One-Port Networks. One-Port. Network

Size: px
Start display at page:

Download "One-Port Networks. One-Port. Network"

Transcription

1 TwoPort s Definitions Impedance Parameters dmittance Parameters Hybrid Parameters Transmission Parameters Cascaded TwoPort s Examples pplications OnePort s v i' 1 OnePort pair of terminals at which a signal (voltage or current) may enter or leave is called a port network having only one such pair of terminals is called a oneport network No connections may be made to any other nodes internal to the network y KCL, we therefore have i 1 We discussed in ECE 221 how oneport networks may be modeled by their Thévenin or Norton equivalents J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver TwoPort s: Definitions & Requirements TwoPort s: Defining Equations TwoPort i' 1 i' 2 TwoPort Twoport networks are used to describe the relationship between a pair of terminals The analysis methods we will discuss require the following conditions be met 1. Linearity 2. No independent sources inside the network 3. No stored energy inside the network (zero initial conditions) 4. i 1 and i 2 If the network contains dependent sources, one or more of the equivalent resistors may be negative Generally, the network is analyzed in the s domain Each twoport has exactly two governing equations that can be written in terms of any pair of network variables Like Thévenin and Norton equivalents of oneports, once we know a set of governing equations we no longer need to know what is inside the box J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

2 Impedance Parameters Impedance Parameter Measurements TwoPort TwoPort z 11 z 12 z 21 z 22 z11 z 12 z 21 z 22 Suppose the currents and voltages can be measured lternatively, if the circuit in the box is known, and can be calculated based on circuit analysis Relationship can be written in terms of the impedance parameters We can also calculate the impedance parameters after making two sets of measurements z 11 z 12 z 21 z 22 If the right port is an open circuit ( 0), then we can easily solve for two of the impedance parameters: z 11 z 21 I2 0 I2 0 J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Impedance Parameter Measurements Continued Impedance Parameter Measurements Summarized TwoPort TwoPort z 11 z 12 z 21 z 22 If the left port is an open circuit ( 0), then we can easily solve for the other two impedance parameters: z 12 z z 11 z 21 I2 0 I2 0 z 12 z J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

3 Impedance Parameter Equivalent Example 1: Impedance Parameters 200 Ω 40 Ω z 11 z 22 z 12 z Ω 500 Ω 1kΩ z 11 z 12 z 21 z 22 Find the z parameters of the circuit. Once we know what the impedance parameters are, we can model the behavior of the twoport with an equivalent circuit. Notice the similarity to Thévenin and Norton equivalents J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Example 1: Workspace Example 2: Parameter Conversion TwoPort z 11 z 12 z 21 z 22 In general, the two defining equations can be written in terms of any pair of variables. For example, rewrite the defining equations in terms of the voltages and. J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

4 Example 2: Workspace Example 2: Workspace Continued J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Impedance & dmittance Parameters Hybrid Parameters TwoPort TwoPort Impedance Parameters z 11 z 12 z 21 z 22 z11 z 12 z 21 z 22 Hybrid Parameters h 11 h 12 h 21 h 22 h11 h 12 h 21 h 22 dmittance Parameters y 11 y 12 y 21 y 22 y11 y 12 y 21 y 22 Inverse Hybrid Parameters g 11 g 12 g 21 g 22 g11 g 12 g 21 g 22 J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

5 Transmission Parameters Transmission Parameter Conversion TwoPort TwoPort Transmission Parameters a 11 a 12 a 21 a 22 a11 b 12 V2 V2 a 21 a 22 Inverse Transmission Parameters b 11 b 12 V2 b11 b 12 b 21 b 22 b 21 b 22 V2 ltogether there are 6 sets of parameters Each set completely describes the twoport network ny set of parameters can be converted to any other set We have seen one example of a conversion complete table of conversions is listed in the text (Pg. 933) You should have a copy of this in your notes for the final J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Example 3: TwoPort Measurements The following measurements were taken from a twoport network. Find the transmission parameters. Port 2 Open Example 3: Workspace 150 cos(4000t) V applied 25 cos(4000t 45 ) measured 1000 cos(4000t 15 ) V measured Port 2 Shorted 30 cos(4000t) V applied 1.5 cos(4000t 30 ) measured 0.25 cos(4000t 150 ) measured J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

