Algorithm Design Techniques

Size: px
Start display at page:

Download "Algorithm Design Techniques"

Transcription

1 Desg ad Aalyss of Algorthms.. ก ก ก 2542 ก ก ก กกก Algorthm Desg echques Greedy Algorthms Outle Geeral Idea Actvty-Selecto Problem wo Key Igredets More Problems : Kapsack, Huffma Codes Cocluso

2 Caddate Set Algorthm emplate Why Greedy? Greedy( C ) S = empty Soluto Set whle (C empty) ad (! Soluto(S)) x = Select( C ) C = C - {x} f ( Feasble( S U {x} ) ) S = S U {x} f Soluto( S ) the retur S else No soluto Make the choce that looks best at the momet Make locally optmal choce Hope that ths choce wll lead to a globally optmal soluto Do ot always yeld optmal solutos Actvty-Selecto Problem Brute Force s f ry all subsets of actvtes Choose the largest subset whch s feasble Ieffcet : "( 2 ) choces Actvty Startg Fsh

3 Greedy Algorthm 5 Greedy Algorthm 5 Sort by fsh tmes Greedy Algorthm 5 Greedy Algorthm j = 2 = 2 3 = 3 4 j = 4 5 = 5 6 = 6

4 Greedy Algorthm Provg Optmalty Greedy_Actvty_Select( s[..], f[..] ) A = { } j = ; for = 2 to f s[] >= f[j] A = A U { } j = retur A "( ) excludg sort Let f Actvty # must be a optmal soluto 5 k Provg Optmalty Provg Optmalty Let f 5 k Let f Greedy choce produces a optmal soluto. 5

5 wo Key Igredets Optmal substructures a optmal soluto to the problem cotas wth t optmal solutos to subproblems Greedy-choce property a globally optmal soluto ca be arrved at by makg a locally optmal (greedy) choce. Greedy-Choce Property Make whatever choce seems best at the momet Choce made caot deped o ay future choces Must prove that a greedy choce at each step yelds a globally optmal soluto Kapsack Problem tems ad a kapsack tem -th s worth v ad weght w the kapsack ca take weght of at most W What tems should be take to get the most valuable load? w Kapsack Problem 2 3 v 6 2 W = / Kapsack Fractoal Kapsack

6 Kapsack : Optmal Substructure Kapsack : Optmal Substructure W W - w 3 v + v 3 + v 4 + v 7 (max.) v + v 4 + v 7 (max.) W W - w Fractoal Kapsack Fractoal Kapsack v = 2 w = v 2 = 3 w 2 = 2 v 3 = 66 w 3 = 3 v 4 = 4 w 4 = 4 v 5 = 6 w 5 = 5 v = 2 w = v 2 = 3 w 2 = 2 v 3 = 66 w 3 = 3 v 4 = 4 w 4 = 4 v 5 = 6 w 5 = $v = $v = 46

7 v = 2 w = v 2 = 3 w 2 = 2 v /w 2..5 Fractoal Kapsack v 3 = 66 w 3 = 3 v 4 = 4 w 4 = $v = 64 v 5 = 6 w 5 = Fractoal Kapsack : Greedy Alg. Greedy_Kapsack( v[..],w[..],w ) sort v, w by v/w (ocreasg) x[ ] =, wght =, = whle ( <= && wght < W ) dw = W - wght f dw < w[] the x[] = dw/w[] else x[] = wght += x[] * w[] ++ retur x Provg Optmalty Provg Optmalty Let v /w J v 2 /w 2 J... J v /w 2 k... x k... x k < Let x be the soluto vector Let y be ay feasble soluto vector ( x y ) v J Optmal $ x v $ y v ( x k k v vk ( x y ) w w J ( x y ) w wk vk v y ) v k Г ( xk yk ) wk ( x k yk ) wk wk wk v vk Г ( x y ) w J k Г w ( x y ) w k Г wk

8 2 k... x k... Provg Optmalty x k < / Kapsack : Greedy doest work w 2 3 v 6 2 v / w W = 5 ( x k v ( x y ) w w vk y ) v Г ( xk yk ) wk J ( x wk v vk Г ( x y ) w k Г w wk y ) w ( x y ) w vk w k Fract. / (optmal) (optmal) Huffma Codes Optmal Code & Full Bary ree a optmal prefx code prefx code : o codeword s also a prefx of some other codewords A : B : C : D : E : A : B : C : D : E : F : A C B F E D

