FACULTY OF MATHEMATICAL, PHYSICAL AND NATURAL SCIENCES. AUTHOR Francesco Torsello SUPERVISOR Prof. Valeria Ferrari

Size: px
Start display at page:

Download "FACULTY OF MATHEMATICAL, PHYSICAL AND NATURAL SCIENCES. AUTHOR Francesco Torsello SUPERVISOR Prof. Valeria Ferrari"

Transcription

1 FACULTY OF MATHEMATICAL, PHYSICAL AND NATURAL SCIENCES AUTHOR Francesco SUPERVISOR Prof. Valeria Ferrari

2 Internal structure of a neutron star M [ 1, 2] M n + p + e + µ 0.3km; atomic nuclei +e 0.5km; PRM +n + e H + K + π + q interaction (QCD):? gcm gcm gcm 3 0.5R 0.95R R = 9 15km

3 Internal structure of a neutron star M [ 1, 2] M n + p + e + µ 0.3km; atomic nuclei +e 0.5km; PRM +n + e H + K + π + q interaction (QCD):? C NS = GM NS c 2 R NS gcm gcm gcm 3 0.5R 0.95R R = 9 15km

4 Internal structure of a neutron star M [ 1, 2] M n + p + e + µ 0.3km; atomic nuclei +e 0.5km; PRM +n + e H + K + π + q interaction (QCD):? C NS = GM NS c 2 R NS 0.1 C = GM c 2 R 1.47km km gcm gcm gcm 3 0.5R 0.95R R = 9 15km

5 Internal structure of a neutron star M [ 1, 2] M n + p + e + µ 0.3km; atomic nuclei +e 0.5km; PRM +n + e H + K + π + q interaction (QCD):? gcm 3 0.5R 10 7 gcm gcm R R = 9 15km C NS = GM NS c 2 R NS 0.1 C = GM c 2 R 1.47km km 10 6 C NS 10 5 C C STRONG FIELD: GENERAL RELATIVITY IS NECESSARY

6 Binary systems NS-NS or NS-BH merging t GRAVITATIONAL WAVES EMISSION Initial phase: point-like approximation, the gravitational wave does not depend on the internal structure of neutron stars Final phase: neutron stars are deformed due to mutual tidal interaction and the gravitational wave depends on their internal structures

7 Gravitational waves revelation II generation AdvancedLIGO, AdvancedVIRGO III generation Einstein Telescope AdvancedLIGO Caltech, MIT AdvancedVIRGO Centre National de la Recherche Scientifique (CNRS), INFN Einstein Telescope EGO, INFN, Max-Planck-Institut für Gravitationsphysik, CNRS, University of Birmingham, University of Glasgow, NIKHEF, Cardiff University

8 Purpose of this thesis UNDESTANDING OF WHAT IS THE INTERNAL REGION OF A NEUTRON STAR THAT MAINLY DETERMINES ITS DEFORMABILITY, in order to establish what is the internal region of a neutron star about which we can obtain information by measuring gravitational waves emitted by binary systems shortly before the merging

9 Static and spherically symmetric neutron star with mass M and radius R (non rotating star) ds 2 = e 2ν(r) dt 2 + e 2λ(r) dr 2 + r 2 ( dϑ 2 + sin 2 (ϑ)dϕ 2), with G = c = 1

10 Static and spherically symmetric neutron star with mass M and radius R (non rotating star) r R ds 2 = e 2ν(r) dt 2 + e 2λ(r) dr 2 + r 2 ( dϑ 2 + sin 2 (ϑ)dϕ 2), with G = c = 1 TOV equations (Tolman-Oppenheimer-Volkoff) dm(r) = 4πr 2 ɛ(r) dr dp(r) dr = [ɛ(r) + p(r)] [ m(r) + 4πr 3 p(r) ] r (r 2m(r))

11 Static and spherically symmetric neutron star with mass M and radius R (non rotating star) r R ds 2 = e 2ν(r) dt 2 + e 2λ(r) dr 2 + r 2 ( dϑ 2 + sin 2 (ϑ)dϕ 2), with G = c = 1 1 m(r) r 2 TOV equations (Tolman-Oppenheimer-Volkoff) dm(r) = 4πr 2 ɛ(r) dr dp(r) dr = [ɛ(r) + p(r)] [ m(r) + 4πr 3 p(r) ] r (r 2m(r)) 3 unknown functions e 2 ODE: (1 e 2λ(r)) 2 ɛ(r) = mass-energy density 3 p(r) = pressure

12 Static and spherically symmetric neutron star with mass M and radius R (non rotating star) r R ds 2 = e 2ν(r) dt 2 + e 2λ(r) dr 2 + r 2 ( dϑ 2 + sin 2 (ϑ)dϕ 2), with G = c = 1 TOV equations (Tolman-Oppenheimer-Volkoff) dm(r) = 4πr 2 ɛ(r) dr dp(r) dr = [ɛ(r) + p(r)] [ m(r) + 4πr 3 p(r) ] r (r 2m(r)) 3 unknown functions e 2 ODE: 1 m(r) r (1 e 2λ(r)) THIRD EQUATION 2 2 ɛ(r) = mass-energy density = Equation of State 3 p(r) = pressure (EOS)

