Linear Stochastic Models

Size: px
Start display at page:

Download "Linear Stochastic Models"

Transcription

1 LECTURE 5 Lnear Stochastc Models Autcovarances of a Statonary Process A temporal stochastc process s smply a sequence of random varables ndexed by a tme subscrpt Such a process can be denoted by x(t) The element of the sequence at the pont t = τ s x τ = x(τ) Let {x τ+1,x τ+,,x τ+n }denote n consecutve elements of the sequence Then the process s sad to be strctly statonary f the ont probablty dstrbuton of the elements does not depend on τ regardless of the sze of n Ths means that any two segments of the sequence of equal length have dentcal probablty densty functons In consequence, the decson on where to place the tme orgn s arbtrary; and the argument τ can be omtted Some further mplcatons of statonarty are that (51) E(x t )=µ< for all t and C(x τ+t,x τ+s )=γ t s The latter condton means that the covarance of any two elements depends only on ther temporal separaton t s Notce that, f the elements of the sequence are normally dstrbuted, then the two condtons are suffcent to establsh strct statonarty On ther own, they consttute the condtons of weak or nd-order statonarty The condton on the covarances mples that the dsperson matrx of the vector [x 1,x,,x n ] s a bsymmetrc Laurent matrx of the form (5) Γ = γ γ 1 γ γ n 1 γ 1 γ γ 1 γ n γ γ 1 γ γ n 3 γ n 1 γ n γ n 3 γ wheren the generc element n the (, )th poston s γ = C(x,x ) Gven that a sequence of observatons of a tme seres represents only a segment of a sngle realsaton of a stochastc process, one mght magne that there s lttle chance of makng vald nferences about the parameters of the process 66,

2 DSG POLLOCK : LINEAR STOCHASTIC MODELS However, provded that the process x(t) s statonary and provded that the statstcal dependences between wdely separated elements of the sequence are weak, t s possble to estmate consstently those parameters of the process whch express the dependence of proxmate elements of the sequence If one s prepared to make suffcently strong assumptons about the nature of the process, then a knowledge of such parameters may be all that s needed for a complete charactersaton of the process Movng-Average Processes The qth-order movng average process, or MA(q) process, s defned by the equaton (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q), where ε(t), whch has E{ε(t)} =, s a whte-nose process consstng of a sequence of ndependently and dentcally dstrbuted random varables wth zero expectatons The equaton s normalsed ether by settng µ =1orby settng V {ε(t)} = σ ε = 1 The equaton can be wrtten n summary notaton as y(t) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q s a polynomal n the lag operator A movng-average process s clearly statonary snce any two elements y t and y s represent the same functon of the vectors [ε t,ε t 1,,ε t q ] and [ε s,ε s 1,,ε s q ] whch are dentcally dstrbuted In addton to the condton of statonarty, t s usually requred that a movng-average process should be nvertble such that t can be expressed n the form of µ 1 (L)y(t) =ε(t) where the LHS embodes a convergent sum of past values of y(t) Ths s an nfnte-order autoregressve representaton of the process The representaton s avalable only f all the roots of the equaton µ(z) =µ +µ 1 z+ +µ q z q = le outsde the unt crcle Ths concluson follows from our dscusson of partal fractons As an example, let us consder the frst-order movng-average process whch s defned by (54) y(t) =ε(t) θε(t 1)=(1 θl)ε(t) Provded that θ < 1, ths can be wrtten n autoregressve form as (55) ε(t) =(1 θl) 1 y(t) = { y(t)+θy(t 1) + θ y(t ) + } Imagne that θ > 1 nstead Then, to obtan a convergent seres, we have to wrte (56) y(t +1)=ε(t+1) θε(t) = θ(1 L 1 /θ)ε(t), 67

