, y) dθdy = 1 1 ζ (y) µ U(L ξ(y)+θη(,y), x i + θ )p i(, y) dθdy 9

10 By he uiform coiuiy of µ U, we have Noe ha, by (.14), E µ U (µ, ξ)η 1 = lim U (L ξ+η ) U (L ξ ) = 1 1 ζ (y) µ U(L ξ(y), x i + θ ) lim p i (, y) dθdy. p i (, y) lim = C + 1 i E µ ψ j (µ, ξ)η = C + 1 j=1 i E φ j(ξ)η. j=1 he E µ U (µ, ξ)η = C 1 ζ (y) + 1 ζ (y) 1 1 µ U(L ξ(y), x i + θ ) dθdy µ U(L ξ(y), x i + θ i ) E φ j(ξ)η dθdy. j=1 Noe ha he lef ide ad he ecod lie of he above equaliy do o deped o C, ad followig our argume he choice of C i o uique, he we mu have ad hece ζ (y) 1 µ U(L ξ(y), x i + θ ) dθdy =, E µ U (µ, ξ)η = 1 1 ζ (y) + 1 hi implie µ U (µ, x) = 1 1 ζ (y) + 1 µ U(L ξ(y), x i + θ i ) E φ j(ξ)η dθdy. j=1 µ U(L ξ(y), x i + θ i ) φ j(x) dθdy. Moreover, for x x k, x k+1 ), we have i j=1 φ j (x) = φ k (x)δ i,k. he µ U (µ, x) = 1 1 ζ (y) µ U(L + 1 ξ(y), x k + θ )φ k (x) dθdy (.15) = µ U(µ, x) φ k (x) + o(1), for large. Recall (.5) ad (.7), we ee ha 1 φ k (x) = I ((x x k )) ad hu 1 φ k (x) = 1 for 1 (x x k) 1 1, ad φ k. 1 j=1

11 hu 1 µ U (µ, x) µ U(µ, x) dx = 1 = k= 1 C x k + 1 xk+1 + x k x k+1 1 k= x k + 1 x k + hi complee he proof. xk+1 x k+1 1 k= xk+1 x k µ U(µ, x)1 + φ k (x) dx + o(1) C µ U(µ, x)1 + φ k (x) dx + o(1) dx + o(1) + o(1) = o(1). 3 A mea field game ad he maer equaio Le (Ω, F, F, P) be a filered probabiliy pace, B i a F-Browia moio, ad F = F F B. We aume F i rich eough o uppor ay µ P. Give (, µ), P ad a Markovia (for impliciy) corol α A := L (, R), coider he followig SDE: X,µ,α = ξ + α r (X,µ,α r )dr + B,,, (3.1) where B := B B ad ξ L (F ) wih L ξ = µ. By Giraov heorem, he above SDE ha a uique weak oluio. Whe µ = δ x, we may alo deoe i a X,x,α. Now fix θ = (, x, µ) Θ ad α A, coider he followig opimizaio problem: J(θ; α, α ) := E P G(X,x,α V (α; θ) := up J(θ; α, α ),, L X,µ,α) + α A F (X,x,α where F, G : P R are meaurable i all variable. where, L X,µ,α ) 1 α (X,x,α ) d, (3.) Defiiio 3.1 We ay α A i a mea field equilibrium (MFE) of (3.) a (, µ) if V (α ;, x, µ) = J(, x, µ; α, α ) for µ-a.e. x. We remark ha a MFE i local i (, µ), bu i global i x. Whe here i a uique MFE for each (, µ), deoed a α (, µ), he clearly he game problem lead o a value fucio: V (, x, µ) := V (α (, µ);, x, µ). (3.3) he above value fucio i aociaed wih he followig maer equaio: LV (θ) := V + 1 xxv 1 xv Ẽ + F + MV =, V (, x, µ) = G(x, µ), 1 where MV (θ) := x µ V (, x, µ, ξ) µ V (, x, µ, ξ) x V (, ξ, µ). (3.4) 11

12 Here L ξ = µ ad Ẽ i wih repec o ξ. We emphaize ha he erm x V i MV i global i x, ad hu he maer equaio i o-local. I paricular, we cao expec a compario priciple for i oluio. he followig reul i well kow, ee e.g. 9. Propoiio 3. Aume F, G are coiuou ad he maer equaio (3.4) ha a claical oluio V C 1,, (Θ). he α (, µ; x) := x V (, x, µ) i a MFE a (, µ), for all (, µ). 3.1 Characerizaio via forward backward PDE ad SDE he maer equaio (3.4) i aociaed wih he followig yem of forward backward PDE: for ay fixed (, µ), P ad coider he PDE o,, ρ(, x) 1 xxρ(, x) div(ρ(, x) x u(, x)) = ; u(, x) + 1 xxu(, x) 1 xu(, x) + F (x, ρ ) = ; ρ(, ) = µ, u(, x) = G(x, ρ ). (3.5) Here ρ(, ) i uderood i meaure ee, while ρ(, ) i a deiy fucio for >. We hall deoe by ρ he meaure wih deiy ρ(, ). Propoiio 3.3 Aume he maer equaio (3.4) ha a claical oluio V C 1,, (Θ). he PDE (3.5) ha a claical oluio (ρ, u) ad i aifie u(, x) = V (, x, ρ ). Nex, give (, µ) ad ξ L (F ) wih L ξ = µ. Coider he followig forward backward SDE o, : X,ξ = ξ Z,ξ d + B Y,ξ = G(X,ξ, L X,ξ) + X,x,ξ Y,x,ξ = x Z,x,ξ d + B = G(X,x,ξ, L X,ξ) + F (X,ξ, L X,ξ F (X,x,ξ, L X,ξ ) + 1 Z,ξ d Z,ξ db ; ) + 1 Z,x,ξ d Z,x,ξ db. Propoiio 3.4 Aume he PDE (3.5) ha a claical oluio (ρ, u). he FBSDE (3.6) ha a uique rog oluio ad i aifie L X,ξ = ρ ad Y,ξ = u(, X,ξ ), Z,ξ = x u(, X,ξ ); Y,x,ξ = u(, X,x,ξ ), Z,x,ξ = x u(, X,x,ξ ). (3.6) 1

13 3. echical codiio I hi ubecio, we collec ome echical codiio which will be ued i he paper. We fir aume ome regulariy codiio o F, G. Aumpio 3.5 F, G : P 1 R are uiformly Lipchiz coiuou i boh x ad µ (uder W 1 ) wih Lipchiz coa L 1. For coveiece, we hall alo deoe by L > a upper boud of F, G. Aumpio 3.6 F, G are differeiable i x, ad x F, x G are alo uiformly Lipchiz coiuou i boh x ad µ (uder W 1 ) wih Lipchiz coa L. Aumpio 3.5 i adard, excep ha i would look more aural o aume he Lipchiz coiuiy uder W, i ligh of (.3). We ue W 1 here maily becaue of he iue meioed i Remark.3 (i), ee alo Remark 4.3 below. We emphaize agai ha Aumpio 3.5 implie F ad G are uiformly Lipchiz coiuou uder W. Aumpio 3.6 i omewha roger ha wha we expeced ad i will be ideal o remove i. However, we hould poi ou ha i i ill much weaker ha he echical codiio required i he lieraure for he exiece of claical oluio o he maer equaio, ee e.g. 11. A a direc coequece of he above aumpio we have he regulariy of PDE (3.5). Propoiio 3.7 (i) Le Aumpio 3.5 hold. he PDE (3.5) admi a claical oluio u C 1, (, ) ) C (, ) ad ρ C 1/ (,, P ), where he equaio for ρ hold i he ee of diribuio. Moreover, here exi coa C = C (, L ) ad C 1 = C 1 (, L, L 1 ), for he L, L 1 i Aumpio 3.5, uch ha u(, x) C, x u(, x) C 1, W (ρ, ρ ) C 1 1/ ; xxu(, x) C 1, ρ(, x) C 1. (3.7) (ii) Aume furher ha Aumpio 3.6 hold wih coa L. he u C,1 (, ) ad for a C = C (, L, L 1, L ), we have u(, x) + xxu(, x) C. (3.8) Proof he exiece of claical oluio i adard, ee e.g. 7. o ee he uiform eimae, deoe v := e u. he v aifie he followig liear PDE: v(, x) + 1 xv(, x) v(, x)f (x, ρ ) =, v(, x) = e G(x,ρ ). 13