13 Static and spherically symmetric neutron star with mass M and radius R (non rotating star) r R ds 2 = e 2ν(r) dt 2 + e 2λ(r) dr 2 + r 2 ( dϑ 2 + sin 2 (ϑ)dϕ 2), with G = c = 1 TOV equations (Tolman-Oppenheimer-Volkoff) dm(r) = 4πr 2 ɛ(r) dr dp(r) dr = [ɛ(r) + p(r)] [ m(r) + 4πr 3 p(r) ] r (r 2m(r)) 3 unknown functions e 2 ODE: 1 m(r) r (1 e 2λ(r)) THIRD EQUATION 2 2 ɛ(r) = mass-energy density = Equation of State 3 p(r) = pressure (EOS) r R e 2ν(r) = 1 2M r Schwarzschild metric e 2λ(r) = ( 1 2M r ) 1

14 Piecewise polytropics Read, Lackey, Owen, Friedman, Physical Review D79, , 2009 [ρ i 1, ρ i ], with i = 1,..., n and n number of intervals p(ρ) = K i ρ γ i : EOS is polytropic ( ) ( ) : the first principle ρ [ρ i 1, ρ i ] = ɛ 1 d = pd of Thermodynamics ρ ρ is valid p(ρ) γ 3 γ 2 p 2 p 1 γ 1 p c SLY ρ 0 centre ρ 2 = gcm 3 ρ gcm 3 ρ c. ρ = gcm 3 ρ surface

15 Tidal λ: definition TIDAL QUADRUPOLAR FIELD = l = 2 TIDAL QUADRUPOLAR TENSOR E ij = ( R tid µναβ 2 E m Yij 2m m= 2 e µ (i) eν (0) eα (j) eβ (0) ) = MASS QUADRUPOLE MOMENT Q ij = d 3 xδρ( x) (x i x j 13 ) r2 δ ij = 2 Q m Yij 2m m= 2

16 Tidal λ: definition TIDAL QUADRUPOLAR FIELD = l = 2 TIDAL QUADRUPOLAR TENSOR E ij = ( R tid µναβ 2 E m Yij 2m m= 2 e µ (i) eν (0) eα (j) eβ (0) ) = MASS QUADRUPOLE MOMENT Q ij = d 3 xδρ( x) (x i x j 13 ) r2 δ ij = 2 Q m Yij 2m m= 2 WEAK TIDAL FIELD: [ ] 2R 5 Q ij = 3G k 2 E ij = λ 2R5 3G k 2 FIRST PERTURBATIVE ORDER, O(E ij )

17 Tidal λ of a static and spherically symmetric neutron star in an external tidal quadrupolar gravitational field δg µ ν = 8πδT µ ν

18 Tidal λ of a static and spherically symmetric neutron star in an external tidal quadrupolar gravitational field δg µ ν = 8πδT µ ν Thorne, Physical Review D58, , 1998 g 00 = 1 + 2M ( + 3λ ) r r 3 r2 E 0 Y 20 (ϑ)

19 Tidal λ of a static and spherically symmetric neutron star in an external tidal quadrupolar gravitational field δg µ ν = 8πδT µ ν Thorne, Physical Review D58, , 1998 g 00 = 1 + 2M ( + 3λ ) r r 3 r2 E 0 Y 20 (ϑ) λ = ( 2R 5 ) 8C 5 3G 5 (1 2C)2 (2 + 2C(y 1) y) [2C (6 3y + 3C(5y 8)) + 4C 3 (13 11y + C(3y 2)+ +2C 2 (1 + y) ) + 3 (1 2C) 2 (2 y + 2C(y 1)) ln (1 2C)] 1, C = M R, y = RH (R) H(R) Hinderer, Astrophysical Journal 677: , 2008 H(r) is the radial perturbation of the Schwarzschild metric

20 Estimate of λ in the interior of the star APPROXIMATION We evaluate the tidal λ in r < R supposing that the internal region r < r R does not exist. To calculate λ( r) it suffices to substitute R r in the previous formula of λ λ λ( r) r R r R

21 Choice of EOS and of stellar configurations used in our study REASONS Extreme EOS: most and least compact neutron stars Different composition of matter in the interior of the stars: MS1: n, p, e, µ, relativistic mean field theory ALF2: n, p, e, µ, q, variational method ecc...

22 Choice of EOS and of stellar configurations used in our study REASONS Extreme EOS: most and least compact neutron stars Different composition of matter in the interior of the stars: MS1: n, p, e, µ, relativistic mean field theory ALF2: n, p, e, µ, q, variational method ecc... EOS in decreasing order of produced neutron stars compressibility χ = (γ i p) 1 : greater C = M R, R1, WFF1, APR4, Γ1, Γ2, ALF2, MS1 stiff, soft minor C = M R R1, Γ1, Γ2 are defined in Yagi, Stein, Pappas, Yunes, Apostolatos, Physical Review D90, , 2014

23 Radial profiles of tidal ( ) λ(r) ( r vs λ R) D = [0.5R, 0.98R]

24 Radial profiles of tidal ( ) λ(r) ( r vs λ R) D = [0.5R, 0.98R] What is the physical internal region (inner core, outer core, inner crust, outer crust) that mainly contributes to determine λ?

