1.4 LECTURE 4. Tensors and Vector Identities

Size: px
Start display at page:

Download "1.4 LECTURE 4. Tensors and Vector Identities"

Transcription

1 16 CHAPTER 1. VECTOR ALGEBRA Triple Product The triple product of three vectors A, B and C is defined by In tensor notation it is A ( B C ) = [ A, B, C ] = A ( B C ) i, j,k=1 ε i jk A i B j C k = A 1 A 2 A 3 B 1 B 2 B 3 C 1 C 2 C 3 It is equal to the signed volume of a parallelepiped based on three vectors A i, B j, C k Properties. 1. [A, B, C] = [B, C, A] = [C, A, B] = [B, A, C] = [C, B, A] = [A, C, B], 2. [A, B, C] = 0 if and only if the vectors are coplanar, 3. [A, B, C] is linear in each argument, 4. for an orthonormal basis [ e 1, e 2, e 3 ] = LECTURE 4. Tensors and Vector Identities We will denote the Cartesian coordinates by x 1 = x, x 2 = y, x 3 = z and the unit vectors in the direction of positive axes (called the standard basis vectors) by e 1 = i, e 2 = j, e 3 = k This can be denoted simply by x i and e j, where i, j = 1, 2, 3. For the indices one usually uses the lowercase Latin letters i, j, k, l, m, n etc. (do not confuse with i, j, k). If you run out of letters, you can use any other letters. The convention is though that the indices are denoted by small (versus capital) Latin (versus Greek) letters, and take values 1, 2, 3. Greek indices are used in four-dimensional space-time in special relativity, where they take values 0, 1, 2, 3, with x 0 = t denoting time. vecanal332.tex; August 25, 2017; 16:29; p. 16

2 1.4. LECTURE 4. TENSORS AND VECTOR IDENTITIES 17 The scalar products of the basis vectors are: { 1, if i = j e i e j = 0, if i j One says that they form an orthonormal system. This can be written in a compact form by defining so called Kronecker symbol δ i j { 1, if i = j δ i j = 0, if i j This can also be represented by the unit 3 3 matrix (δ i j ) = Then e i e j = δ i j Physical quantities, like mass, energy, volume, temperature, density etc., that can be described by one number are called scalars. This number does not depend on the coordinate system; it is an invariant. Vectors are physical quantities, like velocity, position, displacement, force, acceleration, electric field, magnetic field etc., that are described by three numbers. A tensor is a geometric object that requires for its full description more than just one number, as scalar, and even more than three numbers, as a vector. Examples of tensors include: stress tensor, strain tensor, inertia tensor, energymomentum tensor, tensor of the electromagnetic field, metric tensor, curvature tensor etc. These numbers are called the components of the tensor. The components of a tensor are labeled by indices, for example, δ i j, ε i jk, T i j, B i j, σ i j, R i i jk A tensor whose all components are zero is called a zero tensor. The tenswors with upper indices are called contravariant, and the ones with lower indices are called covariant. If a tensor has both types of indices vecanal332.tex; August 25, 2017; 16:29; p. 17

3 18 CHAPTER 1. VECTOR ALGEBRA then it is of mixed type. The total number of indices is called the rank of the tensor. A tensor that has p upper indices and q lower indices T i 1...i p j1... j q is called a tensor of type (p, q); it has the rank r = p + q. So, a scalar is a tensor of rank 0, a vector is a tensor of rank 1 etc. The actual numerical values of the components of a tensor do depend on the coordinate system. If one changes the coordinate system, for example, rotates it, then the components of a tensor will change. If one goes from the Cartesian coordinate system to a curvilinear coordinate system, for example, a system of spherical or cylindrical coordinates, then the components of a tensor will also change. It is this transformation law of the components of the tensor that makes a collection of numbers a tensor. We will not give the formal definition of a tensor, rather we give here a very short review of tensor analysis in Cartesian coordinates along with some very useful formulas and rules that enable one to deal with tensors. In any tensor equation an index can appear only once (single index) or twice (repeated index). A pair of repeated indices cannot appear more than once. Einstein Summation Convention. One always encounters the sums over the indices that appear twice in an equation. According to the standard convention, called Einstein summation convention, one has agreed to sum over repeated indices and omit the summation signs. For example, δ i j A i B j = i=1 δ i j A i B j j=1 A i B i = δ i i = ε i jk A j C k B i = i=1 A i B i i=1 i=1 δ i i j=1 k=1 ε i jk A j C k B i vecanal332.tex; August 25, 2017; 16:29; p. 18

