Springboards to Mathematics: From Zombies to Zeckendorf

Size: px
Start display at page:

Download "Springboards to Mathematics: From Zombies to Zeckendorf"

Transcription

1 Springboards to Mathematics: From Zombies to Zeckendorf Steven J. Miller

2 Zombies

3 General Advice: What are your tools and how can they be used?

4 Zombine Infection: Rules If share walls with 2 or more infected, become infected. Once infected, always infected.

5 Zombine Infection: Rules If share walls with 2 or more infected, become infected. Once infected, always infected.

6 Zombine Infection: Rules If share walls with 2 or more infected, become infected. Once infected, always infected.

7 Zombine Infection: Rules If share walls with 2 or more infected, become infected. Once infected, always infected.

8 Zombine Infection: Rules If share walls with 2 or more infected, become infected. Once infected, always infected.

9 Zombine Infection: Conquering The World Easiest initial state that ensures all eventually infected is...?

10 Zombine Infection: Conquering The World Easiest initial state that ensures all eventually infected is...?

11 Zombine Infection: Conquering The World Next simplest initial state ensuring all eventually infected...?

12 Zombine Infection: Conquering The World Next simplest initial state ensuring all eventually infected...?

13 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

14 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

15 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

16 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

17 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

18 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

19 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

20 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

21 Zombine Infection: Conquering The World Fewest number of initial infections needed to get all...?

22 Zombie Infection: Can n 1 infect all?

23 Zombie Infection: Can n 1 infect all? Perimeter of infection unchanged.

24 Zombie Infection: Can n 1 infect all? Perimeter of infection unchanged.

25 Zombie Infection: Can n 1 infect all? Perimeter of infection decreases by 2.

26 Zombie Infection: Can n 1 infect all? Perimeter of infection decreases by 4.

27 Zombie Infection: n 1 cannot infect all If n 1 infected, maximum perimeter is 4(n 1) = 4n 4.

28 Zombie Infection: n 1 cannot infect all If n 1 infected, maximum perimeter is 4(n 1) = 4n 4. Mono-variant: As time passes, perimeter of infection never increases.

29 Zombie Infection: n 1 cannot infect all If n 1 infected, maximum perimeter is 4(n 1) = 4n 4. Mono-variant: As time passes, perimeter of infection never increases. Perimeter of n n square is 4n, so at least 1 square safe!

30 Zeckendorf

31 Tiling the Plane with Squares Have n n square for each n, place one at a time so that shape formed is always connected and a rectangle.

32 Tiling the Plane with Squares Have n n square for each n, extra 1 1 square, place one at a time so that shape formed is always connected and a rectangle.

33 Tiling the Plane with Squares: 1 1, 1 1, 2 2, 3 3,....

34 Tiling the Plane with Squares: 1 1, 1 1, 2 2, 3 3,....

35 Tiling the Plane with Squares: 1 1, 1 1, 2 2, 3 3,....

36 Tiling the Plane with Squares: 1 1, 1 1, 2 2, 3 3,....

37 Tiling the Plane with Squares: 1 1, 1 1, 2 2, 3 3,.... 1, 1, 2, 3, 5,....

38 Pre-requisites: Probability Review Let X be random variable with density p(x): p(x) 0; p(x)dx = 1; Prob(a X b) = b a p(x)dx. Mean: µ = xp(x)dx. Variance: σ 2 = (x µ)2 p(x)dx. Gaussian: Density (2πσ 2 ) 1/2 exp( (x µ) 2 /2σ 2 ).

39 Pre-requisites: Combinatorics Review n!: number of ways to order n people, order matters. n! k!(n k)! = nck = ( n k) : number of ways to choose k from n, order doesn t matter. Stirling s Formula: n! n n e n 2πn.

40 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,....

41 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

42 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 =?

43 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 = = F

44 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 = = F 8 + F

45 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 = = F 8 + F 6 + F

46 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,.... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 = = F 8 + F 6 + F 3 + F 1.

47 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; First few: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... Zeckendorf s Theorem Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers. Example: 51 = = F 8 + F 6 + F 3 + F 1. Example: 83 = = F 9 + F 7 + F 4 + F 2.

48 Previous Results Fibonacci Numbers: F n+1 = F n + F n 1 ; Example: 51 = = F 8 + F 6 + F 3 + F 1. Example: 83 = = F 9 + F 7 + F 4 + F 2. Observe: 51 miles 82.1 kilometers.

49 Old Results Central Limit Type Theorem As n distribution of number of summands in Zeckendorf decomposition for m [F n, F n+1 ) is Gaussian (normal) Figure: Number of summands in [F 2010, F 2011 ); F

50 New Results: Bulk Gaps: m [F n, F n+1 ) and φ = m = k(m)=n j=1 F ij, ν m;n (x) = k(m) 1 δ ( x (i j i j 1 ) ). k(m) 1 j=2 Theorem (Zeckendorf Gap Distribution) Gap measures ν m;n converge almost surely to average gap measure where P(k) = 1/φ k for k Figure: Distribution of gaps in [F 1000, F 1001 ); F

51 New Results: Longest Gap Theorem (Longest Gap) As n, the probability that m [F n, F n+1 ) has longest gap less than or equal to f(n) converges to Prob(L n (m) f(n)) e elog n f(n)/ logφ. Immediate Corollary: If f(n) grows slower or faster than log n/ logφ, then Prob(L n (m) f(n)) goes to 0 or 1, respectively.

52 Preliminaries: The Cookie Problem The Cookie Problem The number of ways of dividing C identical cookies among P distinct people is ( ) C+P 1 P 1.

53 Preliminaries: The Cookie Problem The Cookie Problem The number of ways of dividing C identical cookies among P distinct people is ( ) C+P 1 P 1. Proof : Consider C + P 1 cookies in a line. Cookie Monster eats P 1 cookies: ( C+P 1) P 1 ways to do. Divides the cookies into P sets.