6 Example 4: TwoPort nalysis Example 4: Workspace 800 Ω 800 Ω 40 Ω 160 Ω 40 Ω 160 Ω v Ω 16.2 v 3 v Ω 16.2 v 3 Find the hybrid parameters for the circuit shown above. J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Example 4: Workspace Continued Example 5: TwoPort Measurements The following measurements were taken from a twoport network. Find the transmission parameters. Port 1 Open Port 1 Shorted 1 mv 0.5 µ 10 V 80 µ 200 µ 5 V Hint: b b 11 b 22 b 12 b 21, a 11 b 22 b, a 12 b 12 b, a 21 b 21 b, and a 22 b 11 b. J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

7 Example 5: Workspace Example 6: TwoPort nalysis R 1 R 3 v R 4 C 1 v R 2 C 2 Find an expression for the transfer function, h 11, z 11, g 12, g 22, a 11, and y 21. J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Example 6: Workspace R 1 R 3 v R 4 Example 6: Workspace Continued (1) R 1 R 3 v R 4 C 1 v R 2 C 1 v R 2 C 2 C 2 J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

8 Example 6: Workspace Continued (2) Cascaded TwoPort s R 1 R 3 v R 4 C 1 v R 2 C 2 Two networks are cascaded when the output of one is the input of the other Note that and The transmission parameters take advantage of these properties J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver Cascaded TwoPort s Cascaded TwoPort s Continued a11 a 12 a 21 a 22 V2 a11 a 12 a 21 a 22 V2 The inverse transmission parameters are also convenient for cascaded networks. V2 a11 a 12 a 21 a 22 a11 a 12 a 21 a 22 V2 V2 b11 b 12 b 21 b 22 V2 b11 b 12 b 21 b 22 V2 V2 b11 b 12 b 21 b 22 b11 b 12 b 21 b 22 J. McNames Portland State University ECE 222 TwoPort s Ver J. McNames Portland State University ECE 222 TwoPort s Ver

9 Cascaded Systems: TwoPort s versus H Twoports and transfer functions H are closely related H only relates the input signal to the output signal Twoports relate both voltages and currents at each port You cannot cascade H unless the circuits are active Twoport networks have no such restriction Twoports are used to design passive filters However, twoports are more complicated than H J. McNames Portland State University ECE 222 TwoPort s Ver

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer J. McNames Portland State University ECE 221 Circuit Theorems Ver. 1.36 1

More information

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output

Two Port Networks. Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output Two Port Networks Definition of 2-Port Network A two-port network is an electrical network with two separate ports for input and output What is a Port? It is a pair of terminals through which a current

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 18 Two-Port Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Contents and Objectives 3 Chapter Contents 18.1 The Terminal Equations

More information

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: CHAPTER16 Two-Port Networks THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO: Calculate the admittance, impedance, hybrid, and transmission parameter for two-port networks. Convert

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

Chapter 5. Department of Mechanical Engineering

Chapter 5. Department of Mechanical Engineering Source Transformation By KVL: V s =ir s + v By KCL: i s =i + v/r p is=v s /R s R s =R p V s /R s =i + v/r s i s =i + v/r p Two circuits have the same terminal voltage and current Source Transformation

More information

Lab #8 Two Port Networks

Lab #8 Two Port Networks Cir cuit s 212 Lab Lab #8 Two Port Networks Network parameters are used to characterize a device. Given the network parameters of a device, the voltage and current characteristics of the device can be

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

Chapter 10 AC Analysis Using Phasors

Chapter 10 AC Analysis Using Phasors Chapter 10 AC Analysis Using Phasors 10.1 Introduction We would like to use our linear circuit theorems (Nodal analysis, Mesh analysis, Thevenin and Norton equivalent circuits, Superposition, etc.) to

More information

1. Review of Circuit Theory Concepts

1. Review of Circuit Theory Concepts 1. Review of Circuit Theory Concepts Lecture notes: Section 1 ECE 65, Winter 2013, F. Najmabadi Circuit Theory is an pproximation to Maxwell s Electromagnetic Equations circuit is made of a bunch of elements