9 Optmal Code & Full Bary ree Coostructg a Huffma Code A:45 C:2 B:3 D:6 F:5 E:9 A : 45 K B : 3 K 3 C : 2 K 3 D : 6 K 3 E : 9 K 4 F : 5 K 4 B ( ) f ( c) d ( c) cc 25 A:45 B:3 C:2 E:9 F:5 D: Costructg a Huffma Code Huffma( C, ) PQ = BuldHeap( C ) "( log ) for = to - z = Bode_Alloc( ) z.left = Extract_M( PQ ) z.rght = Extract_M( PQ ) z.freq = z.left.freq + z.rght.freq Isert( PQ, z ) retur Extract_M( PQ ) Provg Optmalty Greedy-choce property : buldg a optmal tree ca beg by mergg two lowest-frequecy characters Optmal-substructure property : Optmal Optmal

10 Greedy-Choce Property Let x ad y be two characters w/ lowest freq. Prove that there exsts a optmal-code tree where x ad y appear as sblg leaves of max. depth the tree. x y Greedy-Choce Property * ** x y b y b c b c x c x y cc f ) f ( c) d ( c) f ( c) d* ( c cc ( x) d ( x) Г f ( b) d ( b) f ( x) d* ( x) f ( b) d* ( b f ( x) d ( x) Г f ( b) d ( b) f ( x) d ( b) f ( b) d ( x) ( f ( b) f ( x))( d ( b) d ( x)) J ) Optmal-Substructure Property c x y * c f (c) = f (x) + f (y) B() = B(*) + ( f (x)d (x) + f (y)d (y) ) - f (c)d * (c) B() = B(*) + f (x) + f (y) f (x)d (x) + f (y)d (y) = ( f (x) + f (y) )( d * (c) + ) = f (c)d * (c) + f (x) + f (y) Prms algorthm Kruskals algorthm Djkstras algorthm More Greedy Algorthms

11 Cocluso Greedy algorthm s smple easy to vet easy to mplemet effcet Do ot always yeld optmal solutos requre greedy-choce ad optmal-substructure propertes for optmalty

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desg ad Aalyss of Algorthms.. ก ก ก 54 ก ก ก กกก Algorthm Desg echques Greedy Algorthms Outle Geeral Idea Actvty-Selecto Problem wo Key Igredets More Problems : Kapsac, Huffma Codes Cocluso Caddate Set

More information

PTAS for Bin-Packing

PTAS for Bin-Packing CS 663: Patter Matchg Algorthms Scrbe: Che Jag /9/00. Itroducto PTAS for B-Packg The B-Packg problem s NP-hard. If we use approxmato algorthms, the B-Packg problem could be solved polyomal tme. For example,

More information

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set.

For combinatorial problems we might need to generate all permutations, combinations, or subsets of a set. Addtoal Decrease ad Coquer Algorthms For combatoral problems we mght eed to geerate all permutatos, combatos, or subsets of a set. Geeratg Permutatos If we have a set f elemets: { a 1, a 2, a 3, a } the

More information

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort

This lecture and the next. Why Sorting? Sorting Algorithms so far. Why Sorting? (2) Selection Sort. Heap Sort. Heapsort Ths lecture ad the ext Heapsort Heap data structure ad prorty queue ADT Qucksort a popular algorthm, very fast o average Why Sortg? Whe doubt, sort oe of the prcples of algorthm desg. Sortg used as a subroute

More information

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis)

The Selection Problem - Variable Size Decrease/Conquer (Practice with algorithm analysis) We have covered: Selecto, Iserto, Mergesort, Bubblesort, Heapsort Next: Selecto the Qucksort The Selecto Problem - Varable Sze Decrease/Coquer (Practce wth algorthm aalyss) Cosder the problem of fdg the

More information

Computational Geometry

Computational Geometry Problem efto omputatoal eometry hapter 6 Pot Locato Preprocess a plaar map S. ve a query pot p, report the face of S cotag p. oal: O()-sze data structure that eables O(log ) query tme. pplcato: Whch state

More information

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture) CSE 546: Mache Learg Lecture 6 Feature Selecto: Part 2 Istructor: Sham Kakade Greedy Algorthms (cotued from the last lecture) There are varety of greedy algorthms ad umerous amg covetos for these algorthms.