4 1.4. LECTURE 4. TENSORS AND VECTOR IDENTITIES 19 One can add tensors of the same type. The result is a tensor of the same type. One can multiply tensors by scalars. The result is a tensor of the same type. If one multiplies a tensor of rank r with a tensor of rank k, one gets a new tensor of rank r + k. More precisely, if one multiplies a tensor of type (p, q) with a tensor of type (r, s), then one gets a new tensor of type (p + r, q + s). For example, A i B j = C i j, T mn σ i j = R mn i j Note: one just multiplies the components of the tensors without any summation. Given a tensor of type (p, q) (that is of rank r = p + q) one may select a pair of indices, of which one should be an upper index and another an lower index, and replace them by two identical (repeated indices), summation over the latter being implied by the summation convention. This process is called contraction. As a result one gets a new tensor of type (p 1, q 1) of rank r 2 = p + q 2. For example, A i i, R i j ki, C ik k (1.4.3) Clearly, δ i i = δ1 1 + δ2 2 + δ3 3 = 3 (1.4.4) A tensor of rank 2 is said to be symmetric if A i j = A ji (1.4.5) and anti-symmetric (or skew-symmetric) if A i j = A ji (1.4.6) Any tensor A i j of second rank can be decomposed A i j = A (i j) + A [i j] (1.4.7) into its symmetric and anti-symmetric parts A (i j) = 1 2 (A i j + A ji ) (1.4.8) A [i j] = 1 2 (A i j A ji ) (1.4.9) vecanal332.tex; August 25, 2017; 16:29; p. 19

5 20 CHAPTER 1. VECTOR ALGEBRA One can also symmetrize a tensor of rank 3 over three indices: B (i jk) = 1 6 (B i jk + B jki + B ki j + B ik j + B jik + B k ji ) (1.4.10) Correspondingly, the anti-symmetrization of a tensor of rank 3 is defined by B [i jk] = 1 6 (B i jk + B jki + B ki j B ik j B jik B k ji ) (1.4.11) What one does here is one sums over all possible permutations of indices and changes sign if the permutation is odd. Remark. The contraction of symmetric and an anti-symmetric tensors is equal to zero. Let a tensor A i j be symmetric and B i j be antisymmetric. Then A i j B i j = A ji B i j = A ji B ji = A i j B i j, (1.4.12) and, therefore, A i j B i j = 0. (1.4.13) The scalar products of the basis vectors e i define a symmetric second rank tensor called the metric tensor e i e j = g i j. The contravariant components of the metric tensor are defined by the inverse matrix g i j = (g i j ) 1 In Cartesian coordinates the components of the metric tensor are given by Kronecker delta symbol g i j = δ i j, g i j = δ i j. The metric tensor can be used to raise and lower indices of tensors. For example, if A i are contravariant components of a vector then its covariant components are A i = g i j A j Conversely, A i = g i j A j This operations, called raising and lowering indices can be applied to any tensor. vecanal332.tex; August 25, 2017; 16:29; p. 20

6 1.4. LECTURE 4. TENSORS AND VECTOR IDENTITIES 21 The scalar product of two vectors is A B = g i j A i B j. Remark. In Cartesian coordinates the covariant and contravariant components are equal A i = A i. In Cartesian coordinates the position of the tensor indices (up or down) does not make any difference. Therefore, δ i j A i B j = A i B i = A B Levi-Civita symbol ε i jk is defined by +1, if (i, j, k) is an even permutation of (1, 2, 3) ε i jk = 1, if (i, j, k) is an odd permutation of (1, 2, 3) 0, otherwise If one raises the indices then one sees that in Cartesian coordinates one obtains the same symbol, so that ε i jk = ε i jk (1.4.14) The Levi-Civita symbol defines a tensor of rank 3 (strictly speaking it is a pseudo-tensor density of weight 1), called a Levi-Civita tensor. It describes the signed volume of a parallelepiped based on three displacement vectors A i, B j, C k V = ε i jka i B j C k The Levi-Civita symbol defines a completely antisymmetric tensor. It changes sign under the permutation of any two indices. ε i jk = ε jik = ε k ji = ε ik j ε i jk = ε jki = ε ki j As a consequence its contraction vanishes ε i j j = 0, also, for any vector A i ε i jk A j A k = 0 vecanal332.tex; August 25, 2017; 16:29; p. 21