14 I i raighforward o derive he eimae for v, x v, xxv, which implie he eimae for u, x u, xxu. he boudede of u follow from he PDE for u. Moreover, oe ha ρ = L X, where L ξ = µ ad X i he (rog) oluio of X = ξ x u(, X )d + B, he, ice x u C 1, oe ca eaily ee ha W (ρ, ρ ) E X X C 1. Fially, o derive he eimae for ρ(, x), for oaioal impliciy we aume = ad =. he he Malliavi derivaive aifie: D X = 1 hu D X = exp ( xxu(, X r )dr ), ad xxu(r, X r )D X r dr,. DX := D X d = exp ( exp ( C 1 r dr ) d = xxu(, X r )dr ) d exp ( C 1 ) d C 1. Now for ay mooh (i he ee of Malliavi calculu) radom variable η, applyig he iegraio by par formula (cf 18 Lemma 1..1), E D ηd X d = E η Eη hi implie ha he Skorohod iegral aifie: D X db Eη E exp ( E δ(dx ) C 1. Now by 18 Propoiio.1.1 we have ρ(, x) = E 1 {X >x}δ(dx ) DX E δ(dx ) DX C 1 hi complee he eimae for ρ i (3.7). D X d C 1 r dr ) d C 1 Eη. = C 1. hroughou he paper, we hall ue C o deoe a geeric coa depedig oly o, ad C i if i deped o ad L,, L i, for i =, 1,. We remark ha i geeral we do o have uiquee i Propoiio 3.7. For ha purpoe we eed he followig moooiciy codiio, ee heorem 4.1 ad 4.4 below. 14

15 Aumpio 3.8 For ay µ 1, µ P() ad for Φ = F, G, we have Φ(x, µ1 ) Φ(x, µ ) µ 1 (dx) µ (dx). (3.9) hi aumpio i crucial for he uiquee of MFE, ad i he mea ime i a key codiio for he eimae i he paper, which eure furher he exiece of our weak oluio o he maer equaio. However, for F, G aifyig (3.9), i i ulikely heir mooh mollifier coruced i Secio will maiai he ame moooiciy propery. hi i oe of he mai difficulie we ecouer i hi paper. 3.3 he mai reul I he re of he paper, we will prove he followig mai reul. Uder Aumpio 3.5, 3.6, ad 3.8, V i uiformly Lipchiz coiuou i (x, µ) (uder W 1 ) ad uiformly Hölder- 1 coiuou i. Moreover, for each, V (, ) aifie he moooiciy codiio (3.9). See heorem 4.. Uder Aumpio 3.5, 3.6, ad 3.8, he abiliy propery hold for V i erm of he mollificaio of (F, G). See heorem 4.4. Uder Aumpio 3.5 ad if i mall, he we have he claical oluio heory for he maer equaio. I paricular, we eablih a poiwie repreeaio formula for µ V. See heorem 5.. Uder Aumpio 3.5, we have he uiquee of our vaihig weak oluio; ad we obai he exiece uder addiioal Aumpio 3.6 ad 3.8. See heorem 6.. Uder Aumpio 3.5, 3.6, ad 3.8, we have he exiece ad uiquee of our Sobolev oluio, provided ha µ F, µ G are coiuou. See heorem 7.3 ad Sabiliy of he PDE yem We fir udy he abiliy of u wih repec o ρ. heorem 4.1 Le Aumpio 3.5, 3.6, ad 3.8 hold. For i = 1,, le (u i, ρ i ) be a claical oluio o PDE (3.5) wih iiial codiio µ i P 1. he up u 1 (, x) u (, x) C W 1 (µ 1, µ ). (4.1) (,x), Moreover, he followig moooiciy propery hold: u 1 (, x) u (, x)ρ 1 (, x) ρ (, x)dx. (4.) 15

16 Proof Wihou lo of geeraliy, we aume =. Deoe u := u 1 u, ad imilarly for he oher oaio. Sep 1. By (3.5) we have ρ(, x) 1 xxρ(, x) x ρ 1 (, x) x u 1 (, x) ρ (, x) x u (, x) = ; u(, x) + 1 xxu(, x) 1 x u 1 (, x) x u (, x) + F (x, ρ 1 ) F (x, ρ ) = ; (4.3) ρ(, ) = µ, u(, x) = G(x, ρ 1 ) G(x, ρ ). Muliply he fir equaio by u ad he ecod equaio by ρ, iegrae over x, ad he apply he iegraio by par formula, we obai u(, x)ρ(, x)dx + ρ 1 x u 1 ρ x u x u 1 x u 1 x u ρ +F (x, ρ 1 ) F (x, ρ )ρ(, x) dx =. Noe ha he ρ 1 x u 1 ρ x u x u 1 x u 1 x u ρ = ρ1 + ρ x u. ρ 1 + ρ x u (, x)dxd = u(, x)µ(dx) G(x, ρ 1 ) G(x, ρ )ρ(, x)dx F (x, ρ 1 ) F (x, ρ )ρ(, x)dxd. Sice F, G aify Aumpio 3.8, we have ρ 1 + ρ x u (, x)dxd u(, x)µ(dx) x u W 1 (µ 1, µ ), (4.4) where he ecod iequaliy hak o (.). Moreover, he fir iequaliy of (4.4) implie (4.) a =. We ca prove (4.) a arbirary imilarly. Sep. We ex eimae W 1 (ρ 1, ρ ). Le ξ 1, ξ be uch ha L ξi = µ i ad W 1 (µ 1, µ ) = E ξ, where ξ := ξ 1 ξ. Recall (3.8) ad le X i olve he followig SDE: X i = ξ i x u i (, X i )d + B. he L X i = ρ i ad hu W 1 (ρ 1, ρ ) E X, where X := X 1 X. Noe ha X = ξ = ξ x u 1 (, X 1 ) x u (, X )d x u 1 (, X 1 ) x u 1 (, X ) + x u(, X )d. 16

17 he, by (3.8) ad (4.4), we obai E X E ξ + C E X d + ( C E X d + W 1 (µ 1, µ ) + C x u(, x) ρ (, x)dxd C E X d + W 1 (µ 1, µ ) + C x u 1 W 1 1 (µ 1, µ ). Applyig he Growall iequaliy we obai ) 1 x u(, x) ρ (, x)dxd W 1 (ρ 1, ρ ) E X C W 1 (µ 1, µ ) + x u 1 W 1 1 (µ 1, µ ). (4.5) Sep 3. Recall (4.3) for he equaio of u: u(, x) + 1 xxu(, x) 1 x u 1 (, x) + x u (, x) x u + F (x, ρ 1 ) F (x, ρ ) = ; u(, x) = G(x, ρ 1 ) G(x, ρ ). (4.6) Coider SDE: X x = x 1 he we have he adard Feyma-Kac formula: u(, x) = E G(X x, ρ 1 ) G(X x, ρ ) + x u 1 + x u (, X x )d + B. (4.7) F (X x, ρ 1 ) F (X x, ρ )d. (4.8) Deoe X x X := lim x+ε ε X x ε. he X x = 1 1 xx u 1 + xx u (, X x ) X x d. By (3.8) we ee ha X x C. Differeiae (4.8) we have x u(, x) = E x G(X x, ρ 1 ) x G(X x, ρ ) X x + x F (X x, ρ 1 ) x F (X x, ρ ) X x d. By Aumpio 3.6 ad (4.5), we have x u(, x) C up W 1 (ρ 1, ρ ) C W 1 (µ 1, µ ) + C x u 1 W 1 1 (µ 1, µ ). Similarly we ca prove he eimae a (, x) ad hu x u C W 1 (µ 1, µ ) + x u 1 W 1 1 (µ 1, µ ). 17