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

Algorithms Design & Analysis. Hash Tables

Algorithms Design & Analysis. Hash Tables Algorthms Desg & Aalyss Hash Tables Recap Lower boud Order statstcs 2 Today s topcs Drect-accessble table Hash tables Hash fuctos Uversal hashg Perfect Hashg Ope addressg 3 Symbol-table problem Symbol

More information

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities.

Activity selection. Goal: Select the largest possible set of nonoverlapping (mutually compatible) activities. Greedy Algorithm 1 Introduction Similar to dynamic programming. Used for optimization problems. Not always yield an optimal solution. Make choice for the one looks best right now. Make a locally optimal

More information

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence) /24/27 Prevew Fbonacc Sequence Longest Common Subsequence Dynamc programmng s a method for solvng complex problems by breakng them down nto smpler sub-problems. It s applcable to problems exhbtng the propertes

More information

Dynamic Programming! CSE 417: Algorithms and Computational Complexity!

Dynamic Programming! CSE 417: Algorithms and Computational Complexity! Dynamc Programmng CSE 417: Algorthms and Computatonal Complexty Wnter 2009 W. L. Ruzzo Dynamc Programmng, I:" Fbonacc & Stamps Outlne: General Prncples Easy Examples Fbonacc, Lckng Stamps Meater examples

More information

MA/CSSE 473 Day 27. Dynamic programming

MA/CSSE 473 Day 27. Dynamic programming MA/CSSE 473 Day 7 Dyamc Programmg Bomal Coeffcets Warshall's algorthm (Optmal BSTs) Studet questos? Dyamc programmg Used for problems wth recursve solutos ad overlappg subproblems Typcally, we save (memoze)

More information

10.1 Approximation Algorithms

10.1 Approximation Algorithms 290 0. Approxmato Algorthms Let us exame a problem, where we are gve A groud set U wth m elemets A collecto of subsets of the groud set = {,, } s.t. t s a cover of U: = U The am s to fd a subcover, = U,

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Analyzing Control Structures

Analyzing Control Structures Aalyzg Cotrol Strutures sequeg P, P : two fragmets of a algo. t, t : the tme they tae the tme requred to ompute P ;P s t t Θmaxt,t For loops for to m do P t: the tme requred to ompute P total tme requred

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Desgn and Analyss of Algorthms CSE 53 Lecture 4 Dynamc Programmng Junzhou Huang, Ph.D. Department of Computer Scence and Engneerng CSE53 Desgn and Analyss of Algorthms The General Dynamc Programmng Technque

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

1 Lyapunov Stability Theory

1 Lyapunov Stability Theory Lyapuov Stablty heory I ths secto we cosder proofs of stablty of equlbra of autoomous systems. hs s stadard theory for olear systems, ad oe of the most mportat tools the aalyss of olear systems. It may

More information

8.1 Hashing Algorithms

8.1 Hashing Algorithms CS787: Advaced Algorthms Scrbe: Mayak Maheshwar, Chrs Hrchs Lecturer: Shuch Chawla Topc: Hashg ad NP-Completeess Date: September 21 2007 Prevously we looked at applcatos of radomzed algorthms, ad bega

More information

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently

k 1 in the worst case, and ( k 1) / 2 in the average case The O-notation was apparently The o-notation was apparently Errata for Algorthms Sequetal & Parallel, A Ufed Approach (Secod Edto) Russ Mller ad Laurece Boxer Charles Rver Meda, 005 Chapter 1 P. 3, l. 14- to 13- the worst case, ad / the average case 1 the worst

More information

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming

CS583 Lecture 11. Many slides here are based on D. Luebke slides. Review: Dynamic Programming // CS8 Lecture Jana Kosecka Dynamic Programming Greedy Algorithms Many slides here are based on D. Luebke slides Review: Dynamic Programming A meta-technique, not an algorithm (like divide & conquer) Applicable

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Overcoming Limitations of Sampling for Aggregation Queries

