Problems for M 8/31: and put it into echelon form to see whether there are any solutions.

Size: px
Start display at page:

Download "Problems for M 8/31: and put it into echelon form to see whether there are any solutions."

Transcription

1 Math 310, Lesieutre Problem set # September 9, 015 Problems for M 8/31: Determine if b is a linear combination of a 1, a, and a 3, where 1 a 1 =, 0 a = 1, 5 a 3 = 6, b = We need to form the matrix and put it into echelon form to see whether there are any solutions If all we re interested in is whether there are solutions are not (and not specifically what they are), reaching echelon form is enough we don t need to go all the way to reduced echelon form. In this case we have no rows like [000 b], so there are solutions, and b is indeed a linear combination of the a i Define 1 h v 1 = 0, v = 1, y = 5. 8 For what values of h is y in the plane generated by v 1 and v? To figure this out, we ll find the reduced echelon form of the matrix, but in terms of h. Then we can see which values of h make us end up with a row [00 b]. 1 h 1 h 1 h h 0 + h 1 h 1 h h h We ve again reached echelon form, which is enough to check whether or not there are solutions. In this case, if 7 + h isn t 0, we have one of the infamous [00 b] rows, which

2 means there are no solutions, and y is not in the span. On the other hand, if 7+h = 0, then the system is consistent. This gives us our answer: if h = 7/, then y is in the span. If h 7/, then y is not in the span Compute the product Ax using (a) the definition and (b) the row-vector method. If the product is undefined, say why The matrix A has columns, whereas the vector x has three entries. There is a size mismatch: we can t multiple these two things Compute the product Ax using (a) the definition and (b) the row-vector method. If the product is undefined, say why. 6 5 [ ] This sizes here match, so this one we can do. (a) First we compute it using the definition, in terms of linear combinations of the columns. 6 5 [ ] = () 4 + () = = (b) Using the other method, [ ] = ()(6) + ()(5) ()( 4) + ()() ()(7) + ()(6) We get the same answer either way, whcih is a relief. = Write the system first as a vector equation and then as a matrix equation. 8x 1 x = 4 5x 1 + 4x = 1 x 1 3x =

3 As a vector equation, this is: x x 4 = 1 1 In matrix form, the same system is: 8 1 [ ] x1 = 1. x 1 The book doesn t ask us to solve it, so I won t. Problems for W 9/: Write the solution set of the given homogeneous system in parametric vector form. x 1 + 3x + x 3 = 0 4x 1 9x + x 3 = 0 x 6x 3 = 0 First we need to find the solution set, using row reduction The general solution, using a parameter s for the free variable x 3, is: x 1 = 5s x = s x 3 = s In parametric vector form, this is x 1 5 x = s x 3 1

4 1.5.7 Describe all solutions of Ax = 0 in parametric vector form, where A is row equivalent to the given matrix. [ ] A = We have to form the augmented matrix and put it in rref, but that s easy: just add times row to row 1 and we get: [ ] [ ] The variables x 3 and x 4 are free; let s assign them parameters s and t respectively. The general solution is x 1 = 9s + 8t x = 4s 5t x 3 = s x 4 = t. In parametric vector form, we get x x x 3 = s t 5 0 x Same as above, but with A = [ ] First, rref: [ ] [ ] [ 1 ] The variables x and x 3 are free. Parametrize them by s and t. x 1 = 3s t x = s = t x 3 In parametric vector form, x 1 3 x = s 1 + t 0 x 3 0 1

5 Follow the method of Example 3 to describe the solutions of the following system in parametric vector form. Also give a geometric description of the solution set and compare it to that in Exercise x 1 + 3x + x 3 = 1 4x 1 9x + x 3 = 1 x 6x 3 = First step, as usual, is to find the general solution using row reduction So we get x 1 = + 5s x = 1 s x 3 = s, which in parametric vector form is x 1 5 x = 1 + s. x This is the same thing we got way back in 1.5.5, but translated by a particular solution v p = (, 1, 0). Problems for F 9/4: Suppose an economy has only two sectors, Goods and Services. Each year, Goods sells 80% of its output to Services and keeps the rest, while Services sells 70% of its output to Goods and retains the rest. Find the equilibrium prices for the annual outputs of the Goods and Services sectors that make each sector s income match its expenses. The matrix corresponding to this economy (as in the example on page 51) is [ 0. ] Goods expenses are 0.p G + 0.7p S : this to buy 0% of its own output, and 70% of Services output. This should be equal to p G, its total income, so 0.p G + 0.7p S = p G. Likewise for Services we should have 0.8p G + 0.3p S = p S. This is [ ].