18 hi implie ha, by (4.5) agai, x u C W 1 (µ 1, µ ), ad hece W 1 (ρ 1, ρ ) C W 1 (µ 1, µ ). he, by Aumpio 3.5 ad (4.8), u(, x) C 1 up W 1 (ρ 1, ρ ) C W 1 (µ 1, µ ). Similarly we prove he eimae a (, x) ad hece complee he proof. Clearly heorem 4.1 implie he uiquee of claical oluio for PDE (3.5). We he defie V (, x, µ) := u(, x), where u i he oluio o PDE (3.5) wih ρ(, ) = µ. (4.9) heorem 4. Le Aumpio 3.5, 3.6, ad 3.8 hold. he he V defied by (4.9) i uiformly Lipchiz coiuou i x ad i µ uder W 1, ad uiformly Hölder- 1 coiuou i. Moreover, for ay, V (, ) aifie he moooiciy codiio (3.9). Proof he Lipchiz coiuiy i (x, µ) ad he moooiciy propery follow from Propoiio 3.7 ad heorem 4.1. o ee he regulariy i, fix (, µ) ad le (u, ρ) be he claical oluio o PDE (3.5). Noe ha u(, x) = V (, x, ρ ). he, for = + δ, V (, x, µ) V (, x, µ) V (, x, µ) V (, x, ρ ) + u(, x) u(, x) C W 1 (ρ, ρ ) + C δ C W (ρ, ρ ) + C δ C δ, where he la iequaliy hak o (3.7). Remark 4.3 he above V i uiformly Lipchiz coiuou i µ uder W 1. I erm of he µ V defied i (.3), i i more aural o ue W. However, due o Remark.3 (i), we eed he roger Lipchiz coiuiy uder W 1. We ow eablih he abiliy of u wih repec o F, G. heorem 4.4 For i = 1,, aume F i, G i aify Aumpio 3.5 ad le (u i, ρ i ) be a claical oluio o PDE (3.5) wih coefficie (F i, G i ). Deoe F := F 1 F ad imilarly he oher oaio. (i) If (F 1, G 1 ) aifie Aumpio 3.8, he 1 6 u C 1 F + G. (4.1) (ii) Aume furher ha boh (F 1, G 1 ) ad (F, G ) aify Aumpio 3.6. he u C F + G + x F + x G. (4.11) 18

19 Proof (ii) We fir prove (4.11) uder Aumpio 3.6. I hi cae he mai idea i very imilar o ha of heorem 4.1. For impliciy we aume =. Sep 1. Noe ha ρ = ad F 1 (x, ρ 1 ) F (x, ρ ) = F 1 (x, ρ 1 ) F 1 (x, ρ ) + F (x, ρ ); G 1 (x, ρ 1 ) G (x, ρ ) = G 1(x, ρ 1 ) G 1(x, ρ ) + G(x, ρ ). Followig imilar argume a i heorem 4.1 Sep 1, epecially by he moooiciy codiio (3.9) for (F 1, G 1 ) ad (.), we ca eaily how ha ρ 1 + ρ x u (, x)dxd G(x, ρ )ρ(, x)dx F (x, ρ )ρ(, x)dxd C x F + x G up W 1 (ρ 1, ρ ). (4.1) Sep. We ex eimae W 1 (ρ 1, ρ ). Aume L ξ = µ ad X i olve he followig SDE: he clearly X i = ξ x u i (, X i )d + B. E X C E X d + hu, by (4.1) ad oe ha L X = ρ, W 1 (ρ 1, ρ ) E X C hi implie ha E x u(, X ) d. E x u(, X ) d C ( E C ( x F + x G up W 1 (ρ 1, ρ ) Sep 3. Similar o (4.3) we have ) 1 x u(, X ) d ) 1 up W 1 (ρ 1, ρ ) C x F + x G. (4.13) u(, x) + 1 xxu(, x) 1 x u 1 (, x) + x u (, x) x u + F 1 (x, ρ 1 ) F (x, ρ ) = ; u(, x) = G 1 (x, ρ 1 ) G (x, ρ ). For he X x i (4.7), we have u(, x) = E G 1 (X x, ρ 1 ) G (X x, ρ ) + 19 F 1 (X x, ρ 1 ) F (X x, ρ )d. (4.14)

20 he, by Aumpio 3.5 ad (4.13), u(, x) C 1 F + G + up W 1 (ρ 1, ρ ) C F + G + x F + x G. Similarly we prove he eimae a (, x) ad hece obai (4.11). (i) We ow prove (4.1) wihou aumig Aumpio 3.6. Deoe ε := F + G. Fir, by he fir lie of (4.1) we have ρ 1 + ρ x u (, x)dxd Cε. (4.15) o eimae W 1 (ρ 1, ρ ), oe ha we cao ue (3.8) aymore, we hall iead ue (.). Le L ξ = ρ ad B be a P -Browia moio. Deoe X := ξ + B, ad for i = 1,, θ i := x u i (, X ), B i := B θ i d, dp ( i := M i := exp θ dp db i 1 ) θ i d. he B i i a P i -Browia moio, ad ρ i i he P i -diribuio of X. By (3.7) we have θ i C 1, E P M i p + M i p C 1,p for all p 1, i = 1,. (4.16) Now for ay fucio ϕ a i (.), we have ϕ(x)ρ(, x)dx = E P 1 ϕ(x ) E P ϕ(x ) = E P M 1 M ϕ(x ) = E P Noe ha M 1 M ϕ(x ) ϕ(ξ) E P M 1 M B = E P 1 1 M ( E P 1 1 M M 1 ) 1 ( ) 1 E P 1 B M M 1 M 1 B C 1 (E P 1 1 M M 1 ) 1. (4.17) ( = exp θ db 1 1 ) θ d, where θ := θ 1 θ. he, for ay δ >, by (4.15) ad (4.16) we have E P 1 1 M M 1 E P 1 1 M M 1 Cδ + 1 δ EP 1 1 { θdb1 δ, θ d δ} + 1 { θdb1 >δ} + 1 { θ d>δ} 1 M Cδ + C ( 1 E P 1 δ Cδ + C 1 δ ( E P 1 M 1 θ db 1 + θ d θ db 1 + ( ) 1 θ d θ d ) ) 1 Cδ + C 1 ε. δ

21 Se δ := ε 1 6, he E P 1 M 1 C M 1 1 ε 1 3, ad hu ϕ(x)ρ(, x)dx C 1ε 1 6, hak o (4.17). herefore, we derive from (.) ha W 1 (ρ 1 (), ρ ()) Cε 1 6 = C F + G 1 6. (4.18) Fially, by (4.14) ad Aumpio 3.5 we have u(, x) C 1 F + G + up W 1 (ρ 1, ρ ) C 1 F + G 1 6. Similarly we ca prove he eimae a (, x) ad hece obai (4.1). 5 he claical oluio i mall ime duraio he aalyi i he previou ecio provide he Lipchiz coiuiy ad abiliy of he value fucio V. I hi ecio we focu o he differeiabiliy of V i erm of µ, which i he key for he claical oluio of he maer equaio. For hi purpoe, i i more coveie o ue he FBSDE yem (3.6). For mooh coefficie F ad G, 11 how ha, roughly peakig, V i mooh if eiher (F, G) aify he moooiciy codiio (3.9) or if he ime duraio i mall. For weak oluio, we hall apply hee reul o he maer equaio wih coefficie (F, G ), which are he mooh mollifier of (F, G). However, ice (F, G ) ypically do o aify (3.9), o i hi ecio we focu o he cae ha i mall. We fir udy he differeiabiliy i x, which i more or le adard. Propoiio 5.1 Aume F, G aify Aumpio 3.5. here exi ome coa δ 1 = δ 1 (L, L 1 ) > uch ha he followig hold wheever δ 1. (i) he FBSDE yem (3.6) ha a uique oluio wih Z,ξ ad Z,x,ξ bouded by C 1. (ii) he mappig ξ Y,x,ξ i law ivaria ad hu V (, x, µ) := Y,x,ξ wih L ξ = µ i well defied. Moreover, V i uiformly Lipchiz coiuou i (x, µ) P ad Hölder- 1 coiuou i, ad i bouded by C 1. (iii) x V (, x, µ) exi for < ad i bouded by C 1. Moreover, if x F, x G exi ad are coiuou, he x V i coiuou o Θ ad we have he followig repreeaio: x V (, x, µ) = x Y,x,ξ, (5.1) 1