Overcoming Limitations of Sampling for Aggregation Queries CIS 6930 Approxmate Quer Processg Paper Presetato Sprg 2004 - Istructor: Dr Al Dobra Overcomg Lmtatos of Samplg for Aggregato Queres Authors: Surajt Chaudhur, Gautam Das, Maur Datar, Rajeev Motwa, ad Vvek

More information

A conic cutting surface method for linear-quadraticsemidefinite

A conic cutting surface method for linear-quadraticsemidefinite A coc cuttg surface method for lear-quadratcsemdefte programmg Mohammad R. Osoorouch Calfora State Uversty Sa Marcos Sa Marcos, CA Jot wor wth Joh E. Mtchell RPI July 3, 2008 Outle: Secod-order coe: defto

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Runtime analysis RLS on OneMax. Heuristic Optimization

Runtime analysis RLS on OneMax. Heuristic Optimization Lecture 6 Rutme aalyss RLS o OeMax trals of {,, },, l ( + ɛ) l ( ɛ)( ) l Algorthm Egeerg Group Hasso Platter Isttute, Uversty of Potsdam 9 May T, We wat to rgorously uderstad ths behavor 9 May / Rutme

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem

Cubic Nonpolynomial Spline Approach to the Solution of a Second Order Two-Point Boundary Value Problem Joural of Amerca Scece ;6( Cubc Nopolyomal Sple Approach to the Soluto of a Secod Order Two-Pot Boudary Value Problem W.K. Zahra, F.A. Abd El-Salam, A.A. El-Sabbagh ad Z.A. ZAk * Departmet of Egeerg athematcs

More information

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits Block-Based Compact hermal Modelg of Semcoductor Itegrated Crcuts Master s hess Defese Caddate: Jg Ba Commttee Members: Dr. Mg-Cheg Cheg Dr. Daqg Hou Dr. Robert Schllg July 27, 2009 Outle Itroducto Backgroud

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

Median as a Weighted Arithmetic Mean of All Sample Observations

Median as a Weighted Arithmetic Mean of All Sample Observations Meda as a Weghted Arthmetc Mea of All Sample Observatos SK Mshra Dept. of Ecoomcs NEHU, Shllog (Ida). Itroducto: Iumerably may textbooks Statstcs explctly meto that oe of the weakesses (or propertes) of

More information

Hard Core Predicates: How to encrypt? Recap

Hard Core Predicates: How to encrypt? Recap Hard Core Predcates: How to ecrypt? Debdeep Mukhopadhyay IIT Kharagpur Recap A ecrypto scheme s secured f for every probablstc adversary A carryg out some specfed kd of attack ad for every polyomal p(.),

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

A practical threshold estimation for jump processes

A practical threshold estimation for jump processes A practcal threshold estmato for jump processes Yasutaka Shmzu (Osaka Uversty, Japa) WORKSHOP o Face ad Related Mathematcal ad Statstcal Issues @ Kyoto, JAPAN, 3 6 Sept., 2008. Itroducto O (Ω, F,P; {F

More information

To use adaptive cluster sampling we must first make some definitions of the sampling universe:

To use adaptive cluster sampling we must first make some definitions of the sampling universe: 8.3 ADAPTIVE SAMPLING Most of the methods dscussed samplg theory are lmted to samplg desgs hch the selecto of the samples ca be doe before the survey, so that oe of the decsos about samplg deped ay ay

More information

DYNAMIC PROGRAMMING. Dynamic Programming. Costs. Prototype example. Solving the problem. Formulation

DYNAMIC PROGRAMMING. Dynamic Programming. Costs. Prototype example. Solving the problem. Formulation DYNAMIC PROGRAMMING Dyamc Programmg It s a useful mathematcal techque for makg a sequece of terrelated decsos. Systematc procedure for determg the optmal combato of decsos. There s o stadard mathematcal

More information

Algorithm Design Strategies V

Algorithm Design Strategies V Algorithm Design Strategies V Joaquim Madeira Version 0.0 October 2016 U. Aveiro, October 2016 1 Overview The 0-1 Knapsack Problem Revisited The Fractional Knapsack Problem Greedy Algorithms Example Coin

More information

Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later:

Greedy. Outline CS141. Stefano Lonardi, UCR 1. Activity selection Fractional knapsack Huffman encoding Later: October 5, 017 Greedy Chapters 5 of Dasgupta et al. 1 Activity selection Fractional knapsack Huffman encoding Later: Outline Dijkstra (single source shortest path) Prim and Kruskal (minimum spanning tree)

More information

Support vector machines

Support vector machines CS 75 Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square CS 75 Mache Learg Outle Outle: Algorthms for lear decso boudary Support vector maches Mamum marg hyperplae.