54 Preliminaries: The Cookie Problem The Cookie Problem The number of ways of dividing C identical cookies among P distinct people is ( ) C+P 1 P 1. Proof : Consider C + P 1 cookies in a line. Cookie Monster eats P 1 cookies: ( C+P 1) P 1 ways to do. Divides the cookies into P sets. Example: 8 cookies and 5 people (C = 8, P = 5):

55 55 Zombies Zeckendorf Gaussianity Kentucky and Quilts Future / Refs Preliminaries: The Cookie Problem The Cookie Problem The number of ways of dividing C identical cookies among P distinct people is ( ) C+P 1 P 1. Proof : Consider C + P 1 cookies in a line. Cookie Monster eats P 1 cookies: ( C+P 1) P 1 ways to do. Divides the cookies into P sets. Example: 8 cookies and 5 people (C = 8, P = 5):

56 Preliminaries: The Cookie Problem The Cookie Problem The number of ways of dividing C identical cookies among P distinct people is ( ) C+P 1 P 1. Proof : Consider C + P 1 cookies in a line. Cookie Monster eats P 1 cookies: ( C+P 1) P 1 ways to do. Divides the cookies into P sets. Example: 8 cookies and 5 people (C = 8, P = 5):

57 57 Zombies Zeckendorf Gaussianity Kentucky and Quilts Future / Refs Preliminaries: The Cookie Problem: Reinterpretation Reinterpreting the Cookie Problem The number ) of solutions to x 1 + +x P = C with x i 0 is. ( C+P 1 P 1

58 Preliminaries: The Cookie Problem: Reinterpretation Reinterpreting the Cookie Problem The number ) of solutions to x 1 + +x P = C with x i 0 is. ( C+P 1 P 1 Let p n,k = # {N [F n, F n+1 ): the Zeckendorf decomposition of N has exactly k summands}.

59 Preliminaries: The Cookie Problem: Reinterpretation Reinterpreting the Cookie Problem The number ) of solutions to x 1 + +x P = C with x i 0 is. ( C+P 1 P 1 Let p n,k = # {N [F n, F n+1 ): the Zeckendorf decomposition of N has exactly k summands}. For N [F n, F n+1 ), the largest summand is F n. N = F i1 + F i2 + +F ik 1 + F n, 1 i 1 < i 2 < < i k 1 < i k = n, i j i j 1 2.

60 Preliminaries: The Cookie Problem: Reinterpretation Reinterpreting the Cookie Problem The number ) of solutions to x 1 + +x P = C with x i 0 is. ( C+P 1 P 1 Let p n,k = # {N [F n, F n+1 ): the Zeckendorf decomposition of N has exactly k summands}. For N [F n, F n+1 ), the largest summand is F n. N = F i1 + F i2 + +F ik 1 + F n, 1 i 1 < i 2 < < i k 1 < i k = n, i j i j 1 2. d 1 := i 1 1, d j := i j i j 1 2 (j > 1). d 1 + d 2 + +d k = n 2k + 1, d j 0.

61 Preliminaries: The Cookie Problem: Reinterpretation Reinterpreting the Cookie Problem The number ) of solutions to x 1 + +x P = C with x i 0 is. ( C+P 1 P 1 Let p n,k = # {N [F n, F n+1 ): the Zeckendorf decomposition of N has exactly k summands}. For N [F n, F n+1 ), the largest summand is F n. N = F i1 + F i2 + +F ik 1 + F n, 1 i 1 < i 2 < < i k 1 < i k = n, i j i j 1 2. d 1 := i 1 1, d j := i j i j 1 2 (j > 1). d 1 + d 2 + +d k = n 2k + 1, d j 0. Cookie counting p n,k = ( n 2k+1 + k 1) ( k 1 = n k k 1).

62 Gaussian Behavior

63 Generalizing Lekkerkerker: Erdos-Kac type result Theorem (KKMW 2010) As n, the distribution of the number of summands in Zeckendorf s Theorem is a Gaussian. Sketch of proof: Use Stirling s formula, n! n n e n 2πn to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

64 (Sketch of the) Proof of Gaussianity The probability density for the number of Fibonacci numbers that add up to an integer in [F n, F n+1 ) is ( ) f n(k) = n 1 k /F k n 1. Consider the density for the n + 1 case. Then we have, by Stirling f n+1 (k) = = ( ) n k 1 k F n (n k)! 1 = (n 2k)!k! F n 1 2π (n k) n k+ 1 2 k (k+ 1 2 ) (n 2k) n 2k F n plus a lower order correction term. Also we can write F n = 1 5 φ n+1 = φ 5 φ n for large n, whereφ is the golden ratio (we are using relabeled Fibonacci numbers where 1 = F 1 occurs once to help dealing with uniqueness and F 2 = 2). We can now split the terms that exponentially depend on n. Define f n+1 (k) = ( 1 2π (n k) k(n 2k) )( 5 φ n (n k) n k ) φ k k (n 2k) n 2k. N n = Thus, write the density function as 1 (n k) 5 n k 2π k(n 2k) φ, Sn = (n k) φ n k k (n 2k) n 2k. f n+1 (k) = N ns n where N n is the first term that is of order n 1/2 and S n is the second term with exponential dependence on n.

65 (Sketch of the) Proof of Gaussianity Model the distribution as centered around the mean by the change of variable k = µ + xσ whereµ and σ are the mean and the standard deviation, and depend on n. The discrete weights of f n(k) will become continuous. This requires us to use the change of variable formula to compensate for the change of scales: Using the change of variable, we can write N n as f n(k)dk = f n(µ + σx)σdx. N n = = = = 1 n k φ 2π k(n 2k) k/n 2πn 1 2πn 1 2πn (k/n)(1 2k/n) 5 φ 1 (µ + σx)/n 5 ((µ + σx)/n)(1 2(µ + σx)/n) φ 1 C y 5 (C + y)(1 2C 2y) φ where C = µ/n 1/(φ + 2) (note that φ 2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since σ n and thus y n 1/2. Thus N n 1 1 C 5 2πn C(1 2C) φ = 1 (φ + 1)(φ + 2) 5 2πn φ φ = 1 5(φ + 2) 1 = 2πn φ 2πσ 2 since σ 2 φ = n 5(φ+2).