More information

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42

EE 205 Dr. A. Zidouri. Electric Circuits II. Two-Port Circuits Two-Port Parameters. Lecture #42 EE 05 Dr. A. Zidouri Electric Circuits Two-Port Circuits Two-Port Parameters Lecture #4-1 - EE 05 Dr. A. Zidouri The material to be covered in this lecture is as follows: o ntroduction to two-port circuits

More information

Series & Parallel Resistors 3/17/2015 1

Series & Parallel Resistors 3/17/2015 1 Series & Parallel Resistors 3/17/2015 1 Series Resistors & Voltage Division Consider the single-loop circuit as shown in figure. The two resistors are in series, since the same current i flows in both

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science : Circuits & Electronics Problem Set #1 Solution Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.2: Circuits & Electronics Problem Set # Solution Exercise. The three resistors form a series connection.

More information

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13

E1.1 Analysis of Circuits ( ) Revision Lecture 1 1 / 13 RevisionLecture 1: E1.1 Analysis of Circuits (2014-4530) Revision Lecture 1 1 / 13 Format Question 1 (40%): eight short parts covering the whole syllabus. Questions 2 and 3: single topic questions (answer

More information

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

MAE140 - Linear Circuits - Fall 14 Midterm, November 6 MAE140 - Linear Circuits - Fall 14 Midterm, November 6 Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions

Ver 6186 E1.1 Analysis of Circuits (2015) E1.1 Circuit Analysis. Problem Sheet 2 - Solutions Ver 8 E. Analysis of Circuits (0) E. Circuit Analysis Problem Sheet - Solutions Note: In many of the solutions below I have written the voltage at node X as the variable X instead of V X in order to save

More information

Experiment 9 Equivalent Circuits

Experiment 9 Equivalent Circuits Experiment 9 Equivalent Circuits Name: Jason Johnson Course/Section: ENGR 361-04 Date Performed: November 15, 2001 Date Submitted: November 29, 2001 In keeping with the honor code of the School of Engineering,

More information

Thevenin equivalent circuits

Thevenin equivalent circuits Thevenin equivalent circuits We have seen the idea of equivalency used in several instances already. 1 2 1 2 same as 1 2 same as 1 2 R 3 same as = 0 V same as 0 A same as same as = EE 201 Thevenin 1 The

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 10.1 10.2 10.3 10.4 10.5 10.6 10.9 Basic Approach Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin & Norton Equivalent Circuits

More information

Electric Circuits I Final Examination

Electric Circuits I Final Examination EECS:300 Electric Circuits I ffs_elci.fm - Electric Circuits I Final Examination Problems Points. 4. 3. Total 38 Was the exam fair? yes no //3 EECS:300 Electric Circuits I ffs_elci.fm - Problem 4 points

More information

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company Basic C m ш ircuit Theory Charles A. Desoer and Ernest S. Kuh Department of Electrical Engineering and Computer Sciences University of California, Berkeley McGraw-Hill Book Company New York St. Louis San

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Midterm Exam (closed book/notes) Tuesday, February 23, 2010 University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple

More information

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below. F 14 1250 QUIZ 1 SOLUTION EX: Find the numerical value of v 2 in the circuit below. Show all work. SOL'N: One method of solution is to use Kirchhoff's and Ohm's laws. The first step in this approach is

More information

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed You may use the equation sheet provided but

More information

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought.

TWO-PORT NETWORKS. Enhancing Your Career. Research is to see what everybody else has seen, and think what nobody has thought. C H A P T E R TWO-PORT NETWORKS 8 Research is to see what everybody else has seen, and think what nobody has thought. Albert Szent-Gyorgyi Enhancing Your Career Career in Education While two thirds of

More information

Two Port Network. Ram Prasad Sarkar

Two Port Network. Ram Prasad Sarkar Two Port Ram Prasad Sarkar 0 Two Post : Post nput port Two Post Fig. Port Output port A network which has two terminals (one port) on the one side and another two terminals on the opposite side forms a

More information

CHAPTER 4. Circuit Theorems

CHAPTER 4. Circuit Theorems CHAPTER 4 Circuit Theorems The growth in areas of application of electrical circuits has led to an evolution from simple to complex circuits. To handle such complexity, engineers over the years have developed

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f17fs_elct27.fm 1 Electronics II Final Examination Problems Points 1. 11 2. 14 3. 15 Total 40 Was the exam fair? yes no The University of Toledo f17fs_elct27.fm 2 Problem 1 11

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

4/27 Friday. I have all the old homework if you need to collect them.