More information

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD

3D Geometry for Computer Graphics. Lesson 2: PCA & SVD 3D Geometry for Computer Graphcs Lesso 2: PCA & SVD Last week - egedecomposto We wat to lear how the matrx A works: A 2 Last week - egedecomposto If we look at arbtrary vectors, t does t tell us much.

More information

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Department of Agricultural Economics. PhD Qualifier Examination. August 2011 Departmet of Agrcultural Ecoomcs PhD Qualfer Examato August 0 Istructos: The exam cossts of sx questos You must aswer all questos If you eed a assumpto to complete a questo, state the assumpto clearly

More information

Algorithms Theory, Solution for Assignment 2

Algorithms Theory, Solution for Assignment 2 Juor-Prof. Dr. Robert Elsässer, Marco Muñz, Phllp Hedegger WS 2009/200 Algorthms Theory, Soluto for Assgmet 2 http://lak.formatk.u-freburg.de/lak_teachg/ws09_0/algo090.php Exercse 2. - Fast Fourer Trasform

More information

Curve Fitting with the Least Square Method

Curve Fitting with the Least Square Method WIKI Document Number 5 Interpolaton wth Least Squares Curve Fttng wth the Least Square Method Mattheu Bultelle Department of Bo-Engneerng Imperal College, London Context We wsh to model the postve feedback

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fttg, RANSAC Jaa Kosecka Fttg: Issues Prevous strateges Le detecto Hough trasform Smple parametrc model, two parameters m, b m + b Votg strateg Hard to geeralze to hgher dmesos a o + a + a 2 2 +

More information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions CO-511: Learg Theory prg 2017 Lecturer: Ro Lv Lecture 16: Bacpropogato Algorthm Dsclamer: These otes have ot bee subected to the usual scruty reserved for formal publcatos. They may be dstrbuted outsde

More information

PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

Exercises for Square-Congruence Modulo n ver 11

Exercises for Square-Congruence Modulo n ver 11 Exercses for Square-Cogruece Modulo ver Let ad ab,.. Mark True or False. a. 3S 30 b. 3S 90 c. 3S 3 d. 3S 4 e. 4S f. 5S g. 0S 55 h. 8S 57. 9S 58 j. S 76 k. 6S 304 l. 47S 5347. Fd the equvalece classes duced

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

An Integrated OR/CP Method for Planning and Scheduling

An Integrated OR/CP Method for Planning and Scheduling An Integrated OR/CP Method for Plannng and Schedulng John Hooer Carnege Mellon Unversty IT Unversty of Copenhagen June 2005 The Problem Allocate tass to facltes. Schedule tass assgned to each faclty. Subect

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

if the two intervals overlap at most at end

if the two intervals overlap at most at end Activity Selection Given a set of activities represented by intervals (s i f i ), i =1 ::: n. To select a maximum number of compatible intervals (activities). Two activities (s i f i ) and (s j f j ) are

More information

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines CS 675 Itroducto to Mache Learg Lecture Support vector maches Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Mdterm eam October 9, 7 I-class eam Closed book Stud materal: Lecture otes Correspodg chapters

More information

C.11 Bang-bang Control

C.11 Bang-bang Control Itroucto to Cotrol heory Iclug Optmal Cotrol Nguye a e -.5 C. Bag-bag Cotrol. Itroucto hs chapter eals wth the cotrol wth restrctos: s boue a mght well be possble to have scotutes. o llustrate some of

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

Introduction to Information Theory, Data Compression,

Introduction to Information Theory, Data Compression, Introducton to Informaton Theory, Data Compresson, Codng Mehd Ibm Brahm, Laura Mnkova Aprl 5, 208 Ths s the augmented transcrpt of a lecture gven by Luc Devroye on the 3th of March 208 for a Data Structures