25 Tidal profiles depending on mass density ( ) λ(r) vs ρ(r) λ PHYSICAL REGION CONTRIBUTIONS TO λ (1.4M ) EOS stiff soft CORE 45% 80% CRUST 55% 20% INNER CORE OUTER CORE 0% 25% 45% 55%

26 Binary system NS-NS: gravitational wave h(f ) = A(f )e iψ(f ), with f wave frequency ψ(f ) = ψ pp (f ) +ψ Q (f ) +ψ λ (f ) point particle rotational tidal model s contribution: contribution: contribution Q = MQrot J 2 λ = λ M 5

27 Binary system NS-NS: gravitational wave h(f ) = A(f )e iψ(f ), with f wave frequency ψ(f ) = ψ pp (f ) +ψ Q (f ) +ψ λ (f ) point particle rotational tidal model s contribution: contribution: contribution Q = MQrot J 2 λ = λ M 5 ψ λ (f ) = (Mπf { ) 5/3 24 [( 1 + 7η 31η 2) λ S + + ( 1 + 9η + 11η 2) λ a δm ] x 5} + O(x 6 ) ( M = µ 3 (M 1 + M 2 ) 2) 1/5 M = chirp mass, µ = 1 M 2 M, η = 1 M 2 M 1 + M 2 (M 1 + M 2 ) 2,, x = ((M M M 2 )πf ) 5/3, λ M S = λ 1 + λ 2, λ a = λ 1 λ δm = M 1 M 2

28 Conclusions Future measure of λ by gravitational waves revelation

29 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS

30 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS λ is mainly determined by the star s core

31 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS λ is mainly determined by the star s core EOS in the innermost region of the star is soft

32 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS λ is mainly determined by the star s core EOS in the innermost region of the star is soft λ close to the value related to stiff EOS

33 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS λ is mainly determined by the star s core EOS in the innermost region of the star is soft λ close to the value related to stiff EOS λ is mainly determined by the star s crust

34 Conclusions Future measure of λ by gravitational waves revelation λ close to the value related to soft EOS λ is mainly determined by the star s core EOS in the innermost region of the star is soft λ close to the value related to stiff EOS λ is mainly determined by the star s crust Little information about EOS in the innermost region

Universal Relations for the Moment of Inertia in Relativistic Stars

Universal Relations for the Moment of Inertia in Relativistic Stars Universal Relations for the Moment of Inertia in Relativistic Stars Cosima Breu Goethe Universität Frankfurt am Main Astro Coffee Motivation Crab-nebula (de.wikipedia.org/wiki/krebsnebel) neutron stars

More information

Constraining the Radius of Neutron Stars Through the Moment of Inertia

Constraining the Radius of Neutron Stars Through the Moment of Inertia Constraining the Radius of Neutron Stars Through the Moment of Inertia Neutron star mergers: From gravitational waves to nucleosynthesis International Workshop XLV on Gross Properties of Nuclei and Nuclear

More information

General Relativity and Compact Objects Neutron Stars and Black Holes

General Relativity and Compact Objects Neutron Stars and Black Holes 1 General Relativity and Compact Objects Neutron Stars and Black Holes We confine attention to spherically symmetric configurations. The metric for the static case can generally be written ds 2 = e λ(r)

More information

Compact Stars in the Braneworld

Compact Stars in the Braneworld Compact Stars in the Braneworld Mike Georg Bernhardt Zentrum für Astronomie Heidelberg Landessternwarte 28 January 29 Outline Review: Relativistic Stars TOV equations Solutions of the TOV equations Neutron

More information

Neutron Stars in the Braneworld

Neutron Stars in the Braneworld Neutron Stars in the Braneworld Mike Georg Bernhardt Ruprecht-Karls-Universität Heidelberg Zentrum für Astronomie, Landessternwarte 24 April 29 Outline Introduction Why bother with Extra Dimensions? Braneworlds

More information

Static Spherically-Symmetric Stellar Structure in General Relativity

Static Spherically-Symmetric Stellar Structure in General Relativity Static Spherically-Symmetric Stellar Structure in General Relativity Christian D. Ott TAPIR, California Institute of Technology cott@tapir.caltech.edu July 24, 2013 1 Introduction Neutron stars and, to

More information

Hot White Dwarf Stars

Hot White Dwarf Stars Bakytzhan A. Zhami K.A. Boshkayev, J.A. Rueda, R. Ruffini Al-Farabi Kazakh National University Faculty of Physics and Technology, Almaty, Kazakhstan Supernovae, Hypernovae and Binary Driven Hypernovae

More information

Chapter 7 Neutron Stars

Chapter 7 Neutron Stars Chapter 7 Neutron Stars 7.1 White dwarfs We consider an old star, below the mass necessary for a supernova, that exhausts its fuel and begins to cool and contract. At a sufficiently low temperature the

More information

Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral

Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral I. Astrophysical Constraints Jocelyn Read, Ben Lackey, Ben Owen, JF II. NRDA NS-NS Jocelyn Read, Charalampos Markakis, Masaru

More information

Lecture 2. Relativistic Stars. Jolien Creighton. University of Wisconsin Milwaukee. July 16, 2012

Lecture 2. Relativistic Stars. Jolien Creighton. University of Wisconsin Milwaukee. July 16, 2012 Lecture 2 Relativistic Stars Jolien Creighton University of Wisconsin Milwaukee July 16, 2012 Equation of state of cold degenerate matter Non-relativistic degeneracy Relativistic degeneracy Chandrasekhar

More information

Tolman Oppenheimer Volkoff (TOV) Stars

Tolman Oppenheimer Volkoff (TOV) Stars Tolman Oppenheimer Volkoff TOV) Stars Aaron Smith 1, 1 Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 Dated: December 4, 2012) We present a set of lecture notes for modeling