22 where x X,x,ξ x Y,x,ξ + = 1 x Z,x,ξ = x G(X,x,ξ d, L X,ξ ) x X,x,ξ x F (X,x,ξ, L X,ξ) x X,x,ξ + Z,x,ξ x Z,x,ξ d x Z,x,ξ db. (5.) Proof (i) he exiece i due o Propoiio 3.4 ad 3.7. he uiquee (amog oluio wih bouded Z) follow from he adard coracio mappig argume (c.f. 4 Secio 8.), ice i mall here. We emphaize ha, he argume i 4 Secio 8. require uiformly Lipchiz coiuou coefficie, while (3.6) ivolve Z, which i i geeral o uiformly Lipchiz coiuou. However, ice we kow a priori ha Z i bouded by C 1 ad by rericig o he oluio wih bouded Z, we may acually view he coefficie a uiformly Lipchiz coiuou ad hu all he argume remai valid. (ii) I i clear ha ξ Y,x,ξ i law ivaria. Sice F ad G are bouded by L ad Z,x,ξ i bouded by C 1, he by akig expecaio i he la equaio of (3.6) we ee ha V (, x, µ) = Y,x,ξ i bouded by C 1. he regulariy of V follow follow he adard eimae for he FBSDE yem (agai wih uiformly Lipchiz coiuou coefficie). (iii) Noe ha V (, x, µ) = u(, X,x,ξ ) = u(, x), where (u, ρ) i he claical oluio o he PDE (3.5) wih iiial codiio ρ = µ. he x V (, x, µ) = x u(, x) i bouded by C 1. Noe ha, give L X,ξ, he la wo equaio i (3.6) i a adard FBSDE. Whe x F, x G exi ad are coiuou, differeiae hem formally i x we obai FBSDE (5.). By 4 heorem we ee ha FBSDE (5.) i wellpoed. I follow from adard argume i FBSDE lieraure ha (5.1) hold, which implie furher he coiuiy of x V. he followig reul maily follow from 11. However, he poiwie repreeaio formula (5.3) i ew, o our be kowledge. heorem 5. Aume F, G C 1,1 ( P) aify Aumpio 3.5. he here exi a coa δ 1 uch ha he followig hold wheever δ 1. (i) µ V exi ad i coiuou o Θ. Moreover, we have he followig repreeaio formula: by omiig (, ξ) i he upercrip whe here i o cofuio, µ V (, x, µ, x ) = E Ẽ µ G(X x x x, L X, X ) X + µ G(X x, L X, X x, ) X x, M x + M x µ F (X x, L X, x x X ) X + µ F (X x, L X, X x, ) X x, d, (5.3)

23 where refer o idepede copie a i (.4), ad X x, := EX,ξ F B σ(ξ1 {ξ x} ), Z x, := EZ,ξ F B σ(ξ1 {ξ x} ); Γ x = x G(X x, L X ) + x F (Xr x, L Xr ) + Γ x r + Zr x γr x dr γr x db r ; M x = 1 + M x r Γ x r + Z x r db r ; (5.4) ad ( X x, Y x, Z x, X x, Y x, Z x ) olve he followig liear McKea-Vlaov ype FBSDE: X x = 1 Z x d; Y x = x G(X x, L X ) X x + X x, +Ẽ µ G(X x, L X, X x ) X x + + µ G(X x, L X, Y x, x, x, X ) X + = x G(X x,, L X ) X x, = Z x, d, x F (X x, L X ) X x + Z x Z x d + +Ẽ µ G(X x,, L X, X x ) X x + + µ G(X x, L X, Z x, db. x, x, X ) X + µ F (X x, L X, X x ) X x d µ F (X x, L X, x, X ) x F (X x, L X ) X x, Z x db x, X d P(ξ = x); (5.5) + Z x, µ F (X x,, L X, X x ) X x d µ F (X x, L X, x, X ) Z x, d x, X d P(ξ x) I paricular, whe x i o a aom of ξ, amely P(ξ = x) =, he X x = X, Z x = Z, ad he FBSDE (5.5) become X x = 1 Z x d; Y x = x G(X x, L X ) X x + Y x, X x, = x G(X, L X ) X x, + +Ẽ µ G(X, L X, X x ) X x + + µ G(X, L X, X ) X x, + = Z x, d, x F (X x, L X ) X x + Z x Z x d x F (X, L X ) X x, µ F (X, L X, X x ) X x d µ F (X, L X, X ) Z x db ; + Z Z x, d (5.6) x, X d Z x, db. (ii) If F ad G are mooh eough i all variable, he V i mooh eough i all variable ad i paricular i a claical oluio o he maer equaio (3.4). 3

24 Proof We fir emphaize ha Aumpio 3.5 implie ha F ad G are Lipchiz coiuou i µ uder W a well. he proof for (ii) i leghy bu quie raighforward, by combiig he argume i (i) ad 11, we hu omi i. We hall prove (i) i five ep. o implify he preeaio, we aume F =. he preece of F doe o caue ay difficuly. Moreover, for oaioal impliciy, we aume = ad omi i X,ξ ec. Sep 1. We fir how ha he FBSDE (5.4) ad (5.5) are wellpoed for δ 1. Ideed, a we kow ha Z ad Z x are bouded by C 1, he o i Z x,. hu all he (radom) coefficie of he liear FBSDE (5.5) are bouded ad he (5.5) i wellpoed. o ee (5.4), we oe ha he erm Γ x r γr x i o Lipchiz coiuou. However, deoe ˆΓ x := M x Γ x ad ˆγ x := M x γ x + Γ x Γ x + Z x, oe ca verify raighforwardly ha (M x, ˆΓ x, ˆγ x ) aifie he followig liear FBSDE wih bouded coefficie (aumig F = for impliciy): M x = 1 + Zr x Mr x + ˆΓ x r db r, ˆΓx = x G(X x, L X )M x ˆγ r x db r. (5.7) he (5.7) i wellpoed for δ 1, hece o i (5.4). Sep. For ay ξ, η L (F ) wih L ξ = µ, followig adard argume we have lim E ε up Xξ+εη X ξ ε µ X ξ,η =, (5.8) where ( µ X ξ,η, µ Y ξ,η, µ Z ξ,η ) aifie he liear McKea-Vlaov FBSDE: µ X ξ,η = η µ Z ξ,η d, µ Y ξ,η = x G(X ξ, L X ξ ) µ X ξ,η + Z ξ µ Z ξ,η d + Ẽ µ G(X ξ, L X ξ, X ξ ) µ µ Z ξ,η db, ξ,η X (5.9) Nex, by (5.8), oe ca how ha lim E ε up Y x,ξ+εη Y x,ξ ε µ Y x,ξ,η =, (5.1) where ( µ X x,ξ,η, µ Y x,ξ,η, µ Z x,ξ,η ) aifie he liear (adard) FBSDE: µ X x,ξ,η µ Y x,ξ,η + = µ Z x,ξ,η d = x G(X x,ξ, L X ξ ) µ X x,ξ,η Z x,ξ µ Z x,ξ,η d + Ẽ µ G(X x,ξ, L X ξ, X ξ ) µ µ Z x,ξ,η db. ξ,η X (5.11) 4

25 I paricular, (5.1) implie, hu, by he defiiio of µ V, lim V (, x, L ξ+εη) V (, x, L ξ ) ε ε µ Y x,ξ,η =. E µ V (, x, µ, ξ)η = µ Y x,ξ,η. (5.1) Moreover, recall (5.4), oe ca verify raighforwardly ha d M x,ξ µ Y x,ξ,η Γ x,ξ µ X x,ξ,η = db, ad all he procee have he deired iegrabiliy. he µ Y x,ξ,η = M x,ξ µ Y x,ξ,η Γ x,ξ µx x,ξ,η = E = E Ẽ M x,ξ µg(x x,ξ, L X ξ, X ξ ) µ M x,ξ X ξ,η µy x,ξ,η Γ x,ξ µx x,ξ,η. (5.13) Sep 3. I hi ep we prove (5.3) i he cae ha ξ i dicree: p i = P(ξ = x i ), i = 1,,. We fir oe ha, by oherwie akig codiioal expecaio o (5.9), codiioal o F B σ(ξ), we may aume wihou lo of geeraliy ha η i σ(ξ)-meaurable, wih η = η i o {ξ = x i }, ad hu η = η i1 {ξ=xi }. Sice (5.11) i liear, we have µ Y x,ξ,η = η i µ Y x,ξ,1 {ξ=x i }. he (5.1) implie η i µ Y x,ξ,1 {ξ=x i } = By he arbirarie of η i, hi implie ha Fix i. For W = X, Y, Z, deoe E µ V (, x, µ, x i )η i pi. µ V (, x, µ, x i ) = 1 p i µ Y x,ξ,1 {ξ=x i }. (5.14) W i := EW ξ F B, ξ = x i = W x i,ξ, W i := E µ W ξ,1 {ξ=x i } F B, ξ = x i; (5.15) W i, := EW ξ F B σ(ξ1 {ξ x i }), W i, := 1 p i p i E µ W ξ,1 {ξ=x i } F B σ(ξ1 {ξ x i }). Noe ha Ẽ µ G(X ξ, L X ξ = Ẽ µ G(X ξ, L X ξ, X ξ ) µ X ξ,1 {ξ=x i }, X i ) X i + µ G(X ξ, L X ξ, X i, ) X i, p i. (5.16) 5