6 To get rref, add the first row to the second, which makes it 0. Then p S is free, and p G = 7 8 p S Balance the unbalanced chemical equation: B S 3 + H O H 3 BO 3 + H S. Let s give variable names to the missing coefficients: x 1 B S 3 + x H O x 3 H 3 BO 3 + x 4 H S. Each of the elements B, S, H, O gives us an equation involving this variables. In this order, we have x 1 = x 3 3x 1 = x 4 x = 3x 3 + x 4 x = 3x 3 Writing down the system and running row reduction (please forgive me for not writing out all the steps this time), / / The variable x 4 is free, which gives a general solution x 1 = 1 x 3 4 x = x 4 x 3 = x 3 4 x 4 is free. Let s plug in 3 for x 4 to make everything integers: x 1 = 1, x = 6, x 3 =, x 4 = 3. So the balanced equation is B S H O H 3 BO H S Balance the unbalanced chemical equation: Na 3 PO 4 + Ba(NO 3 ) Ba 3 (PO 4 ) + NaNO 3.

7 This works a lot like the previous problem. The elements this time are Na, P, O, and Ba. Give names to the unknowns: x 1 Na 3 PO 4 + x Ba(NO 3 ) x 3 Ba 3 (PO 4 ) + x 4 NaNO 3. Let s write the equations straight into the matrix: Na: P: O: Ba: Rref for this matrix is / / / This means that the general solution, in terms of the free variable x 4 is x 1 = 1 x 3 4 x = 1x 4 x 3 = 1x 6 4 x 4 is free. Plugging in 6 for x 4, we obtain the balanced equation:. Na 3 PO 4 + 3Ba(NO 3 ) Ba 3 (PO 4 ) + 6NaNO Find the general flow pattern of the network shown in the figure. Assuming that the flows are all nonnegative, what is the largest possible value for x 3? Correction: the branch going out of C and labeled 80 should instead go in to C. We get equations from each of the three nodes, plus one equation for the total: A : x 1 + x 3 = 0 B : x = x 3 + x 4 C : x 1 + x = 80 T : x = 80

8 In matrix form, this is the equation: Putting this in rref, we obtain The variable x 3 is free, and the general solution is x 1 = 0 x 3 x = 60 + x 3 x 3 is free x 4 = 60. The maximum possible value of x 3 is 0: if x 3 were any larger than this, then x 1 would be negative.

Problems for M 10/12:

Problems for M 10/12: Math 30, Lesieutre Problem set #8 October, 05 Problems for M 0/: 4.3.3 Determine whether these vectors are a basis for R 3 by checking whether the vectors span R 3, and whether the vectors are linearly

More information

All of my class notes can be found at

All of my class notes can be found at My name is Leon Hostetler I am currently a student at Florida State University majoring in physics as well as applied and computational mathematics Feel free to download, print, and use these class notes

More information

Application of linear systems Linear Algebra with Computer Science Application

Application of linear systems Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 5, 208 Review. Review: Vectors We introduced vectors as ordered list of numbers [ ] [ ] 3 E.g., u = and v = are vectors in R 4 2 One can identify

More information

Sections 6.1 and 6.2: Systems of Linear Equations

Sections 6.1 and 6.2: Systems of Linear Equations What is a linear equation? Sections 6.1 and 6.2: Systems of Linear Equations We are now going to discuss solving systems of two or more linear equations with two variables. Recall that solving an equation

More information

Applications of Linear Systems Reading: Lay 1.6

Applications of Linear Systems Reading: Lay 1.6 Applications of Linear Systems Reading: Lay 1.6 September 9, 2013 This section is a nice break from theory. We have already covered enough material to have some interesting applications to problems. In

More information

I am trying to keep these lessons as close to actual class room settings as possible.