More information

Einstein s Equations. July 1, 2008

Einstein s Equations. July 1, 2008 July 1, 2008 Newtonian Gravity I Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r

More information

Polytropic Stars. c 2

Polytropic Stars. c 2 PH217: Aug-Dec 23 1 Polytropic Stars Stars are self gravitating globes of gas in kept in hyostatic equilibrium by internal pressure support. The hyostatic equilibrium condition, as mentioned earlier, is:

More information

arxiv: v2 [gr-qc] 12 Oct 2014

arxiv: v2 [gr-qc] 12 Oct 2014 QUASI-RADIAL MODES OF PULSATING NEUTRON STARS: NUMERICAL RESULTS FOR GENERAL-RELATIVISTIC RIGIDLY ROTATING POLYTROPIC MODELS arxiv:406.338v2 [gr-qc] 2 Oct 204 Vassilis Geroyannis, Eleftheria Tzelati 2,2

More information

Tides in Higher-Dimensional Newtonian Gravity

Tides in Higher-Dimensional Newtonian Gravity Tides in Higher-Dimensional Newtonian Gravity Philippe Landry Department of Physics University of Guelph 23 rd Midwest Relativity Meeting October 25, 2013 Tides: A Familiar Example Gravitational interactions

More information

Nuclear & Particle Physics of Compact Stars

Nuclear & Particle Physics of Compact Stars Nuclear & Particle Physics of Compact Stars Madappa Prakash Ohio University, Athens, OH National Nuclear Physics Summer School July 24-28, 2006, Bloomington, Indiana 1/30 How Neutron Stars are Formed Lattimer

More information

Neutron Star) Lecture 22

Neutron Star) Lecture 22 Neutron Star) Lecture 22 1 Neutron star A neutron star is a stellar object held together by gravity but kept from collapsing by electromagnetic (atomic) and strong (nuclear including Pauli exclusion) forces.

More information

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto UNIVERSAL I-LOVE OVE-Q Q RELATIONSR IN Q R NEUTRON STARS AND THEIR APPLICATIONS TO ASTROPHYSICS STROPHYSICS,, GRAVITATIONAL G RAVITATIONAL-WAVE AVE, G AND FUNDAMENTAL PHYSICS Kent Yagi with N. Yunes Montana

More information

The Definition of Density in General Relativity

The Definition of Density in General Relativity The Definition of Density in General Relativity Ernst Fischer Auf der Hoehe 82, D-52223 Stolberg, Germany e.fischer.stolberg@t-online.de August 14, 2014 1 Abstract According to general relativity the geometry

More information

arxiv: v1 [gr-qc] 6 Dec 2017

arxiv: v1 [gr-qc] 6 Dec 2017 Relativistic polytropic spheres with electric charge: Compact stars, compactness and mass bounds, and quasiblack hole configurations José D. V. Arbañil Departamento de Ciencias, Universidad Privada del

More information

Gravitational waves from NS-NS/BH-NS binaries

Gravitational waves from NS-NS/BH-NS binaries Gravitational waves from NS-NS/BH-NS binaries Numerical-relativity simulation Masaru Shibata Yukawa Institute for Theoretical Physics, Kyoto University Y. Sekiguchi, K. Kiuchi, K. Kyutoku,,H. Okawa, K.

More information

TIDAL LOVE NUMBERS OF NEUTRON STARS

TIDAL LOVE NUMBERS OF NEUTRON STARS The Astrophysical Journal, 677:116Y10, 008 April 0 # 008. The American Astronomical Society. All rights reserved. Printed in U.S.A. TIDAL LOVE NUMBERS OF NEUTRON STARS Tanja Hinderer Center for Radiophysics

More information

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae

Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae Constraints on Compact Star Radii and the Equation of State From Gravitational Waves, Pulsars and Supernovae J. M. Lattimer Department of Physics & Astronomy Stony Brook University September 13, 2016 Collaborators:

More information

Relativistic theory of surficial Love numbers

Relativistic theory of surficial Love numbers Department of Physics, University of Guelph APS April Meeting 2013, Denver Newtonian tides 1 In Newtonian theory, the tidal environment of a body of mass M and radius R is described by the tidal quadrupole

More information

arxiv: v2 [gr-qc] 29 Jul 2013

arxiv: v2 [gr-qc] 29 Jul 2013 Equation-of-state-independent relations in neutron stars arxiv:14.52v2 [gr-qc] 29 Jul 13 Andrea Maselli, 1, 2 Vitor Cardoso, 3, 4, 5 Valeria Ferrari, 2 Leonardo Gualtieri, 2 and Paolo Pani 3, 6 1 Institute

More information

Equations of Stellar Structure

Equations of Stellar Structure Equations of Stellar Structure Stellar structure and evolution can be calculated via a series of differential equations involving mass, pressure, temperature, and density. For simplicity, we will assume

More information

Absorption cross section of RN black hole

Absorption cross section of RN black hole 3 Absorption cross section of RN black hole 3.1 Introduction Even though the Kerr solution is the most relevant one from an astrophysical point of view, the solution of the coupled Einstein-Maxwell equation

More information

Modern Cosmology Solutions 2: Relativistic Gravity

Modern Cosmology Solutions 2: Relativistic Gravity Modern Cosmology Solutions 2: Relativistic Gravity Max Camenzind October 0, 2010 1. Special Relativity Relativity principle Lecture Notes. Doppler shift and the stellar aberration of light given on my