7 22 CHAPTER 1. VECTOR ALGEBRA Further, one can show that the product of two Levi-Civita symbols can be expressed in terms of the Kronecker symbols ε i jk ε mnl = 6δ m [i δn j δl k] = δ m i δn j δl k + δm j δn k δl i + δm k δn i δl j δ m i δn k δl j δm j δn i δl k δm k δn j δl i By contracting the indices k and l we get ε i jk ε mnk = 2δ m [i δn j] = δ m i δn j δm j δn i further, by contracting the indices j and n we obtain ε i jk ε m jk = 2δ m i and, finally, by contracting the indices i and m we have ε i jk ε i jk = 6 The vector product D = B C in tensor notation is given by D i = ( B C ) i = ε i jk B j C k The triple product is then [ A, B, C ] = A ( B C ) = ε i jk A i B j C k Note that the position of indices (up versus down) in Cartesian coordinates is not important. However, it is still more clear, when you see one index up and the same index down then you should immediately notice that this is a contraction and there is a summation over this index from 1 to 3. We repeat once again that the name of such repeated indices is not important, they are dummy indices; one can rename them to any other letter if needed (make sure that there are no other indices with that name in the given tensor equation!). vecanal332.tex; August 25, 2017; 16:29; p. 22

8 1.4. LECTURE 4. TENSORS AND VECTOR IDENTITIES Vector Identities Tensor notation is very useful in vector analysis, in particular when manipulating the multiple vector products and vector identities. By using the properties of Levi-Civita symbol and Kronecker symbol one can derive now all vector identities. For example, A ( B C ) = B ( A C ) C ( A B ) ( A B ) ( C D ) = [ D, A, B ] C [ C, A, B ] D ( A B ) ( C D ) = (A C)(B D) (A D)(B C) A ( B C ) + B ( C A ) + C ( A B ) = 0 Proofs. [( A B ) ( C D )] i = ε i jk ( A B ) j ( C D ) k = ε i jk ε jmn A m B n ε kpq C p D q = (δ p i δq j δp j δq i )ε jmn A m B n C p D q = (δ p i εqmn δ q i εpmn )A m B n C p D q = ε qmn A m B n C i D q ε pmn A m B n C p D i = [ D, A, B ]C i [ C, A, B ]D i vecanal332.tex; August 25, 2017; 16:29; p. 23

1.3 LECTURE 3. Vector Product

1.3 LECTURE 3. Vector Product 12 CHAPTER 1. VECTOR ALGEBRA Example. Let L be a line x x 1 a = y y 1 b = z z 1 c passing through a point P 1 and parallel to the vector N = a i +b j +c k. The equation of the plane passing through the

More information

Lecture Notes Introduction to Vector Analysis MATH 332

Lecture Notes Introduction to Vector Analysis MATH 332 Lecture Notes Introduction to Vector Analysis MATH 332 Instructor: Ivan Avramidi Textbook: H. F. Davis and A. D. Snider, (WCB Publishers, 1995) New Mexico Institute of Mining and Technology Socorro, NM

More information

Tensors, and differential forms - Lecture 2

Tensors, and differential forms - Lecture 2 Tensors, and differential forms - Lecture 2 1 Introduction The concept of a tensor is derived from considering the properties of a function under a transformation of the coordinate system. A description

More information

Index Notation for Vector Calculus

Index Notation for Vector Calculus Index Notation for Vector Calculus by Ilan Ben-Yaacov and Francesc Roig Copyright c 2006 Index notation, also commonly known as subscript notation or tensor notation, is an extremely useful tool for performing

More information

VECTORS, TENSORS AND INDEX NOTATION

VECTORS, TENSORS AND INDEX NOTATION VECTORS, TENSORS AND INDEX NOTATION Enrico Nobile Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste, 34127 TRIESTE March 5, 2018 Vectors & Tensors, E. Nobile March 5, 2018 1 /

More information

The Matrix Representation of a Three-Dimensional Rotation Revisited

The Matrix Representation of a Three-Dimensional Rotation Revisited Physics 116A Winter 2010 The Matrix Representation of a Three-Dimensional Rotation Revisited In a handout entitled The Matrix Representation of a Three-Dimensional Rotation, I provided a derivation of

More information

NIELINIOWA OPTYKA MOLEKULARNA

NIELINIOWA OPTYKA MOLEKULARNA NIELINIOWA OPTYKA MOLEKULARNA chapter 1 by Stanisław Kielich translated by:tadeusz Bancewicz http://zon8.physd.amu.edu.pl/~tbancewi Poznan,luty 2008 ELEMENTS OF THE VECTOR AND TENSOR ANALYSIS Reference

More information

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 13 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Covariant Geometry - We would like to develop a mathematical framework

More information

Physics 6303 Lecture 5 September 5, 2018

Physics 6303 Lecture 5 September 5, 2018 Physics 6303 Lecture 5 September 5, 2018 LAST TIME: Examples, reciprocal or dual basis vectors, metric coefficients (tensor), and a few general comments on tensors. To start this discussion, I will return

More information

Introduction to tensors and dyadics

Introduction to tensors and dyadics 1 Introduction to tensors and dyadics 1.1 Introduction Tensors play a fundamental role in theoretical physics. The reason for this is that physical laws written in tensor form are independent of the coordinate