4/27 Friday. I have all the old homework if you need to collect them. 4/27 Friday Last HW: do not need to turn it. Solution will be posted on the web. I have all the old homework if you need to collect them. Final exam: 7-9pm, Monday, 4/30 at Lambert Fieldhouse F101 Calculator

More information

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat Electric Circuits II Sinusoidal Steady State Analysis Dr. Firas Obeidat 1 Table of Contents 1 2 3 4 5 Nodal Analysis Mesh Analysis Superposition Theorem Source Transformation Thevenin and Norton Equivalent

More information

Electric Circuits I. Midterm #1

Electric Circuits I. Midterm #1 The University of Toledo Section number s5ms_elci7.fm - Electric Circuits I Midterm # Problems Points. 3 2. 7 3. 5 Total 5 Was the exam fair? yes no The University of Toledo Section number s5ms_elci7.fm

More information

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks

Lecture 23 Date: Multi-port networks Impedance and Admittance Matrix Lossless and Reciprocal Networks Lecture 23 Date: 30.0.207 Multi-port networks mpedance and Admittance Matrix Lossless and Reciprocal Networks ntroduction A pair of terminals through which a current may enter or leave a network is known

More information

15.9 TWO-PORTS* . (15.114) R Thout = v 2a

15.9 TWO-PORTS* . (15.114) R Thout = v 2a 15.9 TWOPORTS* It should be obvious by now that circuits with dependent sources can perform much more interesting and useful signal processing than those constructed solely from twoterminal resistive elements.

More information

Study Notes on Network Theorems for GATE 2017

Study Notes on Network Theorems for GATE 2017 Study Notes on Network Theorems for GATE 2017 Network Theorems is a highly important and scoring topic in GATE. This topic carries a substantial weight age in GATE. Although the Theorems might appear to

More information

UNIVERSITY F P RTLAND Sch l f Engineering

UNIVERSITY F P RTLAND Sch l f Engineering UNIVERSITY F P RTLAND Sch l f Engineering EE271-Electrical Circuits Laboratory Spring 2004 Dr. Aziz S. Inan & Dr. Joseph P. Hoffbeck Lab Experiment #4: Electrical Circuit Theorems - p. 1 of 5 - Electrical

More information

ECE2262 Electric Circuits

ECE2262 Electric Circuits ECE2262 Electric Circuits Equivalence Chapter 5: Circuit Theorems Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 1 5. 1 Equivalence

More information

DC STEADY STATE CIRCUIT ANALYSIS

DC STEADY STATE CIRCUIT ANALYSIS DC STEADY STATE CIRCUIT ANALYSIS 1. Introduction The basic quantities in electric circuits are current, voltage and resistance. They are related with Ohm s law. For a passive branch the current is: I=

More information

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers

CIRCUITS AND ELECTRONICS. Dependent Sources and Amplifiers 6.00 CIRCUITS AN ELECTRONICS ependent Sources and Amplifiers Review Nonlinear circuits can use the node method Small signal trick resulted in linear response Today ependent sources Amplifiers Reading:

More information

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives: Apply previously learn circuit techniques to sinusoidal steady-state analysis. Learn how to apply nodal and mesh analysis in the frequency

More information

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above EE-201, Review Probs Test 1 page-1 Spring 98 EE-201 Review Exam I Multiple Choice (5 points each, no partial credit.) 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6)

More information

TWO PORT NETWORKS Introduction: A port is normally referred to a pair of terminals of a network through which we can have access to network either for a source for measuring an output We have already seen

More information

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING Alternating Current Circuits : Basic Law Ismail Mohd Khairuddin, Zulkifil Md Yusof Faculty of Manufacturing Engineering Universiti Malaysia Pahang Alternating