I am trying to keep these lessons as close to actual class room settings as possible. Greetings: I am trying to keep these lessons as close to actual class room settings as possible. They do not intend to replace the text book actually they will involve the text book. An advantage of a

More information

Matrix equation Ax = b

Matrix equation Ax = b Fall 2017 Matrix equation Ax = b Authors: Alexander Knop Institute: UC San Diego Previously On Math 18 DEFINITION If v 1,..., v l R n, then a set of all linear combinations of them is called Span {v 1,...,

More information

MATH 310, REVIEW SHEET 2

MATH 310, REVIEW SHEET 2 MATH 310, REVIEW SHEET 2 These notes are a very short summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive,

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Math 5- Computation Test September 6 th, 6 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Name: Answer Key: Making Math Great Again Be sure to show your work!. (8 points) Consider the following

More information

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1 MATH24: Linear Algebra Review for exam # 6//25 Page No review sheet can cover everything that is potentially fair game for an exam, but I tried to hit on all of the topics with these questions, as well

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

Math 301 Test I. M. Randall Holmes. September 8, 2008

Math 301 Test I. M. Randall Holmes. September 8, 2008 Math 0 Test I M. Randall Holmes September 8, 008 This exam will begin at 9:40 am and end at 0:5 am. You may use your writing instrument, a calculator, and your test paper; books, notes and neighbors to

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Linear equations We now switch gears to discuss the topic of solving linear equations, and more interestingly, systems

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined

If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Question 1 If A is a 4 6 matrix and B is a 6 3 matrix then the dimension of AB is A. 4 6 B. 6 6 C. 4 3 D. 3 4 E. Undefined Quang T. Bach Math 18 October 18, 2017 1 / 17 Question 2 1 2 Let A = 3 4 1 2 3

More information

Announcements Monday, September 18

Announcements Monday, September 18 Announcements Monday, September 18 WeBWorK 1.4, 1.5 are due on Wednesday at 11:59pm. The first midterm is on this Friday, September 22. Midterms happen during recitation. The exam covers through 1.5. About

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

3.4 Elementary Matrices and Matrix Inverse

3.4 Elementary Matrices and Matrix Inverse Math 220: Summer 2015 3.4 Elementary Matrices and Matrix Inverse A n n elementary matrix is a matrix which is obtained from the n n identity matrix I n n by a single elementary row operation. Elementary

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

Solutions of Linear system, vector and matrix equation

Solutions of Linear system, vector and matrix equation Goals: Solutions of Linear system, vector and matrix equation Solutions of linear system. Vectors, vector equation. Matrix equation. Math 112, Week 2 Suggested Textbook Readings: Sections 1.3, 1.4, 1.5

More information

MATH 310, REVIEW SHEET

MATH 310, REVIEW SHEET MATH 310, REVIEW SHEET These notes are a summary of the key topics in the book (and follow the book pretty closely). You should be familiar with everything on here, but it s not comprehensive, so please

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!!

MATH 152 Exam 1-Solutions 135 pts. Write your answers on separate paper. You do not need to copy the questions. Show your work!!! MATH Exam -Solutions pts Write your answers on separate paper. You do not need to copy the questions. Show your work!!!. ( pts) Find the reduced row echelon form of the matrix Solution : 4 4 6 4 4 R R

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,

More information

Chapter Practice Test Name: Period: Date:

Chapter Practice Test Name: Period: Date: Name: Period: Date: 1. Draw the graph of the following system: 3 x+ 5 y+ 13 = 0 29 x 11 y 7 = 0 3 13 y = x 3x+ 5y+ 13= 0 5 5 29x 11y 7 = 0 29 7 y = x 11 11 Practice Test Page 1 2. Determine the ordered

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

1 Linear systems, existence, uniqueness

1 Linear systems, existence, uniqueness Jor-el Briones / Math 2F, 25 Summer Session, Practice Midterm Page of 9 Linear systems, existence, uniqueness For each part, construct an augmented matrix for a linear system with the given properties,

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Solution Set 4, Fall 12

Solution Set 4, Fall 12 Solution Set 4, 18.06 Fall 12 1. Do Problem 7 from 3.6. Solution. Since the matrix is invertible, we know the nullspace contains only the zero vector, hence there does not exist a basis for this subspace.