More information

1 Vectors and Tensors

1 Vectors and Tensors PART 1: MATHEMATICAL PRELIMINARIES 1 Vectors and Tensors This chapter and the next are concerned with establishing some basic properties of vectors and tensors in real spaces. The first of these is specifically

More information

Vector analysis and vector identities by means of cartesian tensors

Vector analysis and vector identities by means of cartesian tensors Vector analysis and vector identities by means of cartesian tensors Kenneth H. Carpenter August 29, 2001 1 The cartesian tensor concept 1.1 Introduction The cartesian tensor approach to vector analysis

More information

Tensors and Special Relativity

Tensors and Special Relativity Tensors and Special Relativity Lecture 6 1 Introduction and review of tensor algebra While you have probably used tensors of rank 1, i.e vectors, in special relativity, relativity is most efficiently expressed

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

Review and Notation (Special relativity)

Review and Notation (Special relativity) Review and Notation (Special relativity) December 30, 2016 7:35 PM Special Relativity: i) The principle of special relativity: The laws of physics must be the same in any inertial reference frame. In particular,

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0 1 Introduction Tensors - Lecture 4 The concept of a tensor is derived from considering the properties of a function under a transformation of the corrdinate system. As previously discussed, such transformations

More information

Physics 6303 Lecture 3 August 27, 2018

Physics 6303 Lecture 3 August 27, 2018 Physics 6303 Lecture 3 August 27, 208 LAST TIME: Vector operators, divergence, curl, examples of line integrals and surface integrals, divergence theorem, Stokes theorem, index notation, Kronecker delta,

More information

Chapter 3. Forces, Momentum & Stress. 3.1 Newtonian mechanics: a very brief résumé

Chapter 3. Forces, Momentum & Stress. 3.1 Newtonian mechanics: a very brief résumé Chapter 3 Forces, Momentum & Stress 3.1 Newtonian mechanics: a very brief résumé In classical Newtonian particle mechanics, particles (lumps of matter) only experience acceleration when acted on by external

More information

Vector and Tensor Calculus

Vector and Tensor Calculus Appendices 58 A Vector and Tensor Calculus In relativistic theory one often encounters vector and tensor expressions in both three- and four-dimensional form. The most important of these expressions are

More information

Contents. Motivation. 1 di 7 23/03/ :41

Contents. Motivation. 1 di 7 23/03/ :41 1 di 7 23/03/2015 09:41 From Wikipedia, the free encyclopedia In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q 1, q 2,..., q d ) in which the coordinate surfaces all

More information

Tensor Calculus. arxiv: v1 [math.ho] 14 Oct Taha Sochi. October 17, 2016

Tensor Calculus. arxiv: v1 [math.ho] 14 Oct Taha Sochi. October 17, 2016 Tensor Calculus arxiv:1610.04347v1 [math.ho] 14 Oct 2016 Taha Sochi October 17, 2016 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT. Email: t.sochi@ucl.ac.uk.

More information

Vectors and Matrices Notes.

Vectors and Matrices Notes. Vectors and Matrices Notes Jonathan Coulthard JonathanCoulthard@physicsoxacuk 1 Index Notation Index notation may seem quite intimidating at first, but once you get used to it, it will allow us to prove

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Introductory Course on Multiphysics Modelling TOMAZ G. ZIELIŃKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Vectors, tensors, and index notation. Generalization of the concept

More information

VECTOR AND TENSOR ALGEBRA

VECTOR AND TENSOR ALGEBRA PART I VECTOR AND TENSOR ALGEBRA Throughout this book: (i) Lightface Latin and Greek letters generally denote scalars. (ii) Boldface lowercase Latin and Greek letters generally denote vectors, but the

More information

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces. Appendix A Vector calculus We shall only consider the case of three-dimensional spaces A Definitions A physical quantity is a scalar when it is only determined by its magnitude and a vector when it is

More information

HOMOGENEOUS AND INHOMOGENEOUS MAXWELL S EQUATIONS IN TERMS OF HODGE STAR OPERATOR

HOMOGENEOUS AND INHOMOGENEOUS MAXWELL S EQUATIONS IN TERMS OF HODGE STAR OPERATOR GANIT J. Bangladesh Math. Soc. (ISSN 166-3694) 37 (217) 15-27 HOMOGENEOUS AND INHOMOGENEOUS MAXWELL S EQUATIONS IN TERMS OF HODGE STAR OPERATOR Zakir Hossine 1,* and Md. Showkat Ali 2 1 Department of Mathematics,

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

FoMP: Vectors, Tensors and Fields

FoMP: Vectors, Tensors and Fields FoMP: Vectors, Tensors and Fields 1 Contents 1 Vectors 6 1.1 Review of Vectors................................. 6 1.1.1 Physics Terminology (L1)........................ 6 1.1.2 Geometrical Approach..........................