3 DSG POLLOCK : TIME SERIES AND FORECASTING where L 1 ε(t) =ε(t+ 1) Ths gves (57) ε(t) = θ 1 (1 L 1 /θ) 1 y(t +1) = θ 1{ y(t+1)/θ + y(t +)/θ + y(t 3)/θ 3 + } Normally, an expresson such as ths, whch embodes future values of y(t), would have no reasonable meanng It s straghtforward to generate the sequence of autocovarances from a knowledge of the parameters of the movng-average process and of the varance of the whte-nose process Consder (58) γ τ = E(y t y t τ ) { } = E µ ε t µ ε t τ = µ µ E(ε t ε t τ ) Snce ε(t) s a sequence of ndependently and dentcally dstrbuted random varables wth zero expectatons, t follows that {, f τ + ; (59) E(ε t ε t τ )= σε, f = τ + Therefore (51) γ τ = σε µ µ +τ Now let τ =,1,,q Ths gves (511) γ = σε(µ + µ 1 + +µ q), γ 1 =σε(µ µ 1 +µ 1 µ + +µ q 1 µ q ), γ q =σ εµ µ q Also, γ τ = for all τ>q The frst-order movng-average process y(t) = ε(t) θε(t 1) has the followng autocovarances: (51) γ = σε(1 + θ ), γ 1 = σεθ, γ τ = f τ>1 68

4 DSG POLLOCK : LINEAR STOCHASTIC MODELS Thus, for a vector y =[y 1,y,,y T ] of T consecutve elements from a frstorder movng-average process, the dsperson matrx s 1+θ θ θ 1+θ θ (513) D(y) =σε θ 1+θ 1+θ In general, the dsperson matrx of a qth-order movng-average process has q subdagonal and q supradagonal bands of nonzero elements and zero elements elsewhere It s also helpful to defne an autocovarance generatng functon whch s a power seres whose coeffcents are the autocovarances γ τ for successve values of τ Ths s denoted by (514) γ(z) = τ γ τ z τ ; wth τ = {, ±1, ±,} and γ τ = γ τ The generatng functon s also called the z-transform of the autocovarance functon The autocovarance generatng functon of the qth-order movng-average process can be found qute readly Consder the convoluton µ(z)µ(z 1 )= µ z µ z (515) = = τ µ µ z ( µ µ +τ )z τ, τ = By referrng to the expresson for the autocovarance of lag τ of a movngaverage process gven under (1), t can be seen that the autocovarance generatng functon s ust (516) γ(z) =σ εµ(z)µ(z 1 ) Autoregressve Processes The pth-order autoregressve process, or AR(p) process, s defned by the equaton (517) α y(t)+α 1 y(t 1) + +α p y(t p)=ε(t) 69

5 DSG POLLOCK : TIME SERIES AND FORECASTING Ths equaton s nvarably normalsed by settng α = 1, although t would be possble to set σ ε = 1 nstead The equaton can be wrtten n summary notaton as α(l)y(t) =ε(t), where α(l) =α +α 1 L+ +α p L p For the process to be statonary, the roots of the equaton α(z) =α +α 1 z+ + α p z p = must le outsde the unt crcle Ths condton enables us to wrte the autoregressve process as an nfnte-order movng-average process n the form of y(t) =α 1 (L)ε(t) As an example, let us consder the frst-order autoregressve process whch s defned by (518) ε(t) =y(t) φy(t 1) =(1 φl)y(t) Provded that the process s statonary wth φ < 1, t can be represented n movng-average form as (519) y(t) =(1 φl) 1 ε(t) = { ε(t)+φε(t 1) + φ ε(t ) + } The autocovarances of the process can be found by usng the formula of (1) whch s applcable to movng-average process of fnte or nfnte order Thus (5) γ τ = E(y t y t τ ) { } = E φ ε t φ ε t τ = φ φ E(ε t ε t τ ); and the result under (9) ndcates that γ τ = σε φ φ +τ (51) = σ εφ τ 1 φ For a vector y =[y 1,y,,y T ] of T consecutve elements from a frst-order autoregressve process, the dsperson matrx has the form (5) D(y) = σ ε 1 φ 1 φ φ φ T 1 φ 1 φ φ T φ φ 1 φ T 3 φ T 1 φ T φ T 3 1 7