More information

Thevenin S And Norton S Theorems

Thevenin S And Norton S Theorems We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with thevenin s and norton

More information

Module 13: Network Analysis and Directional Couplers

Module 13: Network Analysis and Directional Couplers Module 13: Network Analysis and Directional Couplers 13.2 Network theory two port networks, S-parameters, Z-parameters, Y-parameters The study of two port networks is important in the field of electrical

More information

Thevenin Norton Equivalencies - GATE Study Material in PDF

Thevenin Norton Equivalencies - GATE Study Material in PDF Thevenin Norton Equivalencies - GATE Study Material in PDF In these GATE 2018 Notes, we explain the Thevenin Norton Equivalencies. Thevenin s and Norton s Theorems are two equally valid methods of reducing

More information

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 4 120906 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Voltage Divider Current Divider Node-Voltage Analysis 3 Network Analysis

More information

Sinusoidal Steady State Analysis (AC Analysis) Part I

Sinusoidal Steady State Analysis (AC Analysis) Part I Sinusoidal Steady State Analysis (AC Analysis) Part I Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

LAB MANUAL EXPERIMENT NO. 7

LAB MANUAL EXPERIMENT NO. 7 LAB MANUAL EXPERIMENT NO. 7 Aim of the Experiment: Concept of Generalized N-port scattering parameters, and formulation of these parameters into 2-port reflection and transmission coefficients. Requirement:

More information

Lecture #3. Review: Power

Lecture #3. Review: Power Lecture #3 OUTLINE Power calculations Circuit elements Voltage and current sources Electrical resistance (Ohm s law) Kirchhoff s laws Reading Chapter 2 Lecture 3, Slide 1 Review: Power If an element is

More information

The Common-Emitter Amplifier

The Common-Emitter Amplifier c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The Common-Emitter Amplifier Basic Circuit Fig. shows the circuit diagram

More information

Lecture Notes on DC Network Theory

Lecture Notes on DC Network Theory Federal University, Ndufu-Alike, Ikwo Department of Electrical/Electronics and Computer Engineering (ECE) Faculty of Engineering and Technology Lecture Notes on DC Network Theory Harmattan Semester by

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems ECE2262 Electric Circuits Chapter 5: Circuit Theorems 1 Equivalence Linearity Superposition Thevenin s and Norton s Theorems Maximum Power Transfer Analysis of Circuits Using Circuit Theorems 2 5. 1 Equivalence

More information

Chapter 5: Circuit Theorems

Chapter 5: Circuit Theorems Chapter 5: Circuit Theorems This chapter provides a new powerful technique of solving complicated circuits that are more conceptual in nature than node/mesh analysis. Conceptually, the method is fairly

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

ECE 202 Fall 2013 Final Exam

ECE 202 Fall 2013 Final Exam ECE 202 Fall 2013 Final Exam December 12, 2013 Circle your division: Division 0101: Furgason (8:30 am) Division 0201: Bermel (9:30 am) Name (Last, First) Purdue ID # There are 18 multiple choice problems

More information

Electric Circuits I. Midterm #1 Examination

Electric Circuits I. Midterm #1 Examination EECS:2300, Electric Circuits I s8ms_elci7.fm - Electric Circuits I Midterm # Examination Problems Points. 4 2. 6 3. 5 Total 5 Was the exam fair? yes no EECS:2300, Electric Circuits I s8ms_elci7.fm - 2

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

Electric Circuits I FINAL EXAMINATION

Electric Circuits I FINAL EXAMINATION EECS:300, Electric Circuits I s6fs_elci7.fm - Electric Circuits I FINAL EXAMINATION Problems Points.. 3. 0 Total 34 Was the exam fair? yes no 5//6 EECS:300, Electric Circuits I s6fs_elci7.fm - Problem

More information

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30

Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8. cos( θ) = cos(θ) sin( θ) = sin(θ) sin(θ) = cos. θ (radians) θ (degrees) cos θ sin θ π/6 30 Name: Lab: M8 M2 W8 Th8 Th11 Th2 F8 Trigonometric Identities cos(θ) = cos(θ) sin(θ) = sin(θ) sin(θ) = cos Cosines and Sines of common angles Euler s Formula θ (radians) θ (degrees) cos θ sin θ 0 0 1 0