More information

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model

Lecture 7. Confidence Intervals and Hypothesis Tests in the Simple CLR Model Lecture 7. Cofdece Itervals ad Hypothess Tests the Smple CLR Model I lecture 6 we troduced the Classcal Lear Regresso (CLR) model that s the radom expermet of whch the data Y,,, K, are the outcomes. The

More information

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico

CS 561, Lecture: Greedy Algorithms. Jared Saia University of New Mexico CS 561, Lecture: Greedy Algorithms Jared Saia University of New Mexico Outline Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Greed is Good - Michael Douglas in Wall Street A greedy

More information

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR

LECTURE - 4 SIMPLE RANDOM SAMPLING DR. SHALABH DEPARTMENT OF MATHEMATICS AND STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANPUR amplg Theory MODULE II LECTURE - 4 IMPLE RADOM AMPLIG DR. HALABH DEPARTMET OF MATHEMATIC AD TATITIC IDIA ITITUTE OF TECHOLOGY KAPUR Estmato of populato mea ad populato varace Oe of the ma objectves after

More information

Applied Fitting Theory VII. Building Virtual Particles

Applied Fitting Theory VII. Building Virtual Particles Appled Fttg heory II Paul Avery CBX 98 38 Jue 8, 998 Apr. 7, 999 (rev.) Buldg rtual Partcles I Statemet of the problem I may physcs aalyses we ecouter the problem of mergg a set of partcles to a sgle partcle

More information

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS

MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEMS INVOLVING GENERALIZED d - TYPE-I n -SET FUNCTIONS THE PUBLIHING HOUE PROCEEDING OF THE ROMANIAN ACADEMY, eres A OF THE ROMANIAN ACADEMY Volue 8, Nuber /27,.- MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM INVOLVING GENERALIZED d - TYPE-I -ET

More information

VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING)

VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex a. Uform scalar quatzato wth varable-legth codg, oe

More information

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack

Today s Outline. CS 561, Lecture 15. Greedy Algorithms. Activity Selection. Greedy Algorithm Intro Activity Selection Knapsack Today s Outline CS 561, Lecture 15 Jared Saia University of New Mexico Greedy Algorithm Intro Activity Selection Knapsack 1 Greedy Algorithms Activity Selection Greed is Good - Michael Douglas in Wall

More information

Dimensionality Reduction and Learning

Dimensionality Reduction and Learning CMSC 35900 (Sprg 009) Large Scale Learg Lecture: 3 Dmesoalty Reducto ad Learg Istructors: Sham Kakade ad Greg Shakharovch L Supervsed Methods ad Dmesoalty Reducto The theme of these two lectures s that

More information

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer

NP!= P. By Liu Ran. Table of Contents. The P vs. NP problem is a major unsolved problem in computer NP!= P By Lu Ra Table of Cotets. Itroduce 2. Strategy 3. Prelmary theorem 4. Proof 5. Expla 6. Cocluso. Itroduce The P vs. NP problem s a major usolved problem computer scece. Iformally, t asks whether

More information

A Mean- maximum Deviation Portfolio Optimization Model

A Mean- maximum Deviation Portfolio Optimization Model A Mea- mamum Devato Portfolo Optmzato Model Wu Jwe Shool of Eoom ad Maagemet, South Cha Normal Uversty Guagzhou 56, Cha Tel: 86-8-99-6 E-mal: wujwe@9om Abstrat The essay maes a thorough ad systemat study

More information

1 Convergence of the Arnoldi method for eigenvalue problems

1 Convergence of the Arnoldi method for eigenvalue problems Lecture otes umercal lear algebra Arold method covergece Covergece of the Arold method for egevalue problems Recall that, uless t breaks dow, k steps of the Arold method geerates a orthogoal bass of a

More information

2. Independence and Bernoulli Trials

2. Independence and Bernoulli Trials . Ideedece ad Beroull Trals Ideedece: Evets ad B are deedet f B B. - It s easy to show that, B deedet mles, B;, B are all deedet ars. For examle, ad so that B or B B B B B φ,.e., ad B are deedet evets.,

More information

(b) By independence, the probability that the string 1011 is received correctly is