6 DSG POLLOCK : LINEAR STOCHASTIC MODELS To fnd the autocovarance generatng functon for the general pth-order autoregressve process, we may consder agan the functon α(z) = α z Snce an autoregressve process may be treated as an nfnte-order movngaverage process, t follows that σε (53) γ(z) = α(z)α(z 1 ) For an alternatve way of fndng the autocovarances of the pth-order process, consder multplyng α y t = ε t by y t τ and takng expectatons to gve (54) α E(y t y t τ )=E(ε t y t τ ) Takng account of the normalsaton α = 1, we fnd that { σ ε, f τ =; (55) E(ε t y t τ )=, f τ> Therefore, on settng E(y t y t τ )=γ τ, equaton (4) gves { σ ε, f τ =; (56) α γ τ =, f τ> The second of these s a homogeneous dfference equaton whch enables us to generate the sequence {γ p,γ p+1,} once p startng values γ,γ 1,,γ p 1 are known By lettng τ =,1,,p n (6), we generate a set of p + 1 equatons whch can be arrayed n matrx form as follows: γ γ 1 γ γ p 1 σ ε γ 1 γ γ 1 γ p 1 α 1 (57) γ γ 1 γ γ p α = γ p γ p 1 γ p γ α p These are called the Yule Walker equatons, and they can be used ether for generatng the values γ,γ 1,,γ p from the values α 1,,α p,σε or vce versa For an example of the two uses of the Yule Walker equatons, let us consder the second-order autoregressve process In that case, we have (58) γ γ 1 γ γ 1 γ γ 1 γ γ 1 γ = α α 1 α = α α 1 α α 1 α +α α α 1 α α α 1 α α α 1 α α α 1 α γ γ 1 γ 71 = σ ε γ γ 1 γ γ 1 γ

7 DSG POLLOCK : TIME SERIES AND FORECASTING Gven α = 1 and the values for γ,γ 1,γ, we can fnd σ ε and α 1,α Conversely, gven α,α 1,α and σ ε, we can fnd γ,γ 1,γ It s worth recallng at ths uncture that the normalsaton σ ε = 1 mght have been chosen nstead of α = 1 Ths would have rendered the equatons more easly ntellgble Notce also how the matrx followng the frst equalty s folded across the axs whch dvdes t vertcally to gve the matrx whch follows the second equalty Pleasng effects of ths sort often arse n tme-seres analyss The Partal Autocorrelaton Functon Let α r(r) be the coeffcent assocated wth y(t r) n an autoregressve process of order r whose parameters correspond to the autocovarances γ,γ 1,,γ r Then the sequence {α r(r) ; r =1,,}of such coeffcents, whose ndex corresponds to models of ncreasng orders, consttutes the partal autocorrelaton functon In effect, α r(r) ndcates the role n explanng the varance of y(t) whch s due to y(t r) when y(t 1),,y(t r+ 1) are also taken nto account Much of the theoretcal mportance of the partal autocorrelaton functon s due to the fact that, when γ s added, t represents an alternatve way of conveyng the nformaton whch s present n the sequence of autocorrelatons Its role n dentfyng the order of an autoregressve process s evdent; for, f α r(r) and f α p(p) = for all p>r, then t s clearly mpled that the process has an order of r The sequence of partal autocorrelatons may be computed effcently va the recursve Durbn Levnson Algorthm whch uses the coeffcents of the AR model of order r as the bass for calculatng the coeffcents of the model of order r +1 To derve the algorthm, let us magne that we already have the values α (r) =1,α 1(r),,α r(r) Then, by extendng the set of rth-order Yule Walker equatons to whch these values correspond, we can derve the system (59) wheren (53) g = γ γ 1 γ r γ r+1 γ 1 γ γ r 1 γ r γ r γ r 1 γ γ 1 γ r+1 γ r γ 1 γ 1 α 1(r) α r(r) = r α (r) γ r+1 wth α (r) =1 = 7 σ (r) g,