66 (Sketch of the) Proof of Gaussianity For the second term S n, take the logarithm and once again change variables by k = µ + xσ, ( ) log(s n) = log φ n (n k) (n k) k k (n 2k) (n 2k) = n log(φ) + (n k) log(n k) (k) log(k) (n 2k) log(n 2k) = n log(φ) + (n (µ + xσ)) log(n (µ + xσ)) (µ + xσ) log(µ + xσ) (n 2(µ + xσ)) log(n 2(µ + xσ)) = n log(φ) +(n (µ + xσ)) ( ( log(n µ) + log 1 xσ n µ ( ( (µ + xσ) log(µ) + log 1 + xσ )) µ )) ( ( (n 2(µ + xσ)) log(n 2µ) + log 1 xσ )) n 2µ = n log(φ) +(n (µ + xσ)) ( ( n log ( (µ + xσ) log 1 + xσ µ ) µ 1 ) ( + log 1 xσ )) n µ ( ( ) ( n (n 2(µ + xσ)) log µ 2 + log 1 xσ )). n 2µ

67 (Sketch of the) Proof of Gaussianity Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(s n) ( n = n log(φ) + (n k) log ( (µ + xσ) log 1 + xσ µ ) ( n µ 1 (n 2k) log ) (n 2(µ + xσ)) log ) µ 2 ( 1 xσ n 2µ = n log(φ) + (n k) log(φ + 1) (n 2k) log(φ) + (n (µ + xσ)) log ( + (n (µ + xσ)) log 1 xσ n µ ) ( 1 xσ ) n µ ( (µ + xσ) log 1 + xσ ) ( (n 2(µ + xσ)) log 1 xσ ) µ n 2µ ( = n( log(φ) + log φ 2) log(φ)) + k(log(φ 2 ) + 2 log(φ)) + (n (µ + xσ)) log ( (µ + xσ) log 1 + xσ ) ( (n 2(µ + xσ)) log µ ( = (n (µ + xσ)) log 1 xσ n µ ( (n 2(µ + xσ)) log xσ 1 2 n 2µ ) ( (µ + xσ) log 1 + xσ µ ). ) xσ 1 2 n 2µ ) ( 1 xσ ) n µ )

68 (Sketch of the) Proof of Gaussianity Finally, we expand the logarithms and collect powers of xσ/n. log(s n) = ( (n (µ + xσ)) xσ n µ 1 ( ) xσ ) 2 n µ ( xσ (µ + xσ) µ 1 ( ) xσ ) 2 µ ( xσ (n 2(µ + xσ)) 2 n 2µ 1 ( ) xσ ) 2 n 2µ 2 = (n (µ + xσ)) xσ n (φ+1) 1 xσ 2 n (φ+1) +... (φ+2) (φ+2) 2 (µ + xσ) xσ 1 xσ +... n 2 n φ+2 φ+2 2 (n 2(µ + xσ)) 2xσ n φ 1 2xσ 2 n φ +... φ+2 φ+2 = ( ( xσ n n 1 1 ) ( (φ + 2) φ + 2 (φ + 1) ) ) φ + 2 φ + 2 φ 1 ( ) xσ 2 n( 2 φ n φ φ + 2 ) (φ + 2) (φ + 2) + 4φ φ + 1 φ +O (n(xσ/n) 3)

69 (Sketch of the) Proof of Gaussianity log(s n) = ( xσ n n φ + 1 ) φ + 2 φ + 2 φ φ φ + 2 φ + 2 φ 1 ( ) xσ 2 n(φ + 2)( 1 2 n φ ) φ ( ( ) ) xσ 3 +O n n = 1 (xσ) 2 ( ) ( ( ) ) 3φ + 4 xσ 3 (φ + 2) 2 n φ(φ + 1) O n n = 1 (xσ) 2 ( ) ( ( ) ) 3φ φ + 1 xσ 3 (φ + 2) + O n 2 n φ(φ + 1) n = 1 2 x2 σ 2 ( 5(φ + 2) φn ) ( + O n(xσ/n) 3).

70 (Sketch of the) Proof of Gaussianity But recall that σ 2 = φn 5(φ + 2). ( ) ( Also, since σ n 1/2, n xσn 3 ( ) ) n 1/2. So for large n, the O n xσn 3 term vanishes. Thus we are left with log S n = 1 2 x2 S n = e 1 2 x2. Hence, as n gets large, the density converges to the normal distribution: f n(k)dk = N ns ndk = 1 2πσ 2 e 1 2 x2 σdx = 1 2π e 1 2 x2 dx.

71 Generalizations Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients. H n+1 = c 1 H n + c 2 H n 1 + +c L H n L+1, n L with H 1 = 1, H n+1 = c 1 H n + c 2 H n 1 + +c n H 1 + 1, n < L, coefficients c i 0; c 1, c L > 0 if L 2; c 1 > 1 if L = 1. Zeckendorf: Every positive integer can be written uniquely as a i H i with natural constraints on the a i s (e.g. cannot use the recurrence relation to remove any summand). Lekkerkerker Central Limit Type Theorem

72 Kentucky Sequence and Quilts with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson

73 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

74 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5,

75 75 Zombies Zeckendorf Gaussianity Kentucky and Quilts Future / Refs Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8],

76 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11,

77 77 Zombies Zeckendorf Gaussianity Kentucky and Quilts Future / Refs Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11, 16],

78 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11, 16], [21,

79 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128].

80 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]. a 2n = 2 n and a 2n+1 = 1 3 (22+n ( 1) n ): a n+1 = a n 1 + 2a n 3, a 1 = 1, a 2 = 2, a 3 = 3, a 4 = 4.