26 ake codiioal expecaio o (5.9), codiioal o F B {ξ = x i} ad F B σ(ξ1 {ξ x}), repecively, we have X i = 1 Z i d, X i, = Z i, d, Y i = x G(X i, L X ξ ) X i + Z Z i d i ZdB i +Ẽ µ G(X i, L X ξ, X i ) X i + µ G(X i i, i,, L X ξ, X ) X p i ; Y i, +Ẽ = x G(X i, µ G(X i,, L X ξ ) X i, +, L X ξ Z i, Z i, d, X i ) X i + µ G(X i,, L X ξ, i, X Z i, ) X i, db (1 p i ). hi i FBSDE (5.5) i he pree cae. Moreover, by (5.14), (5.13), ad (5.16) we have = E Ẽ µ V (, x, µ, x i ) = 1 E p Ẽ i M x,ξ µg(x x,ξ, L X ξ M x,ξ µg(x x,ξ, L X ξ, X i ) X i + M x,ξ which prove (5.3) o he uppor of ξ (whe F = )., X ξ ) µ X ξ,1 {ξ=x i } µg(x x,ξ, L X ξ, X i, ) X i,, (5.17) Sep 4. We ow prove (5.3) i he cae ha ξ ha coiuou diribuio, agai aumig F = ad = for impliciy. For each 1, le x i := i for i =,...,, ξ := x i1 xi 1,x i )(ξ), ad p i := P(ξ = x i ). I i clear ha ξ ξ 1. he by (5.1) ad he abiliy of FBSDE oe ca eaily how ha, for ay η L (F ), E µ V (, x, µ, ξ)η = µ Y x,ξ,η = lim µy x,ξ,η = lim E µ V (, x, L ξ, ξ )η. (5.18) Fix x, ad le a(µ, x ) deoe he righ ide of (5.3). he Sep 3 implie ha µ V (, x, L ξ, ξ ) = a(l ξ, ξ ). (5.19) Le (X,i, X,i, X,i, ) ec correpod o (ξ, x i ). Sice ξ ha coiuou diribuio, we have lim max 1 i p i =. Now for ay x, le i (x ) be he i uch ha x x i(x ) 1, x i(x )). By he abiliy of FBSDE, oe ca how ha (M x,ξ, X x,ξ, X ξ, X,i(x ), X,i (x ), X,i (x ),, X,i (x ), ) coverge o (M x,ξ, X x,ξ, X ξ, Xx, X x, X, X x, ) uiformly, uiformly i x, where ( X x, X x, ) i defied by (5.6). he, by he repreeaio (5.17), we ee ha lim a(l ξ, x i (x ) ) = a(µ, x ). ogeher wih (5.18) ad (5.19), hi implie ha E µ V (, x, µ, ξ)η = E a(µ, ξ)η. 6

27 hi prove (5.3) whe ξ i coiuou. Moreover, by he abiliy of FBSDE (5.6), we ee ha here exi a modulu of coiuiy fucio ρ (idepede of x), uch ha a(µ 1, x 1) a(µ, x ) ρ ( x 1 x + W (µ 1, µ ) ), (5.) a log a µ 1, µ are coiuou. hi implie he uiform coiuiy of µ V i (µ, x ) whe µ i coiuou, uiformly i x (ad ). he coiuiy of µ V wih repec o (, x) alo follow from adard argume for FBSDE. Sep 5. Fially we prove he geeral cae. For ay µ P, here exi µ P uch ha each µ i coiuou ad lim W (µ, µ) =. By he uiform regulariy (5.) ad applyig he Arzelá-Acoli heorem, poibly alog a ubequece, we have lim a(µ, x ) = b(µ, x ), where b i alo uiformly coiuou ad he covergece i uiform, uiformly i x (ad ). he followig he ame argume a for (5.18) we have µ V (, x, µ, x ) = b(µ, x ) ad hu µ V (, x, ) i uiformly coiuou o P. he coiuiy i (, x) ca be proved imilarly by coiderig he uiform limi of µ V (, x, µ, x ). I remai o ideify b(µ, x ) wih a(µ, x ), whe µ i o coiuou. For hi purpoe we fix x ad prove he equaliy i wo cae. Fir, aume P(ξ = x ) =, le µ be coiuou wih lim W (µ, µ) =. eaily how ha lim a(µ, x ) = a(µ, x ). b(µ, x ) = a(µ, x ). By he abiliy of FBSDE (5.6), oe ca he by he defiiio of b we ee ha Nex, aume P(ξ = x ) >. Le x i, ξ, ec. be he dicree oe a i Sep 4. We emphaize ha, for fixed x, we ill have lim p i (x ) = P(ξ = x ), bu he covergece may o be uiform i x. he agai by he abiliy of FBSDE (5.5) we derive from (5.17) ha lim a(l ξ, x i (x ) ) = a(µ, x ). By Sep 3 we have Ea(L ξ, ξ )η = E µ V (, x, L ξ, ξ )η = Eb(L ξ, ξ )η. hi implie ha a(l ξ, ) = b(l ξ, ) o he uppor of ξ. I paricular, ice lim p i (x ) = P(ξ = x ) >, we have a(l ξ, x i (x ) ) = b(l ξ, x i (x )) for large eough. he by he uiform coiuiy of b we have a(µ, x ) = lim a(l ξ, x i (x ) ) = lim b(l ξ, x i (x ) ) = b(µ, x ). hi complee he proof. Remark 5.3 (i) While heorem 5. i eablihed for mall, he repreeaio formula hold rue for arbirary, provided ha all he ivolved FBSDE are wellpoed. hi i he cae whe F, G alo aify Aumpio 3.6 ad 3.8, ee heorem 7.3 Sep 1 below. 7

28 (ii) By uig he liearized yem of PDE (3.5), 8 (Corollary 3.9) provided a poiwie repreeaio formula for he gradie δv δµ (, x, µ, x ). Noe ha µ V (, x, µ, x ) = x δv δµ (, x, µ, x ), o 8 implie a repreeaio formula for µ V (, x, µ, x ) a well, by ivolvig a forward backward PDE yem whoe iiial value i he derivaive of he Dirac meaure. Our repreeaio formula (5.3) ivolve rog oluio of FBSDE ad hold uder weaker echical codiio. We oe ha, ulike he coecio bewee (3.5) ad (3.6), he forward PDE i 8 doe o repree he deiy of he forward SDE i (5.5), o he coecio bewee (5.3) ad heir repreeaio formula i o clear o u. Recall Remark.3-(ii) ha our mollifier doe o have uiform covergece for µ U. A a applicaio of our repreeaio formula, we have he followig poiwie covergece reul for µ V. We fir remark ha, for Φ = F, G C 1,1 ( P), le Φ be a mooh mollifier of Φ where he mollificaio i µ i a i Secio ad he mollificaio i x i adard. he i i clear ha (Φ, x Φ ) (Φ, x Φ) uiformly, ad µ Φ coverge o µ Φ i he ee of heorem. (iii). I he re of he paper, we hall alway ue mollifier i hi way. Corollary 5.4 Aume (F, G) C 1,1 ( P) aify Aumpio 3.5 ad δ 1 for he δ 1 i heorem 5.. Le (F, G ) be he mooh mollifier of (F, G) ad V be he claical oluio o he maer equaio (3.4). he, for ay <, Proof lim up (x,µ,x ) P ( µ V µ V )(, x, µ, x ) =. (5.1) Wihou lo of geeraliy we aume =. Fix (x, µ, x ). Beide C 1, a below we ue aoher geeric coa c, which deped o L ad L 1 i Aumpio 3.5, he uiform coiuiy of µ F, µ G, ad, bu o o (x, µ, x ), uch ha lim c =. For he oaio i he proof of heorem 5., we add ubcrip or upercrip for he correpodig erm defied hrough (F, G ). Fir, ice (F, G ) coverge o (F, G) uiformly, by (3.6) oe ca eaily how ha Z C 1, E up X X + Z Z d c, ad imilar eimae hold for (X,x, Z,x ) ad (X,x,, Z,x, ). Nex, followig he ame argume for he eimae of ρ(, x) i (3.7), oe ca how ha ρ 1 (, ˆx ) + ρ (, ˆx ) C 1, where ρ 1 (, ˆx ) ad ρ (, ˆx ) are he deiie of X,x ad X,x,, repecively. hi, 8