More information

A Brief Introduction to Tensor

A Brief Introduction to Tensor Gonit Sora Article 1-13 Downloaded from Gonit Sora Gonit Sora: http://gonitsora.com Introductory Article Rupam Haloi Department of Mathematical Sciences, Tezpur University, Napaam - 784028, India. Abstract:

More information

Supplementary Notes on Mathematics. Part I: Linear Algebra

Supplementary Notes on Mathematics. Part I: Linear Algebra J. Broida UCSD Fall 2009 Phys 130B QM II Supplementary Notes on Mathematics Part I: Linear Algebra 1 Linear Transformations Let me very briefly review some basic properties of linear transformations and

More information

Covariant electrodynamics

Covariant electrodynamics Lecture 9 Covariant electrodynamics WS2010/11: Introduction to Nuclear and Particle Physics 1 Consider Lorentz transformations pseudo-orthogonal transformations in 4-dimentional vector space (Minkowski

More information

1.13 The Levi-Civita Tensor and Hodge Dualisation

1.13 The Levi-Civita Tensor and Hodge Dualisation ν + + ν ν + + ν H + H S ( S ) dφ + ( dφ) 2π + 2π 4π. (.225) S ( S ) Here, we have split the volume integral over S 2 into the sum over the two hemispheres, and in each case we have replaced the volume-form

More information

Mathematics that Every Physicist should Know: Scalar, Vector, and Tensor Fields in the Space of Real n- Dimensional Independent Variable with Metric

Mathematics that Every Physicist should Know: Scalar, Vector, and Tensor Fields in the Space of Real n- Dimensional Independent Variable with Metric Mathematics that Every Physicist should Know: Scalar, Vector, and Tensor Fields in the Space of Real n- Dimensional Independent Variable with Metric By Y. N. Keilman AltSci@basicisp.net Every physicist

More information

2 Tensor Notation. 2.1 Cartesian Tensors

2 Tensor Notation. 2.1 Cartesian Tensors 2 Tensor Notation It will be convenient in this monograph to use the compact notation often referred to as indicial or index notation. It allows a strong reduction in the number of terms in an equation

More information

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226

INDEX 363. Cartesian coordinates 19,20,42, 67, 83 Cartesian tensors 84, 87, 226 INDEX 363 A Absolute differentiation 120 Absolute scalar field 43 Absolute tensor 45,46,47,48 Acceleration 121, 190, 192 Action integral 198 Addition of systems 6, 51 Addition of tensors 6, 51 Adherence

More information

Lecture I: Vectors, tensors, and forms in flat spacetime

Lecture I: Vectors, tensors, and forms in flat spacetime Lecture I: Vectors, tensors, and forms in flat spacetime Christopher M. Hirata Caltech M/C 350-17, Pasadena CA 91125, USA (Dated: September 28, 2011) I. OVERVIEW The mathematical description of curved

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

,, rectilinear,, spherical,, cylindrical. (6.1)

,, rectilinear,, spherical,, cylindrical. (6.1) Lecture 6 Review of Vectors Physics in more than one dimension (See Chapter 3 in Boas, but we try to take a more general approach and in a slightly different order) Recall that in the previous two lectures

More information

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n. University of Groningen Geometry of strings and branes Halbersma, Reinder Simon IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad Lecture notes on introduction to tensors K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad 1 . Syllabus Tensor analysis-introduction-definition-definition

More information

Multilinear (tensor) algebra

Multilinear (tensor) algebra Multilinear (tensor) algebra In these notes, V will denote a fixed, finite dimensional vector space over R. Elements of V will be denoted by boldface Roman letters: v, w,.... Bookkeeping: We are going

More information

Introduction to Tensor Notation

Introduction to Tensor Notation MCEN 5021: Introduction to Fluid Dynamics Fall 2015, T.S. Lund Introduction to Tensor Notation Tensor notation provides a convenient and unified system for describing physical quantities. Scalars, vectors,

More information

RANS Equations in Curvilinear Coordinates

RANS Equations in Curvilinear Coordinates Appendix C RANS Equations in Curvilinear Coordinates To begin with, the Reynolds-averaged Navier-Stokes RANS equations are presented in the familiar vector and Cartesian tensor forms. Each term in the

More information

Contents. Part I Vector Analysis

Contents. Part I Vector Analysis Contents Part I Vector Analysis 1 Vectors... 3 1.1 BoundandFreeVectors... 4 1.2 Vector Operations....................................... 4 1.2.1 Multiplication by a Scalar.......................... 5 1.2.2