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

IMPEDANCE and NETWORKS. Transformers. Networks. A method of analysing complex networks. Y-parameters and S-parameters

IMPEDANCE and NETWORKS. Transformers. Networks. A method of analysing complex networks. Y-parameters and S-parameters IMPEDANCE and NETWORKS Transformers Networks A method of analysing complex networks Y-parameters and S-parameters 1 ENGN4545/ENGN6545: Radiofrequency Engineering L#7 Transformers Combining the effects

More information

Chapter 5 Steady-State Sinusoidal Analysis

Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis Chapter 5 Steady-State Sinusoidal Analysis 1. Identify the frequency, angular frequency, peak value, rms value, and phase of a sinusoidal signal. 2. Solve steady-state

More information

Chapter 5 Objectives

Chapter 5 Objectives Chapter 5 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 5 Objectives State and apply the property of linearity State and apply the property of superposition Investigate source transformations Define

More information

3.1 Superposition theorem

3.1 Superposition theorem Many electric circuits are complex, but it is an engineer s goal to reduce their complexity to analyze them easily. In the previous chapters, we have mastered the ability to solve networks containing independent

More information

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. ECE 110 Fall Test II. Michael R. Gustafson II

'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ. ECE 110 Fall Test II. Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ ECE 110 Fall 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any assistance

More information

ECE Analog Integrated Circuit Design - II P.E. Allen

ECE Analog Integrated Circuit Design - II P.E. Allen Lecture 290 Feedback Analysis using Return Ratio (3/20/02) Page 2901 LECTURE 290 FEEDBACK CIRCUIT ANALYSIS USING RETURN RATIO (READING: GHLM 599613) Objective The objective of this presentation is: 1.)

More information

Voltage Dividers, Nodal, and Mesh Analysis

Voltage Dividers, Nodal, and Mesh Analysis Engr228 Lab #2 Voltage Dividers, Nodal, and Mesh Analysis Name Partner(s) Grade /10 Introduction This lab exercise is designed to further your understanding of the use of the lab equipment and to verify

More information

D C Circuit Analysis and Network Theorems:

D C Circuit Analysis and Network Theorems: UNIT-1 D C Circuit Analysis and Network Theorems: Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, source transformation, unilateral and bilateral elements,

More information

TWO-PORT. C.T. Pan 1. C.T. Pan

TWO-PORT. C.T. Pan 1. C.T. Pan TWO-PORT CRCUTS C.T. Pan 5. Definition of Two-Port Circuits 5. Classification of Two-Port Parameters 5.3 Finding Two-Port Parameters 5.4 Analysis of the Terminated Two-Port Circuit 5.5 nterconnected Two-Port

More information

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

MAE140 - Linear Circuits - Winter 09 Midterm, February 5 Instructions MAE40 - Linear ircuits - Winter 09 Midterm, February 5 (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a

More information

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1.

Solution: Based on the slope of q(t): 20 A for 0 t 1 s dt = 0 for 3 t 4 s. 20 A for 4 t 5 s 0 for t 5 s 20 C. t (s) 20 C. i (A) Fig. P1. Problem 1.24 The plot in Fig. P1.24 displays the cumulative charge q(t) that has entered a certain device up to time t. Sketch a plot of the corresponding current i(t). q 20 C 0 1 2 3 4 5 t (s) 20 C Figure

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

UC DAVIS. Circuits I Course Outline

UC DAVIS. Circuits I Course Outline UC DAVIS Circuits I Course Outline ENG 17 Professor Spencer Fall 2010 2041 Kemper Hall Lecture: MWF 4:10-5:00, 1003 Giedt Hall 752-6885 Discussion Section 1: W 1:10-2:00, 55 Roessler CRN: 61417 Discussion

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) = 3 Electrical Circuits 3. Basic Concepts Electric charge coulomb of negative change contains 624 0 8 electrons. Current ampere is a steady flow of coulomb of change pass a given point in a conductor in

More information

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 10: Sinusoidal Steady-State Analysis Chapter 10: Sinusoidal Steady-State Analysis 1 Objectives : sinusoidal functions Impedance use phasors to determine the forced response of a circuit subjected to sinusoidal excitation Apply techniques

More information

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2) Ver 3537 E. Analysis of Circuits () Key: [A]= easy... [E]=hard E. Circuit Analysis Problem Sheet (Lectures & ). [A] One of the following circuits is a series circuit and the other is a parallel circuit.