29 ogeher wih heorem. (iii), implie ha Similarly, we have µ E G (ˆx, L X, X,x ) µ G(ˆx, L X, X,x ) µ G (ˆx, L X, ˆx ) µ G(ˆx, L X, ˆx ) ρ 1 (, ˆx )dˆx C 1 µ G (ˆx, L X, ˆx ) µ G(ˆx, L X, ˆx ) dˆx c. µ E G µ G(ˆx, L X,, X,x ) c ; µ E F µ F (ˆx, L X, X,x ) + µ F µ F (ˆx, L X, X,x, ) c. he, recall ha ( x F, x G ) ( x F, x G) uiformly, by (5.5) we ca how ha E up E up X,x + X,x, C, X,x X x + X,x, X x, c,, where c, i ome geeric coa which may deped o bu o o (x, µ, x ) uch ha lim c, =. he, by (5.3) ad he uiform coiuiy of ( µ F, µ G), we have (agai omiig he F erm for impliciy), E µ V (, x, µ, x ) E µ V (, x, µ, x ) = E Ẽ M,x µg (X,x, L X,x,x, X ) X M x µ G(X x x x, L X, X ) X +M,x µg (X,x, L X, X,x, ) X,x, M x µ G(X x, L X, X x, ) X x, E Ẽ M,x,x X M x x X µ G (X,x, L X,x, X ) + M x x X µ G (X,x, L X,x, X ) µ G(X,x, L X,x, X ) + M x x X µ G(X,x, L X,x, X ) µ G(X x x, L X, X ) + M,x X,x, M x X x, µ G (X,x, L X, X,x, ) c,, + M x X x, + M x X x, which implie he corollary immediaely. µ G (X,x, L X, X,x, ) µ G(X,x, L X, X,x, ) µ G(X,x, L X, X,x, ) µ G(X x, L X, X x, ) 9

30 6 he vaihig weak oluio We are ow ready o defie he weak oluio. Defiiio 6.1 We ay V C (Θ) wih V (, ) = G i a vaihig weak oluio of maer equaio (3.4) if, for ay < δ ad ay {V } 1 C 1,, (Θ) uch ha LV i uiformly Lipchiz coiuou i (x, µ) P, uiformly i ad, ad lim up (V V )(, x, µ) + (x,µ) P he here exi δ (, δ uch ha lim heorem 6. Le Aumpio 3.5 hold. up LV (, x, µ) (,x,µ) δ, P =, (6.1) up (V V )(, x, µ) =. (,x,µ) δ, P (i) he maer equaio (3.4) ha a mo oe vaihig weak oluio V uch ha, for ay, he mappig µ V (, x, µ) i uiformly Lipchiz coiuou, uiformly i x. (ii) Aume furher ha Aumpio 3.6 ad 3.8 hold. he he fucio V defied by (4.9) i he uique vaihig weak oluio of he maer equaio (3.4), ad i paricular i aifie he properie i heorem 4.. Proof (i) Aume here are wo vaihig weak oluio V ad ˆV. Deoe := up{, : here exi (x, µ) uch ha ˆV (, x, µ) V (, x, µ)} >. By he coiuiy of V ad ˆV we ee ha V (, ) = ˆV (, ). Now le F ad G be mooh mollifier of F ad V (, ), repecively. By heorem 5., here exi δ 1 (, uch ha he followig maer equaio (6.) ha a claical oluio V o δ 1, wih ufficie regulariy: V + 1 xxv 1 xv + F + MV =, V (, ) = G. (6.) Noe ha LV = F F. By heorem. (i) ad (ii) we ee ha {V } 1 aifie (6.1) for boh V ad ˆV o δ 1,. he by he vaihig weak oluio propery here exi δ (, δ 1 uch ha lim up (,x,µ) δ, P (V V )(, x, µ) + (V ˆV )(, x, µ) =. hi implie ha ˆV (, ) = V (, ) for δ,, coradicig wih he defiiio of. herefore, we mu have = ad hece ˆV = V. (ii) o verify he weak oluio propery of V, we fix < δ ad a deired {V } 1 a i Defiiio 6.1. Deoe F := F LV ad G (x, µ) := V (, x, µ). he V i a claical oluio o he maer equaio (6.) o δ,. Noe ha (F, G ) 3

31 aify Aumpio 3.5 uiformly o δ,, excep ha F deped o a well, ad (F, V (, )) aifie Aumpio 3.8. However, i i raighforward o exed heorem 4.4 (i) o hi cae ad we obai up (V V )(, x, µ) (,x,µ) δ, P C 1 up (F F )(, x, µ) + G (x, µ) V (, x, µ) 1 6 (,x,µ) δ, P = C 1 up LV (, x, µ) + V (, x, µ) V (, x, µ) 1 6. (,x,µ) δ, P hi implie ha V i a vaihig weak oluio. he followig reul i a immediae coequece of heorem 4.4. heorem 6.3 Aume {(F, G )} aify Aumpio 3.5, 3.6, ad 3.8, ad he Lipchiz coa i Aumpio 3.5 i uiform. Le V be he uique vaihig weak oluio o maer equaio (3.4) wih coefficie (F, G ). If lim F F + G G =, he lim V V =. 7 he Sobolev oluio o moivae he defiiio of Sobolev oluio, aume V i a claical oluio of maer equaio (3.4), ad ϕ C 1,1 (, ; R). Muliply (3.4) by ϕ, iegrae over x, ad apply he iegraio by par formula we have = LV (, x, µ)ϕ(, x)dx = V (, x, µ)ϕ(, x)dx V (, x, µ) ϕ(, x)dx 1 x V (, x, µ) x ϕ(, x)dx + 1 xv (, x, µ) + F (x, µ) Ẽ µv (, x, µ, ξ) x V (, ξ, µ) ϕ(, x)dx + 1 Ẽ x µ V (, x, µ, ξ)ϕ(, x)dx. I order o reduce he order of he differeiabiliy i he la erm above, we reric o hoe µ wih a mooh deiy ρ C 1 (). he he la erm above become 1 x µ V (, x, µ, x)ρ( x)ϕ(, x)d xdx = 1 µ V (, x, µ, x)ρ ( x)ϕ(, x)d xdx. Deoe P := {µ P : µ ha a deiy fucio ρ C 1 ()}. (7.1) We fir have he followig imple lemma whoe proof i obviou ad hu i omied. 31