8 DSG POLLOCK : LINEAR STOCHASTIC MODELS The system can also be wrtten as (531) (53) γ γ 1 γ r γ r+1 γ 1 γ γ r 1 γ r γ r γ r 1 γ γ 1 γ r+1 γ r γ 1 γ α r(r) α 1(r) 1 = g σ (r) The two systems of equatons (9) and (31) can be combned to gve γ γ 1 γ r γ r+1 1 σ(r) γ 1 γ γ r 1 γ r α 1(r) + cα r(r) + cg = γ r γ r 1 γ γ 1 α r(r) + cα 1(r) γ r+1 γ r γ 1 γ c g + cσ(r) If we take the coeffcent of the combnaton to be (533) c = g σ(r), then the fnal element n the vector on the RHS becomes zero and the system becomes the set of Yule Walker equatons of order r + 1 The soluton of the equatons, from the last element α r+1(r+1) = c through to the varance term σ(r+1) s gven by (534) α r+1(r+1) = 1 { r } σ(r) α (r) γ r+1 = α 1(r+1) α r(r+1) = α 1(r) α r(r) + α r+1(r+1) α r(r) α 1(r) σ (r+1) = σ (r){ 1 (αr+1(r+1) ) } Thus the soluton of the Yule Walker system of order r + 1 s easly derved from the soluton of the system of order r, and there s scope for devsng a recursve procedure The startng values for the recurson are (535) α 1(1) = γ 1 /γ and σ (1) = γ { 1 (α1(1) ) } 73

9 DSG POLLOCK : TIME SERIES AND FORECASTING Autoregressve Movng Average Processes The autoregressve movng-average process of orders p and q, whch s referred to as the ARMA(p, q) process, s defned by the equaton (536) α y(t)+α 1 y(t 1) + +α p y(t p) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) The equaton s normalsed by settng α = 1 and by settng ether µ =1 or σ ε = 1 A more summary expresson for the equaton s α(l)y(t) =µ(l)ε(t) Provded that the roots of the equaton α(z) = le outsde the unt crcle, the process can be represented by the equaton y(t) =α 1 (L)µ(L)ε(t) whch corresponds to an nfnte-order movng-average process Conversely, provded the roots of the equaton µ(z) = le outsde the unt crcle, the process can be represented by the equaton µ 1 (L)α(L)y(t) =ε(t) whch corresponds to an nfnte-order autoregressve process By consderng the movng-average form of the process, and by notng the form of the autocovarance generatng functon for such a process whch s gven by equaton (16), t can be seen that the autocovarance generatng functon for the autoregressve movng-average process s (537) γ(z) =σ ε µ(z)µ(z 1 ) α(z)α(z 1 ) Ths generatng functon, whch s of some theoretcal nterest, does not provde a practcal means of fndng the autocovarances To fnd these, let us consder multplyng the equaton α y t = µ ε t by y t τ and takng expectatons Ths gves (538) α γ τ = µ δ τ, where γ τ = E(y t τ y t ) and δ τ = E(y t τ ε t ) Snce ε t s uncorrelated wth y t τ whenever t s subsequent to the latter, t follows that δ τ =f τ> Snce the ndex n the RHS of the equaton (38) runs from to q, t follows that (539) α γ τ = f τ>q Gven the q +1 nonzero values δ,δ 1,,δ q, and p ntal values γ,γ 1,,γ p 1 for the autocovarances, the equatons can be solved recursvely to obtan the subsequent values {γ p,γ p+1,} 74