More information

Physics 221A Fall 2017 Appendix E Introduction to Tensor Analysis

Physics 221A Fall 2017 Appendix E Introduction to Tensor Analysis Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Appendix E Introduction to Tensor Analysis 1. Introduction These notes contain an introduction to tensor analysis as it is commonly used

More information

Chapter 0. Preliminaries. 0.1 Things you should already know

Chapter 0. Preliminaries. 0.1 Things you should already know Chapter 0 Preliminaries These notes cover the course MATH45061 (Continuum Mechanics) and are intended to supplement the lectures. The course does not follow any particular text, so you do not need to buy

More information

An OpenMath Content Dictionary for Tensor Concepts

An OpenMath Content Dictionary for Tensor Concepts An OpenMath Content Dictionary for Tensor Concepts Joseph B. Collins Naval Research Laboratory 4555 Overlook Ave, SW Washington, DC 20375-5337 Abstract We introduce a new OpenMath content dictionary named

More information

Physics 236a assignment, Week 2:

Physics 236a assignment, Week 2: Physics 236a assignment, Week 2: (October 8, 2015. Due on October 15, 2015) 1. Equation of motion for a spin in a magnetic field. [10 points] We will obtain the relativistic generalization of the nonrelativistic

More information

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity.

has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. http://preposterousuniverse.com/grnotes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been framed

More information

2. Geometrical Preliminaries

2. Geometrical Preliminaries 2. Geometrical Preliminaries The description of the geometry is essential for the definition of a shell structure. Our objective in this chapter is to survey the main geometrical concepts, to introduce

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Derivatives in General Relativity

Derivatives in General Relativity Derivatives in General Relativity One of the problems with curved space is in dealing with vectors how do you add a vector at one point in the surface of a sphere to a vector at a different point, and

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

MAE Continuum Mechanics Course Notes

MAE Continuum Mechanics Course Notes Course Notes Brandon Runnels Contents LECTURE 1 0 Introduction 1.1 0.1 Motivation........................................ 1.1 0.2 Notation......................................... 1.2 0.2.1 Sets......................................

More information

Foundations of tensor algebra and analysis (composed by Dr.-Ing. Olaf Kintzel, September 2007, reviewed June 2011.) Web-site:

Foundations of tensor algebra and analysis (composed by Dr.-Ing. Olaf Kintzel, September 2007, reviewed June 2011.) Web-site: Foundations of tensor algebra and analysis (composed by Dr.-Ing. Olaf Kintzel, September 2007, reviewed June 2011.) Web-site: http://www.kintzel.net 1 Tensor algebra Indices: Kronecker delta: δ i = δ i

More information

Chapter 1. Describing the Physical World: Vectors & Tensors. 1.1 Vectors

Chapter 1. Describing the Physical World: Vectors & Tensors. 1.1 Vectors Chapter 1 Describing the Physical World: Vectors & Tensors It is now well established that all matter consists of elementary particles 1 that interact through mutual attraction or repulsion. In our everyday

More information

Dr. Tess J. Moon, (office), (fax),

Dr. Tess J. Moon, (office), (fax), THE UNIVERSITY OF TEXAS AT AUSTIN DEPARTMENT OF MECHANICAL ENGINEERING ME 380Q ENGINEERING ANALYSIS: ANALYTICAL METHODS Dr Tess J Moon 471-0094 (office) 471-877 (fax) tmoon@mailutexasedu Mathematical Preliminaries

More information

A Brief Introduction to Tensors

A Brief Introduction to Tensors A Brief Introduction to Tensors Jay R Walton Fall 2013 1 Preliminaries In general, a tensor is a multilinear transformation defined over an underlying finite dimensional vector space In this brief introduction,

More information

Introduction to Vector Spaces

Introduction to Vector Spaces 1 CSUC Department of Physics Mechanics: Class Notes Introduction to Vector Spaces I. INTRODUCTION Modern mathematics often constructs logical systems by merely proposing a set of elements that obey a specific

More information

Vectors, metric and the connection

Vectors, metric and the connection Vectors, metric and the connection 1 Contravariant and covariant vectors 1.1 Contravariant vectors Imagine a particle moving along some path in the 2-dimensional flat x y plane. Let its trajectory be given

More information

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general

carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general http://pancake.uchicago.edu/ carroll/notes/ has a lot of good notes on GR and links to other pages. General Relativity Philosophy of general relativity. As with any major theory in physics, GR has been

More information

A Dyad Theory of Hydrodynamics and Electrodynamics

A Dyad Theory of Hydrodynamics and Electrodynamics arxiv:physics/0502072v5 [physics.class-ph] 19 Jan 2007 A Dyad Theory of Hydrodynamics and Electrodynamics Preston Jones Department of Mathematics and Physics University of Louisiana at Monroe Monroe, LA