81 Kentucky Sequence Rule: (s, b)-sequence: Bins of length b, and: cannot take two elements from the same bin, and if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right. Fibonaccis: These are (s, b) = (1, 1). Kentucky: These are (s, b) = (1, 2). [1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]. a 2n = 2 n and a 2n+1 = 1 3 (22+n ( 1) n ): a n+1 = a n 1 + 2a n 3, a 1 = 1, a 2 = 2, a 3 = 3, a 4 = 4. a n+1 = a n 1 + 2a n 3 : New as leading term 0.

82 What s in a name?

83 Gaussian Behavior Figure: Plot of the distribution of the number of summands for 100,000 randomly chosen m [1, a 4000 ) = [1, ) (so m has on the order of 602 digits).

84 Gaps Figure: Plot of the distribution of gaps for 10,000 randomly chosen m [1, a 400 ) = [1, ) (so m has on the order of 60 digits).

85 Gaps Figure: Plot of the distribution of gaps for 10,000 randomly chosen m [1, a 400 ) = [1, ) (so m has on the order of 60 digits). Left (resp. right): ratio of adjacent even (resp odd) gap probabilities. Again find geometric decay, but parity issues so break into even and odd gaps.

86 Fibonacci Spiral:

87 Fibonacci Spiral:

88 The Fibonacci (or Log Cabin) Quilt: Work in Progress a n+1 = a n 1 + a n 2, non-uniqueness (average number of decompositions grows exponentially). In process of investigating Gaussianity, Gaps, K min, K ave, K max, K greedy.

89 Average Number of Representations d n: the number of FQ-legal decompositions using only elements of {a 1, a 2,...,a n}. c n requires a n to be used, b n requires a n and a n 2 to be used. n d n c n b n a n Table: First few terms. Find d n = d n 1 + d n 2 d n 3 + d n 5 d n 9, implying d FQ;ave (n) C n.

90 Greedy Algorithm h n : number of integers from 1 to a n+1 1 where the greedy algorithm successfully terminates in a legal decomposition. n a n h n ρ n Table: First few terms, yields h n = h n 1 + h n and percentage converges to about

91 Future Work and References

92 Future Research Future Research Generalizing results beyond PLRS, signed decompositions, higher dimensions... Other systems such as f -Decompositions of Demontigny, Do, Miller and Varma.

93 References References Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), Bower, Insoft, Li, Miller and Tosteson: Distribution of gaps in generalized Zeckendorf decompositions, preprint Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, Miller and Wang: Gaussian Behavior in Generalized Zeckendorf Decompositions, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference.

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Steven J. Miller (MC 96) http://www.williams.edu/mathematics/sjmiller/public_html Yale University, April 14, 2014 Introduction Goals of the

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang http://www.williams.edu/mathematics/sjmiller/public html Smith College, January

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Olivial Beckwith, Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang http://www.williams.edu/mathematics/sjmiller/public html Colby

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang http://www.williams.edu/mathematics/sjmiller/public html College of the Holy Cross,

More information

From Fibonacci Numbers to Central Limit Type Theorems

From Fibonacci Numbers to Central Limit Type Theorems From Fibonacci Numbers to Central Limit Type Theorems Murat Koloğlu, Gene Kopp, Steven J. Miller and Yinghui Wang Williams College, October 1st, 010 Introduction Previous Results Fibonacci Numbers: F n+1

More information

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions Steven J. Miller (sjm1@williams.edu) http://www.williams.edu/mathematics/sjmiller/public_html AMS Special Session on Difference

More information

Distribution of summands in generalized Zeckendorf decompositions

Distribution of summands in generalized Zeckendorf decompositions Distribution of summands in generalized Zeckendorf decompositions Amanda Bower (UM-Dearborn), Louis Gaudet (Yale University), Rachel Insoft (Wellesley College), Shiyu Li (Berkeley), Steven J. Miller and

More information

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions

From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions From Fibonacci Quilts to Benford s Law through Zeckendorf Decompositions Steven J. Miller (sjm1@williams.edu) http://www.williams.edu/mathematics/sjmiller/ public_html CANT 2015 (May 19), Graduate Center

More information

Why Cookies And M&Ms Are Good For You (Mathematically)

Why Cookies And M&Ms Are Good For You (Mathematically) Why Cookies And M&Ms Are Good For You (Mathematically) Steven J. Miller, Williams College Steven.J.Miller@williams.edu http://web.williams.edu/mathematics/sjmiller/public_html/ Stuyvesant High School,

More information

Math/Stat 341 and Math 433 Probability and Mathematical Modeling II: Continuous Systems

Math/Stat 341 and Math 433 Probability and Mathematical Modeling II: Continuous Systems Math/Stat 341 and Math 433 Probability and Mathematical Modeling II: Continuous Systems Steven J Miller Williams College sjm1@williams.edu http://www.williams.edu/mathematics/sjmiller/public_html/341 Lawrence

More information

The Fibonacci Quilt Sequence

The Fibonacci Quilt Sequence The Sequence Minerva Catral, Pari Ford*, Pamela Harris, Steven J. Miller, Dawn Nelson AMS Section Meeting Georgetown University March 7, 2015 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 Fibonacci sequence Theorem (

More information

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems!

Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Cookie Monster Meets the Fibonacci Numbers. Mmmmmm Theorems! Steven J Miller, Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller CANT 2010, CUNY, May 29, 2010 Summary

More information

Distribution of the Longest Gap in Positive Linear Recurrence Sequences

Distribution of the Longest Gap in Positive Linear Recurrence Sequences Distribution of the Longest Gap in Positive Linear Recurrence Sequences Shiyu Li 1, Philip Tosteson 2 Advisor: Steven J. Miller 2 1 University of California, Berkeley 2 Williams College http://www.williams.edu/mathematics/sjmiller/

More information

Convergence rates in generalized Zeckendorf decomposition problems

Convergence rates in generalized Zeckendorf decomposition problems Convergence rates in generalized Zeckendorf decomposition problems Ray Li (ryli@andrew.cmu.edu) 1 Steven J Miller (sjm1@williams.edu) 2 Zhao Pan (zhaop@andrew.cmu.edu) 3 Huanzhong Xu (huanzhox@andrew.cmu.edu)

More information

ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS

ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS ON THE NUMBER OF SUMMANDS IN ZECKENDORF DECOMPOSITIONS MURAT KOLOĞLU, GENE S. KOPP, STEVEN J. MILLER, AND YINGHUI WANG Abstract. Zecendorf proved that every positive integer has a unique representation

More information

A GENERALIZATION OF ZECKENDORF S THEOREM VIA CIRCUMSCRIBED m-gons

A GENERALIZATION OF ZECKENDORF S THEOREM VIA CIRCUMSCRIBED m-gons A GENERALIZATION OF ZECKENDORF S THEOREM VIA CIRCUMSCRIBED m-gons ROBERT DORWARD, PARI L. FORD, EVA FOURAKIS, PAMELA E. HARRIS, STEVEN J. MILLER, EYVI PALSSON, AND HANNAH PAUGH Abstract. Zeckendorf s theorem

More information

On Summand Minimality of Generalized Zeckendorf Decompositions

On Summand Minimality of Generalized Zeckendorf Decompositions On Summand Minimality of Generalized Zeckendorf Decompositions Katherine Cordwell 1, Magda Hlavacek 2 SMALL REU, Williams College ktcordwell@gmail.com mhlavacek@hmc.edu 1 University of Maryland, College

More information

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES NATHAN HAMLIN AND WILLIAM A. WEBB Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known. Fraenkel

More information

FROM FIBONACCI NUMBERS TO CENTRAL LIMIT TYPE THEOREMS

FROM FIBONACCI NUMBERS TO CENTRAL LIMIT TYPE THEOREMS FROM FIBONACCI NUMBERS TO CENTRAL LIMIT TYPE THEOREMS STEVEN J. MILLER AND YINGHUI WANG Abstract A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum of non-consecutive

More information

uniform distribution theory

uniform distribution theory uniform distribution theory DOI: 0.55/udt-207 0002 Unif. Distrib. Theory 2 (207), no., 27 36 INDIVIDUAL GAP MEASURES FROM GENERALIZED ZECKENDORF DECOMPOSITIONS Robert DorwardμPari L. FordμEva Fourakis

More information

Benford Behavior of Generalized Zeckendorf Decompositions

Benford Behavior of Generalized Zeckendorf Decompositions Benford Behavior of Generalized Zeckendorf Decompositions Andrew Best, Patrick Dynes, Xixi Edelsbrunner, Brian McDonald, Steven J. Miller, Kimsy Tor, Caroline Turnage-Butterbaugh and Madeleine Weinstein

More information

Algorithms: Background

Algorithms: Background Algorithms: Background Amotz Bar-Noy CUNY Amotz Bar-Noy (CUNY) Algorithms: Background 1 / 66 What is a Proof? Definition I: The cogency of evidence that compels acceptance by the mind of a truth or a fact.

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example

Partition of Integers into Distinct Summands with Upper Bounds. Partition of Integers into Even Summands. An Example Partition of Integers into Even Summands We ask for the number of partitions of m Z + into positive even integers The desired number is the coefficient of x m in + x + x 4 + ) + x 4 + x 8 + ) + x 6 + x

More information

Day 2: Let The Good Roll

Day 2: Let The Good Roll Opener 1. We re going to start with doing the same thing, over and over. The Monica sequence is one of the least famous sequences of all For example, M(2) = time. It starts with 2, then 2 again, then each

More information

Physics 6720 Introduction to Statistics April 4, 2017

Physics 6720 Introduction to Statistics April 4, 2017 Physics 6720 Introduction to Statistics April 4, 2017 1 Statistics of Counting Often an experiment yields a result that can be classified according to a set of discrete events, giving rise to an integer

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

Applications. More Counting Problems. Complexity of Algorithms

Applications. More Counting Problems. Complexity of Algorithms Recurrences Applications More Counting Problems Complexity of Algorithms Part I Recurrences and Binomial Coefficients Paths in a Triangle P(0, 0) P(1, 0) P(1,1) P(2, 0) P(2,1) P(2, 2) P(3, 0) P(3,1) P(3,

More information

Compositions of n with no occurrence of k. Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles

Compositions of n with no occurrence of k. Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles Compositions of n with no occurrence of k Phyllis Chinn, Humboldt State University Silvia Heubach, California State University Los Angeles Abstract A composition of n is an ordered collection of one or

More information

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by

Fibonacci numbers. Chapter The Fibonacci sequence. The Fibonacci numbers F n are defined recursively by Chapter Fibonacci numbers The Fibonacci sequence The Fibonacci numbers F n are defined recursively by F n+ = F n + F n, F 0 = 0, F = The first few Fibonacci numbers are n 0 5 6 7 8 9 0 F n 0 5 8 55 89

More information

Nonnegative Integral Subset Representations of Integer Sets

Nonnegative Integral Subset Representations of Integer Sets Nonnegative Integral Subset Representations of Integer Sets Michael J. Collins David Kempe Jared Saia Maxwell Young Abstract We consider an integer-subset representation problem motivated by a medical

More information

A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF DECOMPOSITIONS

A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF DECOMPOSITIONS SIAM J. DISCRETE MATH. Vol. 30, No. 2, pp. 302 332 c 206 Society for Industrial and Applied Mathematics A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF DECOMPOSITIONS IDDO BEN-ARI AND STEVEN J. MILLER

More information

Advanced Counting Techniques. Chapter 8

Advanced Counting Techniques. Chapter 8 Advanced Counting Techniques Chapter 8 Chapter Summary Applications of Recurrence Relations Solving Linear Recurrence Relations Homogeneous Recurrence Relations Nonhomogeneous Recurrence Relations Divide-and-Conquer