32 Lemma 7.1 he e P i dee i P. Coequely, V C (Θ) i uiquely deermied by i value i, P. We ow defie Defiiio 7. We ay V C,1,1 (Θ) i a Sobolev oluio o he maer equaio (3.4) if V (, ) = G, ad for ay ϕ C 1,1 (, ; R) ad µ P wih deiy ρ, we have V (, x, µ)ϕ(, x)dx = V (, x, µ) ϕ(, x)dx + 1 x V (, x, µ) x ϕ(, x)dx 1 + xv (, x, µ) F (x, µ) ϕ(, x)dx (7.) + µ V (, x, µ, x) 1 ρ ( x) + x V (, x, µ)ρ( x) ϕ(, x)d xdx. We fir verify ha our vaihig weak oluio i alo a Sobolev oluio, provided ha i i i C,1,1 (Θ). heorem 7.3 Le F, G C 1,1 ( P 1 ) aify Aumpio 3.5, 3.6, ad 3.8. he he vaihig weak oluio V of maer equaio (3.4) i alo a Sobolev oluio. Proof We proceed i wo ep. Sep 1. Fir, by heorem 4., V i uiformly Lipchiz coiuou i (x, µ) wih cerai Lipchiz coa ˆL 1 L 1, which deped o L 1 ad L. By Propoiio 5.1 ad heorem 5. we ee ha V C,1,1 ( δ 1 P). We ca e δ 1 uch ha i i deermied by ˆL 1, iead of L 1. he V ( δ 1, ) C 1,1 ( P) ad i alo aifie he moooiciy codiio (3.9). Now apply Propoiio 5.1 ad heorem 5. agai o maer equaio (3.4), bu o ierval δ 1, δ 1 wih ermial codiio V ( δ 1, ), we ee ha V C,1,1 ( δ 1 P). Repea he argume we obai V C,1,1 (Θ). Sep. o verify (7.), oe ha i i local i (ad µ). By oherwie applyig he argume i Sep 1 agai, wihou lo of geeraliy we aume δ 1. Fix ome deired ϕ ad µ, ρ a i Defiiio 7.. Le (F, G ) be he mooh mollifier of (F, G) ad V be he correpodig claical oluio. he (7.) hold for (V, F ), ad hu, for ay, by iegraig i over, we obai G (x, µ)ϕ(, x)dx = + + V (, x, µ)ϕ(, x)dx V (, x, µ) ϕ(, x)dxd xv (, x, µ) F (x, µ) ϕ(, x)dxd x V (, x, µ) x ϕ(, x)dxd µ V (, x, µ, x) 1 ρ ( x) + x V (, x, µ)ρ( x) ϕ(, x)d xdxd. 3

33 Sed. Noe ha (F, G, V ) coverge o (F, G, V ) uiformly, ad we ca eaily how ha x V coverge o x V uiformly. Moreover, by Corollary 5.4 we ee ha µ V µ V wheever <. he, by he domiaed covergece heorem we have G(x, µ)ϕ(, x)dx V (, x, µ)ϕ(, x)dx = + + V (, x, µ) ϕ(, x)dxd xv (, x, µ) F (x, µ) ϕ(, x)dxd x V (, x, µ) x ϕ(, x)dxd µ V (, x, µ, x) 1 ρ ( x) + x V (, x, µ)ρ( x) ϕ(, x)d xdxd. hi implie (7.), hece V i a Sobolev oluio of he maer equaio (3.4). o prove he uiquee of Sobolev oluio, we fir eed a lemma. Lemma 7.4 Le U C 1 (P ), µ P wih deiy ρ, ad ψ C (Θ) be uiformly Lipchiz coiuou i (x, µ). he d d U(ρ ) = µ U(ρ, x) 1 xρ(, x) + ψ(, x, ρ )ρ(, x)dx, (7.3) where ρ i he claical oluio o he followig PDE: Proof ρ(, x) 1 xxρ(, x) div ( ρ(, x)ψ(, x, ρ ) ) =, ρ(, x) = ρ (x) (7.4) Fir i follow from adard argume ha he PDE (7.4) ha a uique claical oluio. Le U C (P ) be he mooh mollifier of U. he U (ρ ) U (ρ ) = = 1 x µ U (ρ, x)ρ(, x)dx µ U (ρ, x)ψ(, x, ρ )ρ(, x) dxd µ U (ρ, x) 1 xρ(, x) + ψ(, x, ρ )ρ(, x)dxd. Sed, by heorem., i paricular par (iii), we have U(ρ ) U(ρ ) = hi implie (7.3) immediaely. µ U(ρ, x) 1 xρ(, x) + ψ(, x, ρ )ρ x (, x)dxd. heorem 7.5 Uder Aumpio 3.5 ad 3.8, he maer equaio (3.4) admi a mo oe Sobolev oluio. 33

34 Proof We follow he mai argume i heorem 4.4. Aume we have wo Sobolev oluio V 1 ad V o (3.4). Fix µ P wih deiy ρ. For i = 1,, le V i (, x, µ) be a adard mooh mollifier of V i i x, ad ρ i he claical oluio o PDE: ρ i (, x) 1 xxρ i (, x) div(ρ i (, x) x V i (, x, ρ i ())) =, ρ i (, x) = ρ (x). Deoe u i (, x) := V i (, x, ρ i ()), v i (, x) := u i (, x) V i (, x, ρ i ()). We emphaize ha V i i a adard mollifier i x, o i µ, he lim vi + x v i =. (7.5) We fir claim ha u i i a Sobolev oluio o PDE: u i (, x) + 1 xxu i (, x) 1 xu i (, x) + F (x, ρ i ()) a i (, x) =, where a i (, x) := µ V i (, x, ρ i (), x) x v(, i x)ρ i (, x)d x. (7.6) Ideed, for ay ϕ C 1,1 (, ), by omiig he upercrip i for oaioal impliciy: d u (, x)ϕ(, x)dx d 1 = lim V ( + h, x, ρ ( + h))ϕ( + h, x) V (, x, ρ ())ϕ(, x) dx h h 1 = lim V ( + h, x, ρ ( + h)) ϕ( + h, x) ϕ(, x) dx h h 1 + lim V ( + h, x, ρ ( + h)) V ( + h, x, ρ ()) ϕ(, x)dx h h 1 + lim V ( + h, x, ρ ()) V (, x, ρ ()) ϕ(, x)dx. h h Apply Lemma 7.4 o he ecod erm ad (7.) o he hird erm, we have d u (, x)ϕ(, x)dx d = u (, x) ϕ(, x)dx µ V (, x, ρ (), x) 1 xρ (, x) + x V (, x, ρ ())ρ (, x)ϕ(, x)d xdx + 1 x u (, x) x ϕ(, x)dx + 1 xu (, x) F (x, ρ ())ϕ(, x)dx + µ V (, x, ρ (), x) 1 xρ (, x) + x u (, x)ρ (, x)ϕ(, x)d xdx = u (, x) ϕ(, x)dx + µ V (, x, ρ (), x) x v (, x)ρ (, x)ϕ(, x)d xdx + 1 x u (, x) x ϕ(, x)dx + 1 xu (, x) F (x, ρ ())ϕ(, x)dx. 34

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de).

1. Introduction. Markovian stochastic control problems on a given horizon of time T can typically be written as. β(xu α,α u,e)ñ(du, de). SIAM J. CONROL OPIM. Vol. 54, No. 4, pp. 2090 2115 c 2016 Sociey for Idurial ad Applied Mahemaic A WEAK DYNAMIC PROGRAMMING PRINCIPLE FOR COMBINED OPIMAL SOPPING/SOCHASIC CONROL WIH E f -EXPECAIONS ROXANA

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Heat Equation Derivative Formulas for Vector Bundles

Heat Equation Derivative Formulas for Vector Bundles Joural of Fucioal Aalyi 183, 4218 (21) doi:1.16jfa.21.3746, available olie a hp:www.idealibrary.com o Hea Equaio Derivaive Formula for Vecor Budle Bruce K. Driver 1 Deparme of Mahemaic-112, Uiveriy of

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution:

Exercise: Show that. Remarks: (i) Fc(l) is not continuous at l=c. (ii) In general, we have. yn ¾¾. Solution: Exercie: Show ha Soluio: y ¾ y ¾¾ L c Þ y ¾¾ p c. ¾ L c Þ F y (l Fc (l I[c,(l "l¹c Þ P( y c

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability: Oulie Sabiliy Sab Sabiliy of Digial Syem Ieral Sabiliy Exeral Sabiliy Example Roo Locu v ime Repoe Fir Orer Seco Orer Sabiliy e Jury e Rouh Crierio Example Sabiliy A very impora propery of a yamic yem

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

The Central Limit Theorem

The Central Limit Theorem The Ceral Limi Theorem The ceral i heorem is oe of he mos impora heorems i probabiliy heory. While here a variey of forms of he ceral i heorem, he mos geeral form saes ha give a sufficiely large umber,

More information

Mathematical Statistics. 1 Introduction to the materials to be covered in this course