More information

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College Black Hole-Neutron Star Binaries in General Relativity Thomas Baumgarte Bowdoin College 1 Why do we care? Compact binaries (containing neutron stars and/or black holes) are promising sources of gravitational

More information

Neutron Star Observations and Their Implications for the Nuclear Equation of State

Neutron Star Observations and Their Implications for the Nuclear Equation of State Neutron Star Observations and Their Implications for the Nuclear Equation of State J. M. Lattimer Department of Physics & Astronomy Stony Brook University May 24, 2016 24 May, 2016, JINA-CEE International

More information

Static solutions of Einstein's field equations for compact stellar objects

Static solutions of Einstein's field equations for compact stellar objects Journal of Physics: Conference Series PAPER OPEN ACCESS Static solutions of Einstein's field equations for compact stellar objects To cite this article: Omair Zubairi et al 21 J. Phys.: Conf. Ser. 61 123

More information

General Relativistic Static Fluid Solutions with Cosmological Constant

General Relativistic Static Fluid Solutions with Cosmological Constant General Relativistic Static Fluid Solutions with Cosmological Constant Diplomarbeit von Christian G. Böhmer aus Berlin eingereicht bei der Mathematisch-Naturwissenschaftlichen Fakultät der Universität

More information

Constraints from the GW merger event on the nuclear matter EoS

Constraints from the GW merger event on the nuclear matter EoS COST Action CA16214 Constraints from the GW170817 merger event on the nuclear matter EoS Fiorella Burgio INFN Sezione di Catania CRIS18, Portopalo di Capo Passero, June 18-22, 2018 1 Schematic view of

More information

Nuclear structure IV: Nuclear physics and Neutron stars

Nuclear structure IV: Nuclear physics and Neutron stars Nuclear structure IV: Nuclear physics and Neutron stars Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29,

More information

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College

Black Hole-Neutron Star Binaries in General Relativity. Thomas Baumgarte Bowdoin College Black Hole-Neutron Star Binaries in General Relativity Thomas Baumgarte Bowdoin College Keisuke Taniguchi, Joshua Faber, Stu Shapiro University of Illinois Numerical Relativity Solve Einstein s equations

More information

Distinguishing boson stars from black holes and neutron stars with tidal interactions

Distinguishing boson stars from black holes and neutron stars with tidal interactions Distinguishing boson stars from black holes and neutron stars with tidal interactions Noah Sennett Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Department of Physics, University

More information

Static Hydrodynamic Equation in 4d BSBM Theory

Static Hydrodynamic Equation in 4d BSBM Theory Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 23, 1015-1020 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.49120 Static Hydrodynamic Equation in 4d BSBM Theory Azrul S. K.

More information

EOS Constraints From Neutron Stars

EOS Constraints From Neutron Stars EOS Constraints From Neutron Stars J. M. Lattimer Department of Physics & Astronomy Stony Brook University January 17, 2016 Bridging Nuclear and Gravitational Physics: the Dense Matter Equation of State

More information

Radial pulsation frequencies of slowly rotating. neutron stars

Radial pulsation frequencies of slowly rotating. neutron stars Radial pulsation frequencies of slowly rotating neutron stars arxiv:astro-ph/9603107v1 20 Mar 1996 P. K. Sahu and A. R. Prasanna Theory Group, Physical Research Laboratory, Ahmedabad 380 009, India; E-mail:

More information

Einstein s Theory of Gravity. June 10, 2009

Einstein s Theory of Gravity. June 10, 2009 June 10, 2009 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G d 3 x ρ( x) x x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for r >

More information

From space-time to gravitation waves. Bubu 2008 Oct. 24

From space-time to gravitation waves. Bubu 2008 Oct. 24 From space-time to gravitation waves Bubu 008 Oct. 4 Do you know what the hardest thing in nature is? and that s not diamond. Space-time! Because it s almost impossible for you to change its structure.

More information

Gravitational waves from binary neutron stars

Gravitational waves from binary neutron stars Gravitational waves from binary neutron stars Koutarou Kyutoku High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies 2018/11/12 QNP2018 satellite at Tokai 1 Plan

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

Computer lab exercises: Simple stellar models and the TOV equation

Computer lab exercises: Simple stellar models and the TOV equation Computer lab exercises: Simple stellar models and the TOV equation I. Hawke, S. Husa, B. Szilágyi September 2004, January 2013 Contents 1 Introduction 2 2 Background: the TOV equation 2 3 Code description

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Einstein s Theory of Gravity. December 13, 2017

Einstein s Theory of Gravity. December 13, 2017 December 13, 2017 Newtonian Gravity Poisson equation 2 U( x) = 4πGρ( x) U( x) = G ρ( x) x x d 3 x For a spherically symmetric mass distribution of radius R U(r) = 1 r U(r) = 1 r R 0 r 0 r 2 ρ(r )dr for

More information

A Continuous Counterpart to Schwarzschild s Liquid Sphere Model

A Continuous Counterpart to Schwarzschild s Liquid Sphere Model A Continuous Counterpart to Schwarzschild s Liquid Sphere Model N.S. Baaklini nsbqft@aol.com Abstract We present a continuous counterpart to Schwarzschild s metrical model of a constant-density sphere.