More information

Introduction to relativistic quantum mechanics

Introduction to relativistic quantum mechanics Introduction to relativistic quantum mechanics. Tensor notation In this book, we will most often use so-called natural units, which means that we have set c = and =. Furthermore, a general 4-vector will

More information

1. Rotations in 3D, so(3), and su(2). * version 2.0 *

1. Rotations in 3D, so(3), and su(2). * version 2.0 * 1. Rotations in 3D, so(3, and su(2. * version 2.0 * Matthew Foster September 5, 2016 Contents 1.1 Rotation groups in 3D 1 1.1.1 SO(2 U(1........................................................ 1 1.1.2

More information

Covarient Formulation Lecture 8

Covarient Formulation Lecture 8 Covarient Formulation Lecture 8 1 Covarient Notation We use a 4-D space represented by the Cartesian coordinates, x 0 (orx 4 ), x 1, x 2, x 3. The components describe a vector (tensor of rank 1) in this

More information

Relativity Discussion

Relativity Discussion Relativity Discussion 4/19/2007 Jim Emery Einstein and his assistants, Peter Bergmann, and Valentin Bargmann, on there daily walk to the Institute for advanced Study at Princeton. Special Relativity The

More information

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes.

Overthrows a basic assumption of classical physics - that lengths and time intervals are absolute quantities, i.e., the same for all observes. Relativistic Electrodynamics An inertial frame = coordinate system where Newton's 1st law of motion - the law of inertia - is true. An inertial frame moves with constant velocity with respect to any other

More information

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods Module 4M12: Partial Differential Equations and ariational Methods IndexNotationandariationalMethods IndexNotation(2h) ariational calculus vs differential calculus(5h) ExamplePaper(1h) Fullinformationat

More information

This work has been submitted to ChesterRep the University of Chester s online research repository.

This work has been submitted to ChesterRep the University of Chester s online research repository. This work has been submitted to ChesterRep the University of Chester s online research repository http://chesterrep.openrepository.com Author(s): Daniel Tock Title: Tensor decomposition and its applications

More information

1.2 Euclidean spacetime: old wine in a new bottle

1.2 Euclidean spacetime: old wine in a new bottle CHAPTER 1 EUCLIDEAN SPACETIME AND NEWTONIAN PHYSICS Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external... Isaac Newton Scholium

More information

Professor Terje Haukaas University of British Columbia, Vancouver Notation

Professor Terje Haukaas University of British Columbia, Vancouver  Notation Notation This document establishes the notation that is employed throughout these notes. It is intended as a look-up source during the study of other documents and software on this website. As a general

More information

Introduction to Tensor Calculus and Continuum Mechanics. by J.H. Heinbockel Department of Mathematics and Statistics Old Dominion University

Introduction to Tensor Calculus and Continuum Mechanics. by J.H. Heinbockel Department of Mathematics and Statistics Old Dominion University Introduction to Tensor Calculus and Continuum Mechanics by J.H. Heinbockel Department of Mathematics and Statistics Old Dominion University PREFACE This is an introductory text which presents fundamental

More information

The magnetic vector potential for a uniformly charged rotating spherical shell is sinθ. r cosθ, r <a. ANS.B r (r,θ) = 2µ 0a 4 σω

The magnetic vector potential for a uniformly charged rotating spherical shell is sinθ. r cosθ, r <a. ANS.B r (r,θ) = 2µ 0a 4 σω 2.6 Tensor Analysis 133 2.5.24 The magnetic vector potential for a uniformly charged rotating spherical shell is ˆϕ µ 0a 4 σω sinθ A = 3 r 2, r>a ˆϕ µ 0aσω r cosθ, r

More information

Structure Groups of Pseudo-Riemannian Algebraic Curvature Tensors

Structure Groups of Pseudo-Riemannian Algebraic Curvature Tensors Structure Groups of Pseudo-Riemannian Algebraic Curvature Tensors Joseph Palmer August 20, 2010 Abstract We study the group of endomorphisms which preserve given model spaces under precomposition, known

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

4 Relativistic kinematics

4 Relativistic kinematics 4 Relativistic kinematics In astrophysics, we are often dealing with relativistic particles that are being accelerated by electric or magnetic forces. This produces radiation, typically in the form of

More information

Vectors. January 13, 2013

Vectors. January 13, 2013 Vectors January 13, 2013 The simplest tensors are scalars, which are the measurable quantities of a theory, left invariant by symmetry transformations. By far the most common non-scalars are the vectors,

More information

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles

Chapter 3 Stress, Strain, Virtual Power and Conservation Principles Chapter 3 Stress, Strain, irtual Power and Conservation Principles 1 Introduction Stress and strain are key concepts in the analytical characterization of the mechanical state of a solid body. While stress