10 DSG POLLOCK : LINEAR STOCHASTIC MODELS To fnd the requste values δ,δ 1,,δ q, consder multplyng the equaton α y t = µ ε t by ε t τ and takng expectatons Ths gves (54) α δ τ = µ τ σε, where δ τ = E(y t ε t τ ) The equaton may be rewrtten as (541) δ τ = 1 ( µ τ σε δ τ ), α =1 and, by settng τ =,1,,q, we can generate recursvely the requred values δ,δ 1,,δ q Example Consder the ARMA(, ) model whch gves the equaton (54) α y t + α 1 y t 1 + α y t = µ ε t + µ 1 ε t 1 + µ ε t Multplyng by y t, y t 1 and y t and takng expectatons gves (543) γ γ 1 γ γ 1 γ γ 1 α α 1 = δ δ 1 δ δ δ 1 µ µ 1 γ γ 1 γ α δ µ Multplyng by ε t, ε t 1 and ε t and takng expectatons gves (544) δ δ 1 δ δ δ 1 δ α α 1 α = σ ε σε σε µ µ 1 µ When the latter equatons are wrtten as (545) α α 1 α δ δ 1 = σ µ ε µ 1, α α 1 α δ µ they can be solved recursvely for δ, δ 1 and δ on the assumpton that that the values of α, α 1, α and σε are known Notce that, when we adopt the normalsaton α = µ = 1, we get δ = σε When the equatons (43) are rewrtten as (546) α α 1 α α 1 α + α γ γ 1 = µ µ 1 µ µ 1 µ δ δ 1, α α 1 α γ µ δ they can be solved for γ, γ 1 and γ Thus the startng values are obtaned whch enable the equaton (547) α γ τ + α 1 γ τ 1 + α γ τ =; τ> to be solved recursvely to generate the succeedng values {γ 3, γ 4,} of the autocovarances 75

13 : CHAPTER. Linear Stochastic Models. Stationary Stochastic processes

13 : CHAPTER. Linear Stochastic Models. Stationary Stochastic processes 13 : CHAPTER Lnear Stochastc Models Statonary Stochastc processes A temporal stochastc process s smply a sequence of random varables ndexed by a tme subscrpt Such a process can be denoted by x(t) The element

More information

LINEAR STOCHASTIC MODELS

LINEAR STOCHASTIC MODELS LINEAR STOCHASTIC MODELS Let {x τ+1,x τ+2,...,x τ+n } denote n consecutive elements from a stochastic process. If their joint distribution does not depend on τ, regardless of the size of n, then the process

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

= z 20 z n. (k 20) + 4 z k = 4

= z 20 z n. (k 20) + 4 z k = 4 Problem Set #7 solutons 7.2.. (a Fnd the coeffcent of z k n (z + z 5 + z 6 + z 7 + 5, k 20. We use the known seres expanson ( n+l ( z l l z n below: (z + z 5 + z 6 + z 7 + 5 (z 5 ( + z + z 2 + z + 5 5

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction ECONOMICS 5* -- NOTE (Summary) ECON 5* -- NOTE The Multple Classcal Lnear Regresson Model (CLRM): Specfcaton and Assumptons. Introducton CLRM stands for the Classcal Lnear Regresson Model. The CLRM s also

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of Chapter 7 Generalzed and Weghted Least Squares Estmaton The usual lnear regresson model assumes that all the random error components are dentcally and ndependently dstrbuted wth constant varance. When

More information

LECTURE 9 CANONICAL CORRELATION ANALYSIS

LECTURE 9 CANONICAL CORRELATION ANALYSIS LECURE 9 CANONICAL CORRELAION ANALYSIS Introducton he concept of canoncal correlaton arses when we want to quantfy the assocatons between two sets of varables. For example, suppose that the frst set of

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 30 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 2 Remedes for multcollnearty Varous technques have

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Maxmum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Structure and Drive Paul A. Jensen Copyright July 20, 2003 Structure and Drve Paul A. Jensen Copyrght July 20, 2003 A system s made up of several operatons wth flow passng between them. The structure of the system descrbes the flow paths from nputs to outputs.

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

Lecture 4 Hypothesis Testing

Lecture 4 Hypothesis Testing Lecture 4 Hypothess Testng We may wsh to test pror hypotheses about the coeffcents we estmate. We can use the estmates to test whether the data rejects our hypothess. An example mght be that we wsh to

More information

Primer on High-Order Moment Estimators

Primer on High-Order Moment Estimators Prmer on Hgh-Order Moment Estmators Ton M. Whted July 2007 The Errors-n-Varables Model We wll start wth the classcal EIV for one msmeasured regressor. The general case s n Erckson and Whted Econometrc

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1.