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

ECE 1311: Electric Circuits. Chapter 2: Basic laws

ECE 1311: Electric Circuits. Chapter 2: Basic laws ECE 1311: Electric Circuits Chapter 2: Basic laws Basic Law Overview Ideal sources series and parallel Ohm s law Definitions open circuits, short circuits, conductance, nodes, branches, loops Kirchhoff's

More information

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work,

Preamble. Circuit Analysis II. Mesh Analysis. When circuits get really complex methods learned so far will still work, Preamble Circuit Analysis II Physics, 8 th Edition Custom Edition Cutnell & Johnson When circuits get really complex methods learned so far will still work, but they can take a long time to do. A particularly

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras

Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Networks and Systems Prof. V. G. K. Murti Department of Electrical Engineering Indian Institution of Technology, Madras Lecture - 32 Network Function (3) 2-port networks: Symmetry Equivalent networks Examples

More information

Chapter 8: Unsymmetrical Faults

Chapter 8: Unsymmetrical Faults Chapter 8: Unsymmetrical Faults Introduction The sequence circuits and the sequence networks developed in the previous chapter will now be used for finding out fault current during unsymmetrical faults.

More information

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner t W I w v 6.00-fall 017 Midterm 1 Name Problem 3 (15 pts). F the circuit below, assume that all equivalent parameters are to be found to the left of port

More information

Physics 116A Notes Fall 2004

Physics 116A Notes Fall 2004 Physics 116A Notes Fall 2004 David E. Pellett Draft v.0.9 Notes Copyright 2004 David E. Pellett unless stated otherwise. References: Text for course: Fundamentals of Electrical Engineering, second edition,

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

Figure Circuit for Question 1. Figure Circuit for Question 2

Figure Circuit for Question 1. Figure Circuit for Question 2 Exercises 10.7 Exercises Multiple Choice 1. For the circuit of Figure 10.44 the time constant is A. 0.5 ms 71.43 µs 2, 000 s D. 0.2 ms 4 Ω 2 Ω 12 Ω 1 mh 12u 0 () t V Figure 10.44. Circuit for Question

More information

Lecture 8: 09/18/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction Digital Electronics Andrew R. Neureuther

Lecture 8: 09/18/03 A.R. Neureuther Version Date 09/14/03 EECS 42 Introduction Digital Electronics Andrew R. Neureuther EECS ntroduction Digital Electronics ndrew. Neureuther Lecture #8 Node Equations Systematic Node Equations Example: oltage and Current Dividers Example 5 Element Circuit Schwarz and Oldham 5-58,.5, &.6

More information

Impedance and Admittance Parameters

Impedance and Admittance Parameters 1/31/011 mpedance and Admittance Parameters lecture 1/ mpedance and Admittance Parameters Say we wish to connect the put of one circuit to the input of another. #1 put port input port # The terms input

More information

Kirchhoff Laws against Node-Voltage nalysis and Millman's Theorem Marcela Niculae and C. M. Niculae 2 on arbu theoretical high school, ucharest 2 University of ucharest, Faculty of physics, tomistilor

More information

Chapter 6: Series-Parallel Circuits

Chapter 6: Series-Parallel Circuits Chapter 6: Series-Parallel Circuits Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Identifying series-parallel relationships Most practical

More information

Chapter 4 Circuit Theorems

Chapter 4 Circuit Theorems Chapter 4 Circuit Theorems 1. Linearity and Proportionality. Source Transformation 3. Superposition Theorem 4. Thevenin s Theorem and Norton s Theorem 5. Maximum Power Transfer Theorem Mazita Sem 1 111

More information

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage

More information