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

Testing relativity with gravitational waves

Testing relativity with gravitational waves Testing relativity with gravitational waves Michał Bejger (CAMK PAN) ECT* workshop New perspectives on Neutron Star Interiors Trento, 10.10.17 (DCC G1701956) Gravitation: Newton vs Einstein Absolute time

More information

1.1 Show that for the geometric unit system the mass of the sun is M = 1.47 km.

1.1 Show that for the geometric unit system the mass of the sun is M = 1.47 km. Problem 1: Geometrical units A geometric unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, c, and the gravitational constant, G,

More information

Relativistic precession of orbits around neutron. stars. November 15, SFB video seminar. George Pappas

Relativistic precession of orbits around neutron. stars. November 15, SFB video seminar. George Pappas Relativistic precession of orbits around neutron stars George Pappas SFB video seminar November 15, 2012 Outline 1 /19 Spacetime geometry around neutron stars. Numerical rotating neutron stars with realistic

More information

Longitudinal Waves in Scalar, Three-Vector Gravity

Longitudinal Waves in Scalar, Three-Vector Gravity Longitudinal Waves in Scalar, Three-Vector Gravity Kenneth Dalton email: kxdalton@yahoo.com Abstract The linear field equations are solved for the metrical component g 00. The solution is applied to the

More information

Hybrid stars within a SU(3) chiral Quark Meson Model

Hybrid stars within a SU(3) chiral Quark Meson Model Hybrid stars within a SU(3) chiral Quark Meson Model Andreas Zacchi 1 Matthias Hanauske 1,2 Jürgen Schaffner-Bielich 1 1 Institute for Theoretical Physics Goethe University Frankfurt 2 FIAS Frankfurt Institute

More information

Tidal deformation and dynamics of compact bodies

Tidal deformation and dynamics of compact bodies Department of Physics, University of Guelph Capra 17, Pasadena, June 2014 Outline Goal and motivation Newtonian tides Relativistic tides Relativistic tidal dynamics Conclusion Goal and motivation Goal

More information

Mass-Radius Relation: Hydrogen Burning Stars

Mass-Radius Relation: Hydrogen Burning Stars Mass-Radius Relation: Hydrogen Burning Stars Alexis Vizzerra, Samantha Andrews, and Sean Cunningham University of Arizona, Tucson AZ 85721, USA Abstract. The purpose if this work is to show the mass-radius

More information

E. Fermi: Notes on Thermodynamics and Statistics (1953))

E. Fermi: Notes on Thermodynamics and Statistics (1953)) E. Fermi: Notes on Thermodynamics and Statistics (1953)) Neutron stars below the surface Surface is liquid. Expect primarily 56 Fe with some 4 He T» 10 7 K ' 1 KeV >> T melting ( 56 Fe) Ionization: r Thomas-Fermi

More information

Stability of Quark Star Models

Stability of Quark Star Models Commun. Theor. Phys. 65 2016 575 584 Vol. 65, No. 5, May 1, 2016 Stability of Quark Star Models M. Azam, 1, S.A. Mardan, 2, and M.A. Rehman 2, 1 Division of Science and Technology, University of Education,

More information

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601

TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 TO GET SCHWARZSCHILD BLACKHOLE SOLUTION USING MATHEMATICA FOR COMPULSORY COURSE WORK PAPER PHY 601 PRESENTED BY: DEOBRAT SINGH RESEARCH SCHOLAR DEPARTMENT OF PHYSICS AND ASTROPHYSICS UNIVERSITY OF DELHI

More information

Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral

Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral Measuring the Neutron-Star EOS with Gravitational Waves from Binary Inspiral John L Friedman Leonard E. Parker Center for Gravitation, Cosmology, and Asrtrophysics Measuring the Neutron-Star EOS with Gravitational

More information

A Panoramic Tour in Black Holes Physics

A Panoramic Tour in Black Holes Physics Figure 1: The ergosphere of Kerr s black hole A Panoramic Tour in Black Holes Physics - A brief history of black holes The milestones of black holes physics Astronomical observations - Exact solutions

More information

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016

G 2 QCD Neutron Star. Ouraman Hajizadeh in collaboration with Axel Maas. November 30, 2016 G 2 QCD Neutron Star Ouraman Hajizadeh in collaboration with Axel Maas November 30, 2016 Motivation Why Neutron Stars? Neutron Stars: Laboratory of Strong Interaction Dense Objects: Study of strong interaction

More information

Neutron Stars as Laboratories for Gravity Physics

Neutron Stars as Laboratories for Gravity Physics Neutron Stars as Laboratories for Gravity Physics Cemsinan Deliduman Department of Physics, Mimar Sinan University, Turkey S. Arapoglu, C.D., K.Y. Ekşi, JCAP 1107 (2011) 020 [arxiv:1003.3179]. C.D., K.Y.