More information

Solutions to Math 51 Midterm 1 July 6, 2016

Solutions to Math 51 Midterm 1 July 6, 2016 Solutions to Math 5 Midterm July 6, 26. (a) (6 points) Find an equation (of the form ax + by + cz = d) for the plane P in R 3 passing through the points (, 2, ), (2,, ), and (,, ). We first compute two

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 1 Material Dr. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University January 9, 2018 Linear Algebra (MTH 464)

More information

Honors Advanced Mathematics Determinants page 1

Honors Advanced Mathematics Determinants page 1 Determinants page 1 Determinants For every square matrix A, there is a number called the determinant of the matrix, denoted as det(a) or A. Sometimes the bars are written just around the numbers of the

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1982, 28. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 199. It is available free to all individuals,

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Math 20F Final Exam(ver. c)

Math 20F Final Exam(ver. c) Name: Solutions Student ID No.: Discussion Section: Math F Final Exam(ver. c) Winter 6 Problem Score /48 /6 /7 4 /4 5 /4 6 /4 7 /7 otal / . (48 Points.) he following are rue/false questions. For this problem

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Math 220: Summer Midterm 1 Questions

Math 220: Summer Midterm 1 Questions Math 220: Summer 2015 Midterm 1 Questions MOST questions will either look a lot like a Homework questions This lists draws your attention to some important types of HW questions. SOME questions will have

More information

MATH 1553, C.J. JANKOWSKI MIDTERM 1

MATH 1553, C.J. JANKOWSKI MIDTERM 1 MATH 155, C.J. JANKOWSKI MIDTERM 1 Name Section Please read all instructions carefully before beginning. You have 5 minutes to complete this exam. There are no aids of any kind (calculators, notes, text,

More information

Math 308 Discussion Problems #4 Chapter 4 (after 4.3)

Math 308 Discussion Problems #4 Chapter 4 (after 4.3) Math 38 Discussion Problems #4 Chapter 4 (after 4.3) () (after 4.) Let S be a plane in R 3 passing through the origin, so that S is a two-dimensional subspace of R 3. Say that a linear transformation T

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 MATH 155, SPRING 218 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 Name Section 1 2 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 1 points. The maximum score

More information

Eigenvalues & Eigenvectors

Eigenvalues & Eigenvectors Eigenvalues & Eigenvectors Page 1 Eigenvalues are a very important concept in linear algebra, and one that comes up in other mathematics courses as well. The word eigen is German for inherent or characteristic,

More information

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions.

Examples True or false: 3. Let A be a 3 3 matrix. Then there is a pattern in A with precisely 4 inversions. The exam will cover Sections 6.-6.2 and 7.-7.4: True/False 30% Definitions 0% Computational 60% Skip Minors and Laplace Expansion in Section 6.2 and p. 304 (trajectories and phase portraits) in Section

More information

Row Reduced Echelon Form

Row Reduced Echelon Form Math 40 Row Reduced Echelon Form Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve systems in or variables using elimination and substitution of

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

Math 54 Homework 3 Solutions 9/

Math 54 Homework 3 Solutions 9/ Math 54 Homework 3 Solutions 9/4.8.8.2 0 0 3 3 0 0 3 6 2 9 3 0 0 3 0 0 3 a a/3 0 0 3 b b/3. c c/3 0 0 3.8.8 The number of rows of a matrix is the size (dimension) of the space it maps to; the number of

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 1. A = A = ; A is a 1 2 matrix and B is a 2 2 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of AB, find

More information

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula Syllabus for Math 308, Paul Smith Book: Kolman-Hill Chapter 1. Linear Equations and Matrices 1.1 Systems of Linear Equations Definition of a linear equation and a solution to a linear equations. Meaning

More information

Homework 1 Due: Wednesday, August 27. x + y + z = 1. x y = 3 x + y + z = c 2 2x + cz = 4

Homework 1 Due: Wednesday, August 27. x + y + z = 1. x y = 3 x + y + z = c 2 2x + cz = 4 Homework 1 Due: Wednesday, August 27 1. Find all values of c for which the linear system: (a) has no solutions. (b) has exactly one solution. (c) has infinitely many solutions. (d) is consistent. x + y

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A x= 0, where

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Announcements Wednesday, August 30

Announcements Wednesday, August 30 Announcements Wednesday, August 30 WeBWorK due on Friday at 11:59pm. The first quiz is on Friday, during recitation. It covers through Monday s material. Quizzes mostly test your understanding of the homework.

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

3 Fields, Elementary Matrices and Calculating Inverses

3 Fields, Elementary Matrices and Calculating Inverses 3 Fields, Elementary Matrices and Calculating Inverses 3. Fields So far we have worked with matrices whose entries are real numbers (and systems of equations whose coefficients and solutions are real numbers).