763622S ADVANCED QUANTUM MECHANICS Solution Set 1 Spring c n a n. c n 2 = 1. 7636S ADVANCED QUANTUM MECHANICS Soluton Set 1 Sprng 013 1 Warm-up Show that the egenvalues of a Hermtan operator  are real and that the egenkets correspondng to dfferent egenvalues are orthogonal (b)

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Exercises. 18 Algorithms

Exercises. 18 Algorithms 18 Algorthms Exercses 0.1. In each of the followng stuatons, ndcate whether f = O(g), or f = Ω(g), or both (n whch case f = Θ(g)). f(n) g(n) (a) n 100 n 200 (b) n 1/2 n 2/3 (c) 100n + log n n + (log n)

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

Hidden Markov Models & The Multivariate Gaussian (10/26/04) CS281A/Stat241A: Statstcal Learnng Theory Hdden Markov Models & The Multvarate Gaussan (10/26/04) Lecturer: Mchael I. Jordan Scrbes: Jonathan W. Hu 1 Hdden Markov Models As a bref revew, hdden Markov models

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Solutions Homework 4 March 5, 2018

Solutions Homework 4 March 5, 2018 1 Solutons Homework 4 March 5, 018 Soluton to Exercse 5.1.8: Let a IR be a translaton and c > 0 be a re-scalng. ˆb1 (cx + a) cx n + a (cx 1 + a) c x n x 1 cˆb 1 (x), whch shows ˆb 1 s locaton nvarant and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

k t+1 + c t A t k t, t=0

k t+1 + c t A t k t, t=0 Macro II (UC3M, MA/PhD Econ) Professor: Matthas Kredler Fnal Exam 6 May 208 You have 50 mnutes to complete the exam There are 80 ponts n total The exam has 4 pages If somethng n the queston s unclear,

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

e i is a random error

e i is a random error Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where + β + β e for,..., and are observable varables e s a random error How can an estmaton rule be constructed for the unknown

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values

However, since P is a symmetric idempotent matrix, of P are either 0 or 1 [Eigen-values Fall 007 Soluton to Mdterm Examnaton STAT 7 Dr. Goel. [0 ponts] For the general lnear model = X + ε, wth uncorrelated errors havng mean zero and varance σ, suppose that the desgn matrx X s not necessarly

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens THE CHINESE REMAINDER THEOREM KEITH CONRAD We should thank the Chnese for ther wonderful remander theorem. Glenn Stevens 1. Introducton The Chnese remander theorem says we can unquely solve any par of

More information

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions Exercses from Ross, 3, : Math 26: Probablty MWF pm, Gasson 30 Homework Selected Solutons 3, p. 05 Problems 76, 86 3, p. 06 Theoretcal exercses 3, 6, p. 63 Problems 5, 0, 20, p. 69 Theoretcal exercses 2,

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Quantum Mechanics for Scientists and Engineers. David Miller

Quantum Mechanics for Scientists and Engineers. David Miller Quantum Mechancs for Scentsts and Engneers Davd Mller Types of lnear operators Types of lnear operators Blnear expanson of operators Blnear expanson of lnear operators We know that we can expand functons

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30

STATS 306B: Unsupervised Learning Spring Lecture 10 April 30 STATS 306B: Unsupervsed Learnng Sprng 2014 Lecture 10 Aprl 30 Lecturer: Lester Mackey Scrbe: Joey Arthur, Rakesh Achanta 10.1 Factor Analyss 10.1.1 Recap Recall the factor analyss (FA) model for lnear

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models ECO 452 -- OE 4: Probt and Logt Models ECO 452 -- OE 4 Mamum Lkelhood Estmaton of Bnary Dependent Varables Models: Probt and Logt hs note demonstrates how to formulate bnary dependent varables models for

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 12 10/21/2013. Martingale Concentration Inequalities and Applications MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 1 10/1/013 Martngale Concentraton Inequaltes and Applcatons Content. 1. Exponental concentraton for martngales wth bounded ncrements.