More information

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Richard A. Mould Basic Relativity With 144 Figures Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Contents Preface vii PARTI 1. Principles of Relativity 3 1.1

More information

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY

INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY INTRODUCTION TO GENERAL RELATIVITY AND COSMOLOGY Living script Astro 405/505 ISU Fall 2004 Dirk Pützfeld Iowa State University 2004 Last update: 9th December 2004 Foreword This material was prepared by

More information

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR,

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR, VEKTORANALYS Kursvecka 4 NABLA OPERATOR, INTEGRALSATSER and CARTESIAN TENSORS (indexräkning) Kapitel 8 9 Sidor 83 98 TARGET PROBLEM In the plasma there are many particles (10 19, 10 20 per m 3 ), strong

More information

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know Physics 110. Electricity and Magnetism. Professor Dine Spring, 2008. Handout: Vectors and Tensors: Everything You Need to Know What makes E&M hard, more than anything else, is the problem that the electric

More information

Contravariant and Covariant as Transforms

Contravariant and Covariant as Transforms Contravariant and Covariant as Transforms There is a lot more behind the concepts of contravariant and covariant tensors (of any rank) than the fact that their basis vectors are mutually orthogonal to

More information

This document is stored in Documents/4C/vectoralgebra.tex Compile it with LaTex. VECTOR ALGEBRA

This document is stored in Documents/4C/vectoralgebra.tex Compile it with LaTex. VECTOR ALGEBRA This document is stored in Documents/4C/vectoralgebra.tex Compile it with LaTex. September 23, 2014 Hans P. Paar VECTOR ALGEBRA 1 Introduction Vector algebra is necessary in order to learn vector calculus.

More information

General-relativistic quantum theory of the electron

General-relativistic quantum theory of the electron Allgemein-relativistische Quantentheorie des Elektrons, Zeit. f. Phys. 50 (98), 336-36. General-relativistic quantum theory of the electron By H. Tetrode in Amsterdam (Received on 9 June 98) Translated

More information

First structure equation

First structure equation First structure equation Spin connection Let us consider the differential of the vielbvein it is not a Lorentz vector. Introduce the spin connection connection one form The quantity transforms as a vector

More information

Classical Mechanics in Hamiltonian Form

Classical Mechanics in Hamiltonian Form Classical Mechanics in Hamiltonian Form We consider a point particle of mass m, position x moving in a potential V (x). It moves according to Newton s law, mẍ + V (x) = 0 (1) This is the usual and simplest

More information

Some elements of vector and tensor analysis and the Dirac δ-function

Some elements of vector and tensor analysis and the Dirac δ-function Chapter 1 Some elements of vector and tensor analysis and the Dirac δ-function The vector analysis is useful in physics formulate the laws of physics independently of any preferred direction in space experimentally

More information

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule

GROUP THEORY PRIMER. New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule GROUP THEORY PRIMER New terms: tensor, rank k tensor, Young tableau, Young diagram, hook, hook length, factors over hooks rule 1. Tensor methods for su(n) To study some aspects of representations of a

More information

General tensors. Three definitions of the term V V. q times. A j 1...j p. k 1...k q

General tensors. Three definitions of the term V V. q times. A j 1...j p. k 1...k q General tensors Three definitions of the term Definition 1: A tensor of order (p,q) [hence of rank p+q] is a multilinear function A:V V }{{ V V R. }}{{} p times q times (Multilinear means linear in each

More information

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity Module 1: A Crash Course in Vectors Lecture 1: Scalar and Vector Fields Objectives In this lecture you will learn the following Learn about the concept of field Know the difference between a scalar field

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 MASSACHUSETTS NSTTUTE OF TECHNOLOGY DEPARTMENT OF MATERALS SCENCE AND ENGNEERNG CAMBRDGE, MASSACHUSETTS 39 3. MECHANCAL PROPERTES OF MATERALS PROBLEM SET SOLUTONS Reading Ashby, M.F., 98, Tensors: Notes

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

2.14 Basis vectors for covariant components - 2

2.14 Basis vectors for covariant components - 2 2.14 Basis vectors for covariant components - 2 Covariant components came from φ - but this in cartesian coordinates is just φ = φ x i + φ y j + φ z k so these LOOK like they have the same basis vectors

More information

7 Curvature of a connection

7 Curvature of a connection [under construction] 7 Curvature of a connection 7.1 Theorema Egregium Consider the derivation equations for a hypersurface in R n+1. We are mostly interested in the case n = 2, but shall start from the

More information

Contravariant and covariant vectors

Contravariant and covariant vectors Faculty of Engineering and Physical Sciences Department of Physics Module PHY08 Special Relativity Tensors You should have acquired familiarity with the following ideas and formulae in attempting the questions

More information