More information

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you.

This is a closed book exam. No notes or calculators are permitted. We will drop your lowest scoring question for you. Math 54 Fall 2017 Practice Exam 1 Exam date: 9/26/17 Time Limit: 80 Minutes Name: Student ID: GSI or Section: This exam contains 6 pages (including this cover page) and 7 problems. Problems are printed

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5

MATH 1553, SPRING 2018 SAMPLE MIDTERM 1: THROUGH SECTION 1.5 MATH 553, SPRING 28 SAMPLE MIDTERM : THROUGH SECTION 5 Name Section Please read all instructions carefully before beginning You have 5 minutes to complete this exam There are no aids of any kind (calculators,

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math 221 Open Book Exam 1 Open Notes 3 Sept, 24 Calculators Permitted Show all work (except #4) 1 2 3 4 2 1. (25 pts) Given A 1 2 1, b 2 and c 4. 1 a) (7 pts) Bring matrix A to echelon form.

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept

Sections 1.5, 1.7. Ma 322 Fall Ma 322. Sept Sections 1.5, 1.7 Ma 322 Fall 213 Ma 322 Sept. 9-13 Summary ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric solution of AX = B. ˆ Linear dependence and independence of vectors

More information

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a

b for the linear system x 1 + x 2 + a 2 x 3 = a x 1 + x 3 = 3 x 1 + x 2 + 9x 3 = 3 ] 1 1 a 2 a Practice Exercises for Exam Exam will be on Monday, September 8, 7. The syllabus for Exam consists of Sections One.I, One.III, Two.I, and Two.II. You should know the main definitions, results and computational

More information

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS

MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS MATH 221: SOLUTIONS TO SELECTED HOMEWORK PROBLEMS 1. HW 1: Due September 4 1.1.21. Suppose v, w R n and c is a scalar. Prove that Span(v + cw, w) = Span(v, w). We must prove two things: that every element

More information

Math Lecture 23 Notes

Math Lecture 23 Notes Math 1010 - Lecture 23 Notes Dylan Zwick Fall 2009 In today s lecture we ll expand upon the concept of radicals and radical expressions, and discuss how we can deal with equations involving these radical

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. est Review-Linear Algebra Name MULIPLE CHOICE Choose the one alternative that best completes the statement or answers the question Solve the system of equations ) 7x + 7 + x + + 9x + + 9 9 (-,, ) (, -,

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information

Math 220 Some Exam 1 Practice Problems Fall 2017

Math 220 Some Exam 1 Practice Problems Fall 2017 Math Some Exam Practice Problems Fall 7 Note that this is not a sample exam. This is much longer than your exam will be. However, the ideas and question types represented here (along with your homework)

More information

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28

Sections 1.5, 1.7. Ma 322 Spring Ma 322. Jan 24-28 Sections 1.5, 1.7 Ma 322 Spring 217 Ma 322 Jan 24-28 Summary ˆ Text: Solution Sets of Linear Systems (1.5),Linear Independence (1.7) ˆ Solutions of homogeneous equations AX =. ˆ Using the rank. ˆ Parametric

More information

1.1 Introduction to Linear Systems and Row Reduction

1.1 Introduction to Linear Systems and Row Reduction .. INTRODUTION TO LINEAR SYSTEMS AND ROW REDUTION. Introduction to Linear Systems and Row Reduction MATH 9 FALL 98 PRELIM # 9FA8PQ.tex.. Solve the following systems of linear equations. If there is no

More information

Linear Independence Reading: Lay 1.7

Linear Independence Reading: Lay 1.7 Linear Independence Reading: Lay 17 September 11, 213 In this section, we discuss the concept of linear dependence and independence I am going to introduce the definitions and then work some examples and

More information

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS

MTH 35, SPRING 2017 NIKOS APOSTOLAKIS MTH 35, SPRING 2017 NIKOS APOSTOLAKIS 1. Linear independence Example 1. Recall the set S = {a i : i = 1,...,5} R 4 of the last two lectures, where a 1 = (1,1,3,1) a 2 = (2,1,2, 1) a 3 = (7,3,5, 5) a 4

More information

Week #4: Midterm 1 Review

Week #4: Midterm 1 Review Week #4: Midterm Review April 5, NAMES: TARDIS : http://math.ucsb.edu/ kgracekennedy/spring 4A.html Week : Introduction to Systems of Linear Equations Problem.. What row operations are allowed and why?...