More information

Subtraction games. Chapter The Bachet game

Subtraction games. Chapter The Bachet game Chapter 7 Subtraction games 7.1 The Bachet game Beginning with a positive integer, two players alternately subtract a positive integer < d. The player who gets down to 0 is the winner. There is a set of

More information

Binomial coefficients and k-regular sequences

Binomial coefficients and k-regular sequences Binomial coefficients and k-regular sequences Eric Rowland Hofstra University New York Combinatorics Seminar CUNY Graduate Center, 2017 12 22 Eric Rowland Binomial coefficients and k-regular sequences

More information

1 Sequences and Summation

1 Sequences and Summation 1 Sequences and Summation A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer. For example, a m, a m+1,...,

More information

Binomial Coefficient Identities/Complements

Binomial Coefficient Identities/Complements Binomial Coefficient Identities/Complements CSE21 Fall 2017, Day 4 Oct 6, 2017 https://sites.google.com/a/eng.ucsd.edu/cse21-fall-2017-miles-jones/ permutation P(n,r) = n(n-1) (n-2) (n-r+1) = Terminology

More information

Physics Sep Example A Spin System

Physics Sep Example A Spin System Physics 30 7-Sep-004 4- Example A Spin System In the last lecture, we discussed the binomial distribution. Now, I would like to add a little physical content by considering a spin system. Actually this

More information

arxiv: v1 [math.ho] 28 Jul 2017

arxiv: v1 [math.ho] 28 Jul 2017 Generalized Fibonacci Sequences and Binet-Fibonacci Curves arxiv:1707.09151v1 [math.ho] 8 Jul 017 Merve Özvatan and Oktay K. Pashaev Department of Mathematics Izmir Institute of Technology Izmir, 35430,

More information

1 Characteristic functions

1 Characteristic functions 1 Characteristic functions Life is the sum of trifling motions. Joseph Brodsky In this chapter we introduce the characteristic function, a tool that plays a central role in the mathematical description

More information

Rectangles as Sums of Squares.

Rectangles as Sums of Squares. Rectangles as Sums of Squares. Mark Walters Peterhouse, Cambridge, CB2 1RD Abstract In this paper we examine generalisations of the following problem posed by Laczkovich: Given an n m rectangle with n

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Fibonacci Nim and a Full Characterization of Winning Moves

Fibonacci Nim and a Full Characterization of Winning Moves Fibonacci Nim and a Full Characterization of Winning Moves Cody Allen and Vadim Ponomarenko January 8, 2014 Abstract In this paper we will fully characterize all types of winning moves in the takeaway

More information

Generalized Lucas Sequences Part II

Generalized Lucas Sequences Part II Introduction Generalized Lucas Sequences Part II Daryl DeFord Washington State University February 4, 2013 Introduction Èdouard Lucas: The theory of recurrent sequences is an inexhaustible mine which contains

More information

What is Zeckendorf s Theorem?

What is Zeckendorf s Theorem? What is Zeckendorf s Theorem? Nik Henderson July 23, 2016 Abstract While Fibonacci numbers can quite easily be classified as a complete sequence, they have the unusual property that a particular explicitly

More information

ASSIGNMENT 12 PROBLEM 4

ASSIGNMENT 12 PROBLEM 4 ASSIGNMENT PROBLEM 4 Generate a Fibonnaci sequence in the first column using f 0 =, f 0 =, = f n f n a. Construct the ratio of each pair of adjacent terms in the Fibonnaci sequence. What happens as n increases?

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

Eigenvalue Statistics for Toeplitz and Circulant Ensembles

Eigenvalue Statistics for Toeplitz and Circulant Ensembles Eigenvalue Statistics for Toeplitz and Circulant Ensembles Murat Koloğlu 1, Gene Kopp 2, Steven J. Miller 1, and Karen Shen 3 1 Williams College 2 University of Michigan 3 Stanford University http://www.williams.edu/mathematics/sjmiller/

More information

Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I

Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I Enumerating Distinct Chessboard Tilings and Generalized Lucas Sequences Part I Daryl DeFord Washington State University January 28, 2013 Roadmap 1 Problem 2 Symmetry 3 LHCCRR as Vector Spaces 4 Generalized

More information

Lecture 04: Balls and Bins: Birthday Paradox. Birthday Paradox

Lecture 04: Balls and Bins: Birthday Paradox. Birthday Paradox Lecture 04: Balls and Bins: Overview In today s lecture we will start our study of balls-and-bins problems We shall consider a fundamental problem known as the Recall: Inequalities I Lemma Before we begin,

More information

Silvia Heubach* Dept. of Mathematics, California State University Los Angeles

Silvia Heubach* Dept. of Mathematics, California State University Los Angeles (1,k)-Compositions Phyllis Chinn Dept. of Mathematics, Humboldt State University phyllis@math.humboldt.edu Silvia Heubach* Dept. of Mathematics, California State University Los Angeles sheubac@calstatela.edu

More information

Advanced Counting Techniques

Advanced Counting Techniques . All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Advanced Counting

More information

Notes on generating functions in automata theory

Notes on generating functions in automata theory Notes on generating functions in automata theory Benjamin Steinberg December 5, 2009 Contents Introduction: Calculus can count 2 Formal power series 5 3 Rational power series 9 3. Rational power series

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles

Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Distribution of Eigenvalues of Weighted, Structured Matrix Ensembles Olivia Beckwith 1, Steven J. Miller 2, and Karen Shen 3 1 Harvey Mudd College 2 Williams College 3 Stanford University Joint Meetings

More information

Symbiosis and Reciprocity. a talk in honor of Richard A. Brualdi, RAB. April 30, 2005