(b) By independence, the probability that the string 1011 is received correctly is Soluto to Problem 1.31. (a) Let A be the evet that a 0 s trasmtted. Usg the total probablty theorem, the desred probablty s P(A)(1 ɛ ( 0)+ 1 P(A) ) (1 ɛ 1)=p(1 ɛ 0)+(1 p)(1 ɛ 1). (b) By depedece, the probablty

More information

D. VQ WITH 1ST-ORDER LOSSLESS CODING

D. VQ WITH 1ST-ORDER LOSSLESS CODING VARIABLE-RATE VQ (AKA VQ WITH ENTROPY CODING) Varable-Rate VQ = Quatzato + Lossless Varable-Legth Bary Codg A rage of optos -- from smple to complex A. Uform scalar quatzato wth varable-legth codg, oe

More information

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1

Wu-Hausman Test: But if X and ε are independent, βˆ. ECON 324 Page 1 Wu-Hausma Test: Detectg Falure of E( ε X ) Caot drectly test ths assumpto because lack ubased estmator of ε ad the OLS resduals wll be orthogoal to X, by costructo as ca be see from the momet codto X'

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

A New Method for Decision Making Based on Soft Matrix Theory

A New Method for Decision Making Based on Soft Matrix Theory Joural of Scetfc esearch & eports 3(5): 0-7, 04; rtcle o. JS.04.5.00 SCIENCEDOMIN teratoal www.scecedoma.org New Method for Decso Mag Based o Soft Matrx Theory Zhmg Zhag * College of Mathematcs ad Computer

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic

Convergence of the Desroziers scheme and its relation to the lag innovation diagnostic Covergece of the Desrozers scheme ad ts relato to the lag ovato dagostc chard Méard Evromet Caada, Ar Qualty esearch Dvso World Weather Ope Scece Coferece Motreal, August 9, 04 o t t O x x x y x y Oservato

More information

Random Variables and Probability Distributions

Random Variables and Probability Distributions Radom Varables ad Probablty Dstrbutos * If X : S R s a dscrete radom varable wth rage {x, x, x 3,. } the r = P (X = xr ) = * Let X : S R be a dscrete radom varable wth rage {x, x, x 3,.}.If x r P(X = x

More information

Merge and Quick Sort

Merge and Quick Sort Merge ad Quick Sort Merge Sort Merge Sort Tree Implemetatio Quick Sort Pivot Item Radomized Quick Sort Adapted from: Goodrich ad Tamassia, Data Structures ad Algorithms i Java, Joh Wiley & So (1998). Ruig

More information

Support vector machines II

Support vector machines II CS 75 Mache Learg Lecture Support vector maches II Mlos Hauskrecht mlos@cs.ptt.edu 539 Seott Square Learl separable classes Learl separable classes: here s a hperplae that separates trag staces th o error

More information

Economic drivers. Input and output prices Adjustment under ITQs

Economic drivers. Input and output prices Adjustment under ITQs Ecoomc drvers Iput ad output prces Adjustmet uder ITQs Outle Questo beg examed How are fshers lely to adjust ther fshg operatos uder ITQs? Methodologes to loo at the ssue Cost fuctos Proft fuctos Case

More information

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II

Chapter 2 - Free Vibration of Multi-Degree-of-Freedom Systems - II CEE49b Chapter - Free Vbrato of Mult-Degree-of-Freedom Systems - II We ca obta a approxmate soluto to the fudametal atural frequecy through a approxmate formula developed usg eergy prcples by Lord Raylegh

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER II STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for

More information

ECON 5360 Class Notes GMM

ECON 5360 Class Notes GMM ECON 560 Class Notes GMM Geeralzed Method of Momets (GMM) I beg by outlg the classcal method of momets techque (Fsher, 95) ad the proceed to geeralzed method of momets (Hase, 98).. radtoal Method of Momets

More information

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods Malaysa Umodalty Joural Tests of Mathematcal for Global Optmzato Sceces (): of 05 Sgle - 5 Varable (007) Fuctos Usg Statstcal Methods Umodalty Tests for Global Optmzato of Sgle Varable Fuctos Usg Statstcal

More information

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations

hp calculators HP 30S Statistics Averages and Standard Deviations Average and Standard Deviation Practice Finding Averages and Standard Deviations HP 30S Statstcs Averages ad Stadard Devatos Average ad Stadard Devato Practce Fdg Averages ad Stadard Devatos HP 30S Statstcs Averages ad Stadard Devatos Average ad stadard devato The HP 30S provdes several