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

MATH 54 - WORKSHEET 1 MONDAY 6/22

MATH 54 - WORKSHEET 1 MONDAY 6/22 MATH 54 - WORKSHEET 1 MONDAY 6/22 Row Operations: (1 (Replacement Add a multiple of one row to another row. (2 (Interchange Swap two rows. (3 (Scaling Multiply an entire row by a nonzero constant. A matrix

More information

Math 51, Homework-2 Solutions

Math 51, Homework-2 Solutions SSEA Summer 27 Math 5, Homework-2 Solutions Write the parametric equation of the plane that contains the following point and line: 3 2, 4 2 + t 3 t R 5 4 By substituting t = and t =, we get two points

More information

MATH 2360 REVIEW PROBLEMS

MATH 2360 REVIEW PROBLEMS MATH 2360 REVIEW PROBLEMS Problem 1: In (a) (d) below, either compute the matrix product or indicate why it does not exist: ( )( ) 1 2 2 1 (a) 0 1 1 2 ( ) 0 1 2 (b) 0 3 1 4 3 4 5 2 5 (c) 0 3 ) 1 4 ( 1

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Review Solutions for Exam 1

Review Solutions for Exam 1 Definitions Basic Theorems. Finish the definition: Review Solutions for Exam (a) A linear combination of vectors {v,..., v n } is: any vector of the form c v + c v + + c n v n (b) A set of vectors {v,...,

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

Math 2174: Practice Midterm 1

Math 2174: Practice Midterm 1 Math 74: Practice Midterm Show your work and explain your reasoning as appropriate. No calculators. One page of handwritten notes is allowed for the exam, as well as one blank page of scratch paper.. Consider

More information

M340 HW 2 SOLUTIONS. 1. For the equation y = f(y), where f(y) is given in the following plot:

M340 HW 2 SOLUTIONS. 1. For the equation y = f(y), where f(y) is given in the following plot: M340 HW SOLUTIONS 1. For the equation y = f(y), where f(y) is given in the following plot: (a) What are the critical points? (b) Are they stable or unstable? (c) Sketch the solutions in the ty plane. (d)

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman

Spring 2015 Midterm 1 03/04/15 Lecturer: Jesse Gell-Redman Math 0 Spring 05 Midterm 03/04/5 Lecturer: Jesse Gell-Redman Time Limit: 50 minutes Name (Print): Teaching Assistant This exam contains pages (including this cover page) and 5 problems. Check to see if

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Linear Algebra Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination

More information

Chapter 5: Writing Linear Equations Study Guide (REG)

Chapter 5: Writing Linear Equations Study Guide (REG) Chapter 5: Writing Linear Equations Study Guide (REG) 5.1: Write equations of lines given slope and y intercept or two points Write the equation of the line with the given information: Ex: Slope: 0, y

More information

Announcements Monday, October 29

Announcements Monday, October 29 Announcements Monday, October 29 WeBWorK on determinents due on Wednesday at :59pm. The quiz on Friday covers 5., 5.2, 5.3. My office is Skiles 244 and Rabinoffice hours are: Mondays, 2 pm; Wednesdays,

More information

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring

Mathematical Induction. EECS 203: Discrete Mathematics Lecture 11 Spring Mathematical Induction EECS 203: Discrete Mathematics Lecture 11 Spring 2016 1 Climbing the Ladder We want to show that n 1 P(n) is true. Think of the positive integers as a ladder. 1, 2, 3, 4, 5, 6,...

More information

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2

Last Time. x + 3y = 6 x + 2y = 1. x + 3y = 6 y = 1. 2x + 4y = 8 x 2y = 1. x + 3y = 6 2x y = 7. Lecture 2 January 9 Last Time 1. Last time we ended with saying that the following four systems are equivalent in the sense that we can move from one system to the other by a special move we discussed. (a) (b) (c)

More information

Mathematics 206 Solutions for HWK 13b Section 5.2

Mathematics 206 Solutions for HWK 13b Section 5.2 Mathematics 206 Solutions for HWK 13b Section 5.2 Section Problem 7ac. Which of the following are linear combinations of u = (0, 2,2) and v = (1, 3, 1)? (a) (2, 2,2) (c) (0,4, 5) Solution. Solution by

More information