More information

Asymptotic Properties of the Jarque-Bera Test for Normality in General Autoregressions with a Deterministic Term

Asymptotic Properties of the Jarque-Bera Test for Normality in General Autoregressions with a Deterministic Term Asymptotc Propertes of the Jarque-Bera est for Normalty n General Autoregressons wth a Determnstc erm Carlos Caceres Nuffeld College, Unversty of Oxford May 2006 Abstract he am of ths paper s to analyse

More information

An (almost) unbiased estimator for the S-Gini index

An (almost) unbiased estimator for the S-Gini index An (almost unbased estmator for the S-Gn ndex Thomas Demuynck February 25, 2009 Abstract Ths note provdes an unbased estmator for the absolute S-Gn and an almost unbased estmator for the relatve S-Gn for

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016 U.C. Berkeley CS94: Spectral Methods and Expanders Handout 8 Luca Trevsan February 7, 06 Lecture 8: Spectral Algorthms Wrap-up In whch we talk about even more generalzatons of Cheeger s nequaltes, and

More information

Lecture 4: Universal Hash Functions/Streaming Cont d

Lecture 4: Universal Hash Functions/Streaming Cont d CSE 5: Desgn and Analyss of Algorthms I Sprng 06 Lecture 4: Unversal Hash Functons/Streamng Cont d Lecturer: Shayan Oves Gharan Aprl 6th Scrbe: Jacob Schreber Dsclamer: These notes have not been subjected

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Limited Dependent Variables

Limited Dependent Variables Lmted Dependent Varables. What f the left-hand sde varable s not a contnuous thng spread from mnus nfnty to plus nfnty? That s, gven a model = f (, β, ε, where a. s bounded below at zero, such as wages

More information

SIO 224. m(r) =(ρ(r),k s (r),µ(r))

SIO 224. m(r) =(ρ(r),k s (r),µ(r)) SIO 224 1. A bref look at resoluton analyss Here s some background for the Masters and Gubbns resoluton paper. Global Earth models are usually found teratvely by assumng a startng model and fndng small

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Expected Value and Variance

Expected Value and Variance MATH 38 Expected Value and Varance Dr. Neal, WKU We now shall dscuss how to fnd the average and standard devaton of a random varable X. Expected Value Defnton. The expected value (or average value, or

More information

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva

Econ Statistical Properties of the OLS estimator. Sanjaya DeSilva Econ 39 - Statstcal Propertes of the OLS estmator Sanjaya DeSlva September, 008 1 Overvew Recall that the true regresson model s Y = β 0 + β 1 X + u (1) Applyng the OLS method to a sample of data, we estmate

More information

Laboratory 3: Method of Least Squares

Laboratory 3: Method of Least Squares Laboratory 3: Method of Least Squares Introducton Consder the graph of expermental data n Fgure 1. In ths experment x s the ndependent varable and y the dependent varable. Clearly they are correlated wth

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours UNIVERSITY OF TORONTO Faculty of Arts and Scence December 005 Examnatons STA47HF/STA005HF Duraton - hours AIDS ALLOWED: (to be suppled by the student) Non-programmable calculator One handwrtten 8.5'' x

More information

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger JAB Chan Long-tal clams development ASTIN - September 2005 B.Verder A. Klnger Outlne Chan Ladder : comments A frst soluton: Munch Chan Ladder JAB Chan Chan Ladder: Comments Black lne: average pad to ncurred

More information

Uncertainty as the Overlap of Alternate Conditional Distributions

Uncertainty as the Overlap of Alternate Conditional Distributions Uncertanty as the Overlap of Alternate Condtonal Dstrbutons Olena Babak and Clayton V. Deutsch Centre for Computatonal Geostatstcs Department of Cvl & Envronmental Engneerng Unversty of Alberta An mportant

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

1 GSW Iterative Techniques for y = Ax

1 GSW Iterative Techniques for y = Ax 1 for y = A I m gong to cheat here. here are a lot of teratve technques that can be used to solve the general case of a set of smultaneous equatons (wrtten n the matr form as y = A), but ths chapter sn

More information