Mathematical Statistics. 1 Introduction to the materials to be covered in this course Mahemaical Saisics Iroducio o he maerials o be covered i his course. Uivariae & Mulivariae r.v s 2. Borl-Caelli Lemma Large Deviaios. e.g. X,, X are iid r.v s, P ( X + + X where I(A) is a umber depedig

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ]

Solution. 1 Solutions of Homework 6. Sangchul Lee. April 28, Problem 1.1 [Dur10, Exercise ] Soluio Sagchul Lee April 28, 28 Soluios of Homework 6 Problem. [Dur, Exercise 2.3.2] Le A be a sequece of idepede eves wih PA < for all. Show ha P A = implies PA i.o. =. Proof. Noice ha = P A c = P A c

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information

Big O Notation for Time Complexity of Algorithms

Big O Notation for Time Complexity of Algorithms BRONX COMMUNITY COLLEGE of he Ciy Uiversiy of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI 33 Secio E01 Hadou 1 Fall 2014 Sepember 3, 2014 Big O Noaio for Time Complexiy of Algorihms Time

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Mah PracTes Be sure o review Lab (ad all labs) There are los of good quesios o i a) Sae he Mea Value Theorem ad draw a graph ha illusraes b) Name a impora heorem where he Mea Value Theorem was used i he

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Solutions to Problems 3, Level 4

Solutions to Problems 3, Level 4 Soluios o Problems 3, Level 4 23 Improve he resul of Quesio 3 whe l. i Use log log o prove ha for real >, log ( {}log + 2 d log+ P ( + P ( d 2. Here P ( is defied i Quesio, ad parial iegraio has bee used.

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Suggested Solutions to Assignment 1 (REQUIRED)

Suggested Solutions to Assignment 1 (REQUIRED) EC 45 dvaced Macroecoomic Irucor: Sharif F ha Deparme of Ecoomic Wilfrid Laurier Uiveri Wier 28 Suggeed Soluio o igme (REQUIRED Toal Mar: 5 Par True/ Fale/ Ucerai Queio [2 mar] Explai wh he followig aeme

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems

Chapter 14 Necessary and Sufficient Conditions for Infinite Horizon Control Problems Chaper 14 Neceary ad Sufficie Codiio for Ifiie Horizo Corol Problem I may opimal corol problem i ecoomic he plaig horizo i aumed o be of ifiie legh. Thi mea ha he pero who olve uch a opimal corol problem

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

SUMMATION OF INFINITE SERIES REVISITED

SUMMATION OF INFINITE SERIES REVISITED SUMMATION OF INFINITE SERIES REVISITED I several aricles over he las decade o his web page we have show how o sum cerai iiie series icludig he geomeric series. We wa here o eed his discussio o he geeral

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

arxiv: v1 [math.st] 6 Jun 2013

arxiv: v1 [math.st] 6 Jun 2013 Eimaio of he fiie righ edpoi i he Gumbel domai Iabel Fraga Alve CEAUL ad DEIO Cláudia Neve CEAUL ad Uiveriy of Aveiro arxiv:306.45v [mah.st] 6 Ju 03 FCUL, Uiveriy of Libo Abrac A imple eimaor for he fiie

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform.

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter Q Notes. Laplace Transforms. Q1. The Laplace Transform. Theoreical Phyic Prof. Ruiz, UNC Aheville, docorphy o YouTue Chaper Q Noe. Laplace Traform Q1. The Laplace Traform. Pierre-Simo Laplace (1749-187) Courey School of Mhemic ad Siic Uiveriy of S. Adrew, Scolad

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

1 Infinitesimal Generators

1 Infinitesimal Generators Ifiieimal Geeraor. Le {T : } i a emi-group of bouded operaor i Baach pace X, i.e., i aifie ha T T = T + for all, > ad T = I. Le f = l T. Suppoe ha f i bouded o [, a], how ha f i ub-addiive, i.e., f + f

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13 Abrac PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL A piecewie h order Adomia polyomial olver for iiial value differeial equaio capable of olvig highly iff problem i preeed here. Thi powerful echique which employ

More information

Introduction to SLE Lecture Notes

Introduction to SLE Lecture Notes Inroducion o SLE Lecure Noe May 13, 16 - The goal of hi ecion i o find a ufficien condiion of λ for he hull K o be generaed by a imple cure. I urn ou if λ 1 < 4 hen K i generaed by a imple curve. We will

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

A Comparative Study of Adomain Decompostion Method and He-Laplace Method

A Comparative Study of Adomain Decompostion Method and He-Laplace Method Applied Mahemaic,, 5, 5-6 Publihed Olie December i SciRe. hp://www.cirp.org/joural/am hp://d.doi.org/.6/am..5 A Comparaive Sudy of Adomai Decompoio Mehod ad He-Laplace Mehod Badradee A. A. Adam, Deparme

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 17, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL SEPTEMBER 7, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( xyz,, ) = 0, mulivariable Taylor liear expasio aroud f( xyz,, ) f( xyz,, ) + f( xyz,, )( x

More information

Solutions to selected problems from the midterm exam Math 222 Winter 2015

Solutions to selected problems from the midterm exam Math 222 Winter 2015 Soluios o seleced problems from he miderm eam Mah Wier 5. Derive he Maclauri series for he followig fucios. (cf. Pracice Problem 4 log( + (a L( d. Soluio: We have he Maclauri series log( + + 3 3 4 4 +...,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition LINEARIZING AND APPROXIMATING THE RBC MODEL SEPTEMBER 7, 200 For f( x, y, z ), mulivariable Taylor liear expasio aroud ( x, yz, ) f ( x, y, z) f( x, y, z) + f ( x, y, z)( x x) + f ( x, y, z)( y y) + f

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013

LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 2013 LINEAR APPROXIMATION OF THE BASELINE RBC MODEL JANUARY 29, 203 Iroducio LINEARIZATION OF THE RBC MODEL For f( x, y, z ) = 0, mulivariable Taylor liear expasio aroud f( x, y, z) f( x, y, z) + f ( x, y,

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

On Stability of Quintic Functional Equations in Random Normed Spaces

On Stability of Quintic Functional Equations in Random Normed Spaces J. COMPUTATIONAL ANALYSIS AND APPLICATIONS, VOL. 3, NO.4, 07, COPYRIGHT 07 EUDOXUS PRESS, LLC O Sabiliy of Quiic Fucioal Equaios i Radom Normed Spaces Afrah A.N. Abdou, Y. J. Cho,,, Liaqa A. Kha ad S.

More information

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral Usig Lii's Ideiy o Approimae he Prime Couig Fucio wih he Logarihmic Iegral Naha McKezie /26/2 aha@icecreambreafas.com Summary:This paper will show ha summig Lii's ideiy from 2 o ad arragig erms i a cerai

More information

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions

Generalized Orlicz Spaces and Wasserstein Distances for Convex-Concave Scale Functions Generalized Orlicz Space and Waerein Diance for Convex-Concave Scale Funcion Karl-Theodor Surm Abrac Given a ricly increaing, coninuou funcion ϑ : R + R +, baed on he co funcional ϑ (d(x, y dq(x, y, we

More information

Dynamic h-index: the Hirsch index in function of time

Dynamic h-index: the Hirsch index in function of time Dyamic h-idex: he Hirsch idex i fucio of ime by L. Egghe Uiversiei Hassel (UHassel), Campus Diepebeek, Agoralaa, B-3590 Diepebeek, Belgium ad Uiversiei Awerpe (UA), Campus Drie Eike, Uiversieisplei, B-260

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Actuarial Society of India

Actuarial Society of India Acuarial Sociey of Idia EXAMINAIONS Jue 5 C4 (3) Models oal Marks - 5 Idicaive Soluio Q. (i) a) Le U deoe he process described by 3 ad V deoe he process described by 4. he 5 e 5 PU [ ] PV [ ] ( e ).538!

More information

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 2 Professor Sanjay Chugh Spring 2017 Deparme of Ecoomics The Ohio Sae Uiversiy Ecoomics 8723 Macroecoomic Theory Problem Se 2 Professor Sajay Chugh Sprig 207 Labor Icome Taxes, Nash-Bargaied Wages, ad Proporioally-Bargaied Wages. I a ecoomy

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information