More information

arxiv: v1 [gr-qc] 14 May 2013

arxiv: v1 [gr-qc] 14 May 2013 Localised particles and fuzzy horizons A tool for probing Quantum Black Holes Roberto Casadio arxiv:135.3195v1 [gr-qc] 14 May 213 Dipartimento di Fisica e Astronomia, Università di Bologna and I.N.F.N.,

More information

Constraints on braneworld from compact stars

Constraints on braneworld from compact stars Constraints on braneworld from compact stars Daryel Manreza Paret, ICN-UNAM Aurora Pérez Martinez, ICIMAF, Cuba Ricardo. González Felipe, ISEL, Portugal R. Gonzales Felipe, D. Manreza Paret and A. Perez

More information

Modelling Light Curves of Millisecond Period X-Ray Pulsars

Modelling Light Curves of Millisecond Period X-Ray Pulsars Modelling Light Curves of Millisecond Period X-Ray Pulsars C. Cadeau and S.M. Morsink Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton, AB, T6G 2J, Canada Light curves

More information

Mass, Radius and Moment of Inertia of Neutron Stars

Mass, Radius and Moment of Inertia of Neutron Stars Sapienza Università di Roma ICRA & ICRANet X-Ray Astrophysics up to 511 KeV Ferrara, Italy, 14-16 September 2011 Standard approach to neutron stars (a) In the standard picture the structure of neutron

More information

Testing GR with Compact Object Binary Mergers

Testing GR with Compact Object Binary Mergers Testing GR with Compact Object Binary Mergers Frans Pretorius Princeton University The Seventh Harvard-Smithsonian Conference on Theoretical Astrophysics : Testing GR with Astrophysical Systems May 16,

More information

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory

Anisotropic Interior Solutions in Hořava Gravity and Einstein-Æther Theory Anisotropic Interior Solutions in and Einstein-Æther Theory CENTRA, Instituto Superior Técnico based on DV and S. Carloni, arxiv:1706.06608 [gr-qc] Gravity and Cosmology 2018 Yukawa Institute for Theoretical

More information

arxiv: v1 [gr-qc] 21 Jul 2016

arxiv: v1 [gr-qc] 21 Jul 2016 Eur. Phys. J. C manuscript No. will be inserted by the editor) A comparative study between EGB gravity and GTR by modelling compact stars Piyali Bhar a,1, Megan Govender b,2, Ranjan Sharma c,3 1 Department

More information

Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes

Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes Commun Theor Phys 57 (22) 56 6 Vol 57 No January 5 22 Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes LI Jin (Ó) HONG Yuan-Hong ( ) 2 and PAN Yu ( ) 3 College of Physics

More information

arxiv: v1 [astro-ph.sr] 28 Apr 2010

arxiv: v1 [astro-ph.sr] 28 Apr 2010 Tidal Love Numbers of Neutron and Self-Bound Quark Stars Sergey Postnikov and Madappa Prakash Department of Physics and Astrononmy, Ohio University, Athens, OH 45701-2979, USA James M. Lattimer Department

More information

Equation of state constraints from modern nuclear interactions and observation

Equation of state constraints from modern nuclear interactions and observation Equation of state constraints from modern nuclear interactions and observation Kai Hebeler Seattle, March 12, 218 First multi-messenger observations of a neutron star merger and its implications for nuclear

More information

A quasi-radial stability criterion for rotating relativistic stars

A quasi-radial stability criterion for rotating relativistic stars A quasi-radial stability criterion for rotating relativistic stars ( MNRAS, 416, L1, 2011 ) Kentaro Takami 1 Luciano Rezzolla 1 Shin ichirou Yoshida 2 1 Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

More information

Extracting Neutron Star Radii from the Tidal Deformability of GW170817

Extracting Neutron Star Radii from the Tidal Deformability of GW170817 Extracting Neutron Star Radii from the Tidal Deformability of GW170817 Carolyn Raithel Feryal Özel and Dimitrios Psaltis University of Arizona March 12, 2018 INT Symposium on GW170817 First measurement

More information

EXACT SOLUTIONS OF EINSTEIN S FIELD EQUATIONS

EXACT SOLUTIONS OF EINSTEIN S FIELD EQUATIONS EXACT SOLUTIONS OF EINSTEIN S FIELD EQUATIONS P. S. Negi Department of Physics, Kumaun University, Nainital 263 002, India Abstract We examine various well known exact solutions available in the literature

More information

Maxwell-Proca Fields in Relativistic Astrophysical Compact Objects

Maxwell-Proca Fields in Relativistic Astrophysical Compact Objects Journal of Modern Physics, 3,, - http://dx.doi.org/.36/jmp.3.8a3 Published Online August 3 (http://www.scirp.org/journal/jmp) Maxwell-Proca Fields in Relativistic Astrophysical Compact Objects Zoran Pazameta

More information

Law of Gravity, Dark Matter and Dark Energy

Law of Gravity, Dark Matter and Dark Energy Law of Gravity, Dark Matter and Dark Energy Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF Blog: http://www.indiana.edu/~fluid https://physicalprinciples.wordpress.com I. Laws of

More information

Applications of Neutron-Star Universal Relations to Gravitational Wave Observations

Applications of Neutron-Star Universal Relations to Gravitational Wave Observations Applications of Neutron-Star Universal Relations to Gravitational Wave Observations Department of Physics, Montana State University INT, Univ. of Washington, Seattle July 3rd 2014 Universal Relations:

More information

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) Investigation on the oscillation modes of neutron stars 文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) collaborators Bao-An Li, William Newton, Plamen Krastev Department of Physics

More information

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere Boian Lazov and Stoytcho Yazadjiev Varna, 2017 Outline 1 Motivation 2 Preliminaries

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

A Relativistic Toy Model for Black Hole-Neutron Star Mergers

A Relativistic Toy Model for Black Hole-Neutron Star Mergers A Relativistic Toy Model for Francesco Pannarale A.Tonita, L.Rezzolla, F.Ohme, J.Read Max-Planck-Institute für Gravitationsphysik (Albert-Einstein-Institut) SFB Videoseminars, Golm - January 17, 2011 Introduction