Symbiosis and Reciprocity. a talk in honor of Richard A. Brualdi, RAB. April 30, 2005 Symbiosis and Reciprocity a talk in honor of Richard A. Brualdi, RAB April 30, 2005 Jim Propp Department of Mathematics University of Wisconsin - Madison slides on web at www.math.wisc.edu/ propp/brualdi.pdf

More information

Distance between multinomial and multivariate normal models

Distance between multinomial and multivariate normal models Chapter 9 Distance between multinomial and multivariate normal models SECTION 1 introduces Andrew Carter s recursive procedure for bounding the Le Cam distance between a multinomialmodeland its approximating

More information

GENERALIZING ZECKENDORF S THEOREM: THE KENTUCKY SEQUENCE

GENERALIZING ZECKENDORF S THEOREM: THE KENTUCKY SEQUENCE GENERALIZING ZECKENDORF S THEOREM: THE KENTUCKY SEQUENCE MINERVA CATRAL, PARI FORD, PAMELA HARRIS, STEVEN J. MILLER, AND DAWN NELSON ABSTRACT. By Zeckendorf s theorem, an equivalent definition of the Fibonacci

More information

IS 709/809: Computational Methods for IS Research. Math Review: Algorithm Analysis

IS 709/809: Computational Methods for IS Research. Math Review: Algorithm Analysis IS 709/809: Computational Methods for IS Research Math Review: Algorithm Analysis Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Topics Proof techniques

More information

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

More information

5. Sequences & Recursion

5. Sequences & Recursion 5. Sequences & Recursion Terence Sim 1 / 42 A mathematician, like a painter or poet, is a maker of patterns. Reading Sections 5.1 5.4, 5.6 5.8 of Epp. Section 2.10 of Campbell. Godfrey Harold Hardy, 1877

More information

k-protected VERTICES IN BINARY SEARCH TREES

k-protected VERTICES IN BINARY SEARCH TREES k-protected VERTICES IN BINARY SEARCH TREES MIKLÓS BÓNA Abstract. We show that for every k, the probability that a randomly selected vertex of a random binary search tree on n nodes is at distance k from

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

The solutions to the two examples above are the same.

The solutions to the two examples above are the same. One-to-one correspondences A function f : A B is one-to-one if f(x) = f(y) implies that x = y. A function f : A B is onto if for any element b in B there is an element a in A such that f(a) = b. A function

More information

q-counting hypercubes in Lucas cubes

q-counting hypercubes in Lucas cubes Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (2018) 42: 190 203 c TÜBİTAK doi:10.3906/mat-1605-2 q-counting hypercubes in Lucas cubes Elif SAYGI

More information

Some Thoughts on Benford s Law

Some Thoughts on Benford s Law Some Thoughts on Benford s Law Steven J. Miller ovember, 004 Abstract For many systems, there is a bias in the distribution of the first digits. For example, if one looks at the first digit of n in base

More information

Algorithms and Theory of Computation. Lecture 9: Dynamic Programming

Algorithms and Theory of Computation. Lecture 9: Dynamic Programming Algorithms and Theory of Computation Lecture 9: Dynamic Programming Xiaohui Bei MAS 714 September 10, 2018 Nanyang Technological University MAS 714 September 10, 2018 1 / 21 Recursion in Algorithm Design

More information

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX

#A87 INTEGERS 18 (2018) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX #A87 INTEGERS 8 (208) A NOTE ON FIBONACCI NUMBERS OF EVEN INDEX Achille Frigeri Dipartimento di Matematica, Politecnico di Milano, Milan, Italy achille.frigeri@polimi.it Received: 3/2/8, Accepted: 0/8/8,

More information

Compare the growth rate of functions

Compare the growth rate of functions Compare the growth rate of functions We have two algorithms A 1 and A 2 for solving the same problem, with runtime functions T 1 (n) and T 2 (n), respectively. Which algorithm is more efficient? We compare

More information

MCS 256 Discrete Calculus and Probability Exam 5: Final Examination 22 May 2007

MCS 256 Discrete Calculus and Probability Exam 5: Final Examination 22 May 2007 MCS 256 Discrete Calculus and Probability SOLUTIONS Exam 5: Final Examination 22 May 2007 Instructions: This is a closed-book examination. You may, however, use one 8.5 -by-11 page of notes, your note

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Salvatore Pace September 2, 208 Introduction In a frequentist interpretation of probability, a probability measure P (A) says that if I do something N times, I should see event

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Algebraic Methods in Combinatorics

Algebraic Methods in Combinatorics Algebraic Methods in Combinatorics Po-Shen Loh 27 June 2008 1 Warm-up 1. (A result of Bourbaki on finite geometries, from Răzvan) Let X be a finite set, and let F be a family of distinct proper subsets

More information

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION. (3k(k + 1) + 1), for n 1.

WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION. (3k(k + 1) + 1), for n 1. Problem A1. Find the sum n (3k(k + 1) + 1), for n 1. k=0 The simplest way to solve this problem is to use the fact that the terms of the sum are differences of consecutive cubes: 3k(k + 1) + 1 = 3k 2 +

More information

On Determining Paint by Numbers Puzzles with Nonunique Solutions

On Determining Paint by Numbers Puzzles with Nonunique Solutions 2 3 47 6 23 Journal of Integer Sequences, Vol. 2 2009), Article 09.6.5 On Determining Paint by Numbers Puzzles with Nonunique Solutions Ryan Mullen Sacred Heart University Fairfield, CT 06825 USA mullenr@sacredheart.edu

More information

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n.

Every subset of {1, 2,...,n 1} can be extended to a subset of {1, 2, 3,...,n} by either adding or not adding the element n. 11 Recurrences A recurrence equation or recurrence counts things using recursion. 11.1 Recurrence Equations We start with an example. Example 11.1. Find a recurrence for S(n), the number of subsets of

More information

What can you prove by induction?

What can you prove by induction? MEI CONFERENCE 013 What can you prove by induction? Martyn Parker M.J.Parker@keele.ac.uk Contents Contents iii 1 Splitting Coins.................................................. 1 Convex Polygons................................................