More information

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5]

21. Dynamic Programming III. FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] 575 21. Dynamic Programming III FPTAS [Ottman/Widmayer, Kap. 7.2, 7.3, Cormen et al, Kap. 15,35.5] Approximation 576 Let ε (0, 1) given. Let I opt an optimal selection. No try to find a valid selection

More information

MATH 371 Homework assignment 1 August 29, 2013

MATH 371 Homework assignment 1 August 29, 2013 MATH 371 Homework assgmet 1 August 29, 2013 1. Prove that f a subset S Z has a smallest elemet the t s uque ( other words, f x s a smallest elemet of S ad y s also a smallest elemet of S the x y). We kow

More information

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices.

( q Modal Analysis. Eigenvectors = Mode Shapes? Eigenproblem (cont) = x x 2 u 2. u 1. x 1 (4.55) vector and M and K are matrices. 4.3 - Modal Aalyss Physcal coordates are ot always the easest to work Egevectors provde a coveet trasformato to modal coordates Modal coordates are lear combato of physcal coordates Say we have physcal

More information

Pseudo-random Functions

Pseudo-random Functions Pseudo-radom Fuctos Debdeep Mukhopadhyay IIT Kharagpur We have see the costructo of PRG (pseudo-radom geerators) beg costructed from ay oe-way fuctos. Now we shall cosder a related cocept: Pseudo-radom

More information

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009

Answer key to problem set # 2 ECON 342 J. Marcelo Ochoa Spring, 2009 Aswer key to problem set # ECON 34 J. Marcelo Ochoa Sprg, 009 Problem. For T cosder the stadard pael data model: y t x t β + α + ǫ t a Numercally compare the fxed effect ad frst dfferece estmates. b Compare

More information

Greedy Algorithms My T. UF

Greedy Algorithms My T. UF Introduction to Algorithms Greedy Algorithms @ UF Overview A greedy algorithm always makes the choice that looks best at the moment Make a locally optimal choice in hope of getting a globally optimal solution

More information

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract

Numerical Simulations of the Complex Modied Korteweg-de Vries Equation. Thiab R. Taha. The University of Georgia. Abstract Numercal Smulatos of the Complex Moded Korteweg-de Vres Equato Thab R. Taha Computer Scece Departmet The Uversty of Georga Athes, GA 002 USA Tel 0-542-2911 e-mal thab@cs.uga.edu Abstract I ths paper mplemetatos

More information

Statistics MINITAB - Lab 5

Statistics MINITAB - Lab 5 Statstcs 10010 MINITAB - Lab 5 PART I: The Correlato Coeffcet Qute ofte statstcs we are preseted wth data that suggests that a lear relatoshp exsts betwee two varables. For example the plot below s of

More information

Knapsack and Scheduling Problems. The Greedy Method

Knapsack and Scheduling Problems. The Greedy Method The Greedy Method: Knapsack and Scheduling Problems The Greedy Method 1 Outline and Reading Task Scheduling Fractional Knapsack Problem The Greedy Method 2 Elements of Greedy Strategy An greedy algorithm

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

Dynamic Programming 4/5/12. Dynamic programming. Fibonacci numbers. Fibonacci: a first attempt. David Kauchak cs302 Spring 2012

Dynamic Programming 4/5/12. Dynamic programming. Fibonacci numbers. Fibonacci: a first attempt. David Kauchak cs302 Spring 2012 Dynamc Programmng Davd Kauchak cs32 Sprng 212 Dynamc programmng l One of the most mportant algorthm tools! l Very common ntervew queston l Method for solvng problems where optmal solutons can be defned

More information

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations.

III-16 G. Brief Review of Grand Orthogonality Theorem and impact on Representations (Γ i ) l i = h n = number of irreducible representations. III- G. Bref evew of Grad Orthogoalty Theorem ad mpact o epresetatos ( ) GOT: h [ () m ] [ () m ] δδ δmm ll GOT puts great restrcto o form of rreducble represetato also o umber: l h umber of rreducble

More information

Lecture 9. Greedy Algorithm

Lecture 9. Greedy Algorithm Lecture 9. Greedy Algorithm T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2018

More information