More information

Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA

Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA Rotating Neutron Stars Fridolin Weber San Diego State University San Diego, California USA HYP 2006, 10-14 October 2006, Mainz, Germany Outline Neutron stars (Ultrafast) Rotation Compressed baryonic matter

More information

General Relativity ASTR 2110 Sarazin. Einstein s Equation

General Relativity ASTR 2110 Sarazin. Einstein s Equation General Relativity ASTR 2110 Sarazin Einstein s Equation Curvature of Spacetime 1. Principle of Equvalence: gravity acceleration locally 2. Acceleration curved path in spacetime In gravitational field,

More information

arxiv: v1 [gr-qc] 1 Aug 2007

arxiv: v1 [gr-qc] 1 Aug 2007 arxiv:78.29v [gr-qc] Aug 27 Sharp bounds on the critical stability radius for relativistic charged spheres: I Håkan Andréasson Mathematical Sciences Chalmers and Göteborg University S-4296 Göteborg, Sweden

More information

Limit on Continuous Neutrino Emission From Neutron Stars

Limit on Continuous Neutrino Emission From Neutron Stars Chapman University Chapman University Digital Commons Mathematics, Physics, and Computer Science Faculty Articles and Research Science and Technology Faculty Articles and Research 2010 Limit on Continuous

More information

High Density Neutron Star Equation of State from 4U Observations

High Density Neutron Star Equation of State from 4U Observations High Density Neutron Star Equation of State from 4U 1636-53 Observations Timothy S. Olson Salish Kootenai College, PO Box 117, Pablo, MT 59855 (Dated: June 3, 2005) A bound on the compactness of the neutron

More information

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours

ASTM109 Stellar Structure and Evolution Duration: 2.5 hours MSc Examination Day 15th May 2014 14:30 17:00 ASTM109 Stellar Structure and Evolution Duration: 2.5 hours YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY

More information

The Multi-domain Hybrid Method for Calculating the Power Law Decay of Gravitational Waveforms with the Analytic Radiation Boundary Conditions

The Multi-domain Hybrid Method for Calculating the Power Law Decay of Gravitational Waveforms with the Analytic Radiation Boundary Conditions The Multi-domain Hybrid Method for Calculating the Power Law Decay of Gravitational Waveforms with the Analytic Radiation Boundary Conditions Joshua Buli (UCR) in collaboration with Dr. Jae-Hun Jung (SUNY

More information

Studying the Effects of Tidal Corrections on Parameter Estimation

Studying the Effects of Tidal Corrections on Parameter Estimation Studying the Effects of Tidal Corrections on Parameter Estimation Leslie Wade Jolien Creighton, Benjamin Lackey, Evan Ochsner Center for Gravitation and Cosmology 1 Outline Background: Physical description

More information

Nuclear symmetry energy and Neutron star cooling

Nuclear symmetry energy and Neutron star cooling Nuclear symmetry energy and Neutron star cooling Yeunhwan Lim 1 1 Daegu University. July 26, 2013 In Collaboration with J.M. Lattimer (SBU), C.H. Hyun (Daegu), C-H Lee (PNU), and T-S Park (SKKU) NuSYM13

More information

Tutorial I General Relativity

Tutorial I General Relativity Tutorial I General Relativity 1 Exercise I: The Metric Tensor To describe distances in a given space for a particular coordinate system, we need a distance recepy. The metric tensor is the translation

More information

The Time Arrow of Spacetime Geometry

The Time Arrow of Spacetime Geometry 5 The Time Arrow of Spacetime Geometry In the framework of general relativity, gravity is a consequence of spacetime curvature. Its dynamical laws (Einstein s field equations) are again symmetric under

More information

Perturbation of the Kerr Metric

Perturbation of the Kerr Metric Perturbation of the Kerr Metric arxiv:1401.0866v1 [gr-qc] 5 Jan 2014 Francisco Frutos-Alfaro Abstract A new Kerr-like metric with quadrupole moment is obtained by means of perturbing the Kerr spacetime.

More information

Quadrupole moments of rotating neutron stars

Quadrupole moments of rotating neutron stars Quadrupole moments of rotating neutron stars William G. Laarakkers and Eric Poisson Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada (Submitted to the Astrophysical Journal,

More information

Scott A. Hughes, MIT SSI, 28 July The basic concepts and properties of black holes in general relativity

Scott A. Hughes, MIT SSI, 28 July The basic concepts and properties of black holes in general relativity The basic concepts and properties of black holes in general relativity For the duration of this talk ħ=0 Heuristic idea: object with gravity so strong that light cannot escape Key concepts from general

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

arxiv: v1 [gr-qc] 25 Mar 2013

arxiv: v1 [gr-qc] 25 Mar 2013 Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model Benjamin D. Lackey 1, Koutarou Kyutoku 2, Masaru Shibata 3, Patrick

More information

General Relativity and Cosmology Mock exam

General Relativity and Cosmology Mock exam Physikalisches Institut Mock Exam Universität Bonn 29. June 2011 Theoretische Physik SS 2011 General Relativity and Cosmology Mock exam Priv. Doz. Dr. S. Förste Exercise 1: Overview Give short answers

More information

A New Look to Massive Neutron Cores

A New Look to Massive Neutron Cores A New Look to Massive Neutron Cores Ll. Bel Fisika Teorikoa, Euskal Herriko Unibertsitatea, P.K. 644, 488 Bilbo, Spain October 18, 22 Abstract We reconsider the problem of modelling static spherically

More information