More information

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer.

First and Last Name: 2. Correct The Mistake Determine whether these equations are false, and if so write the correct answer. . Correct The Mistake Determine whether these equations are false, and if so write the correct answer. ( x ( x (a ln + ln = ln(x (b e x e y = e xy (c (d d dx cos(4x = sin(4x 0 dx xe x = (a This is an incorrect

More information

functions Poisson distribution Normal distribution Arbitrary functions

functions Poisson distribution Normal distribution Arbitrary functions Physics 433: Computational Physics Lecture 6 Random number distributions Generation of random numbers of various distribuition functions Normal distribution Poisson distribution Arbitrary functions Random

More information

ODD FIBBINARY NUMBERS AND THE GOLDEN RATIO

ODD FIBBINARY NUMBERS AND THE GOLDEN RATIO ODD FIBBINARY NUMBERS AND THE GOLDEN RATIO LINUS LINDROOS, ANDREW SILLS, AND HUA WANG Abstract. The fibbinary numbers are positive integers whose binary representation contains no consecutive ones. We

More information

lim Bounded above by M Converges to L M

lim Bounded above by M Converges to L M Calculus 2 MONOTONE SEQUENCES If for all we say is nondecreasing. If for all we say is increasing. Similarly for nonincreasing decreasing. A sequence is said to be monotonic if it is either nondecreasing

More information

Combinatorial Proofs and Algebraic Proofs I

Combinatorial Proofs and Algebraic Proofs I Combinatorial Proofs and Algebraic Proofs I Shailesh A Shirali Shailesh A Shirali is Director of Sahyadri School (KFI), Pune, and also Head of the Community Mathematics Centre in Rishi Valley School (AP).

More information

Introduction to Techniques for Counting

Introduction to Techniques for Counting Introduction to Techniques for Counting A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in

More information

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences CSE 421 Algorithms Richard Anderson Lecture 13 Divide and Conquer What you really need to know about recurrences Work per level changes geometrically with the level Geometrically increasing (x > 1) The

More information

A Generalization of Wigner s Law

A Generalization of Wigner s Law A Generalization of Wigner s Law Inna Zakharevich June 2, 2005 Abstract We present a generalization of Wigner s semicircle law: we consider a sequence of probability distributions (p, p 2,... ), with mean

More information

CS1800: Strong Induction. Professor Kevin Gold

CS1800: Strong Induction. Professor Kevin Gold CS1800: Strong Induction Professor Kevin Gold Mini-Primer/Refresher on Unrelated Topic: Limits This is meant to be a problem about reasoning about quantifiers, with a little practice of other skills, too

More information

Reductions, Recursion and Divide and Conquer

Reductions, Recursion and Divide and Conquer Chapter 5 Reductions, Recursion and Divide and Conquer CS 473: Fundamental Algorithms, Fall 2011 September 13, 2011 5.1 Reductions and Recursion 5.1.0.1 Reduction Reducing problem A to problem B: (A) Algorithm

More information

CSC2100B Data Structures Analysis

CSC2100B Data Structures Analysis CSC2100B Data Structures Analysis Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Algorithm An algorithm

More information

Polynomials in graph theory

Polynomials in graph theory Polynomials in graph theory Alexey Bogatov Department of Software Engineering Faculty of Mathematics and Mechanics Saint Petersburg State University JASS 2007 Saint Petersburg Course 1: Polynomials: Their

More information

On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA

On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA On the Optimum Asymptotic Multiuser Efficiency of Randomly Spread CDMA Ralf R. Müller Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Digitale Übertragung 13 December 2014 1. Introduction

More information

BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS

BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS ANDREW BEST, PATRICK DYNES, XIXI EDELSBRUNNER, BRIAN MCDONALD, STEVEN J. MILLER, KIMSY TOR, CAROLINE TURNAGE-BUTTERBAUGH, AND MADELEINE WEINSTEIN ABSTRACT.

More information

Math 3012 Applied Combinatorics Lecture 5

Math 3012 Applied Combinatorics Lecture 5 September 1, 2015 Math 3012 Applied Combinatorics Lecture 5 William T. Trotter trotter@math.gatech.edu Test 1 and Homework Due Date Reminder Test 1, Thursday September 17, 2015. Taken here in MRDC 2404.

More information

On the number of matchings of a tree.

On the number of matchings of a tree. On the number of matchings of a tree. Stephan G. Wagner Department of Mathematics, Graz University of Technology, Steyrergasse 30, A-800 Graz, Austria Abstract In a paper of Klazar, several counting examples

More information

RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS

RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS RHOMBUS TILINGS OF A HEXAGON WITH TWO TRIANGLES MISSING ON THE SYMMETRY AXIS THERESIA EISENKÖLBL Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. E-mail: Theresia.Eisenkoelbl@univie.ac.at

More information

Compositions, Bijections, and Enumerations

Compositions, Bijections, and Enumerations Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations COGS- Jack N. Averitt College of Graduate Studies Fall 2012 Compositions, Bijections, and Enumerations Charles

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Tricks of the Trade in Combinatorics and Arithmetic

Tricks of the Trade in Combinatorics and Arithmetic Tricks of the Trade in Combinatorics and Arithmetic Zachary Friggstad Programming Club Meeting Fast Exponentiation Given integers a, b with b 0, compute a b exactly. Fast Exponentiation Given integers

More information

{ 0! = 1 n! = n(n 1)!, n 1. n! =

{ 0! = 1 n! = n(n 1)!, n 1. n! = Summations Question? What is the sum of the first 100 positive integers? Counting Question? In how many ways may the first three horses in a 10 horse race finish? Multiplication Principle: If an event

More information

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes

6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes 6.207/14.15: Networks Lecture 3: Erdös-Renyi graphs and Branching processes Daron Acemoglu and Asu Ozdaglar MIT September 16, 2009 1 Outline Erdös-Renyi random graph model Branching processes Phase transitions

More information