Introduction to the FDTD method

Size: px
Start display at page:

Download "Introduction to the FDTD method"

Transcription

1 Introduction to the FDTD method Ilkka Laakso Department of Electrical Engineering and Automa8on Tfy

2 Contents Principle of FDTD Deriva8on Basic proper8es Stability Dispersion Boundary condi8ons Advantages and weaknesses Examples

3 FDTD (= finite-difference time-domain) Principle 1. Start from Maxwell s equa8ons 2. Replace all deriva8ves with finite- difference approxima8ons 3. Done

4 Maxwell s curl equations

5 Central difference approximations Nota8on

6 Yee cell (Yee, 1966)

7 Derivation of FDTD update equations k + 1 µ H x k j j + 1

8 Derivation of FDTD update equations k + 1 µ H x k j j + 1

9 FDTD update equations k + 1 µ H x k j j + 1

10 H y E y FDTD update equations E x H z E x H z E y H y

11 FDTD update equations

12 Derivation of FDTD update equations from integral form of Maxwell s equations ( FIT method ) Use the mid- ordinate numerical integra8on method

13 Example: 1D FDTD Example1.m

14 Implementation in MATLAB % Magnetic field update equation Hy(1:K-1) = Hy(1:K-1) + Db(1:K-1).* ( Ez(2:K) - Ez(1:K-1) ); % Electric field update equation Ez(2:K-1) = Ez(2:K-1) + Cb(2:K-1).* ( Hy(2:K-1) - Hy(1:K-2) ); X coordinate H field indexing E field indexing

15 Contents Principle of FDTD Deriva8on Basic proper8es Stability Dispersion Boundary condi8ons Advantages and weaknesses Examples

16 Stability Courant- Friedrichs- Lewy (CFL) condi8on: In 3D: Numerical domain of dependence must include analy8cal domain of dependence v max Δt Δx

17 Numerical dispersion Accurate formula FDTD Numerical phase velocity v p = ω k

18 Numerical dispersion One- tenth of wavelength rule Maximum 8me step in 1D Maximum 8me step in 2D Maximum 8me step in 3D

19 Spectra

20 Anisotropic dispersion in 2D and 3D

21 Example: 2D FDTD 2D FDTD and anisotropic dispersion example3a.m Be careful with dielectric materials wavelength is shorter => finer cell size is needed example3b.m

22 Metal Absorbing boundary conditions In the basic form, FDTD can only model boxes, with ideally conduc8ng walls How to terminate the computa8on domain to model free space? FDTD is very good at modelling different materials: Berenger 1994: Make the walls of the box from an unphysical material that absorbs anything! Metal Metal Metal Absorbing material Metal ABCs are essen8al for any FDTD code Example4.m, example5a, 5b, 5c Metal Absorbing material Metal Metal

23 Contents Principle of FDTD Deriva8on Basic proper8es Stability Dispersion Boundary condi8ons Advantages and weaknesses Applica8ons

24 Advantages of FDTD (1) Simple equa8ons Can be parallelized easily Scales linearly with number of unknowns No need to solve equa8on systems => good for very large problems

25 ~ FDTD number of cells Absorbing boundary condi8ons in 3D 800 cells Yee 1966

26 Advantages of FDTD (2) Any kind of 8me- domain sources Geometry and boundary condi8ons are taken into account automa8cally. Any shape can be modeled easily Different media can be modelled naturally: non- linearity, inhomogeneity, anisotropy, complex geometry (metamaterials) Examples 6a, 6b FDTD Valuable (?) data

27 Weaknesses of FDTD (1) Not good for slow phenomena (huge number of 8me steps needed) Example: 1 mm grid resolu8on - > 8me step = 1.9e- 12 s Phenomenon las8ng 1 ms - > Number of 8me steps = 5e8 Curved shapes are problema8c (staircase approxima8on) High permikvity medium requires a fine grid One- tenth of wavelength rule

28 Comparison with analytic solution Radial component of the electric field in a sphere FDTD Analy8c solu8on

29 Weaknesses of FDTD (2) Computa8on domain must be finite Absorbing boundary condi8ons En8re computa8onal domain needs to be gridded (also empty space) Results depend on the choice of coordinate axes Error control Point of interest Empty space FDTD

30 Error in FDTD Trunca8on error from difference approxima8on (8me and space) Dispersion error, numerical anisotropy Unphysical Poyn8ng theorem, conserva8on of energy Floa8ng point (round- off) error Staircase approxima8on error Absorbing boundary condi8on error Modelling dielectric/lossy materials etc.

31 Contents Principle of FDTD Deriva8on Basic proper8es Stability Dispersion Boundary condi8ons Advantages and weaknesses Applica8ons

32 Applications of FDTD Radar cross sec8on and scamering Metamaterials Antenna analysis example 7a Electronic component design Electromagne8c compa8bility (EMC) Waveguides, resonators, filters example 7b Human exposure to EM waves

33 Human exposure to EM waves

34 Energy absorption 70 MHz 4.3 m 300 MHz 1 m 900 MHz 33 cm 2450 MHz 12 cm

35 Temperature rise Absorbed power = 0.4 W/kg Hirata, Laakso, et al 2013, Phys Med Biol

36 Power absorption versus temperature rise Hirata, Laakso, et al 2013, Phys Med Biol

37 When to use FDTD? Use FDTD first Use FDTD for making anima8ons Use FDTD for large heterogeneous geometries Use FDTD to model many things simultaneously Don t use FDTD at low frequencies Don t use FDTD with too large cell size Don t use FDTD if you need 99.9% accuracy

Review: Basic Concepts

Review: Basic Concepts Review: Basic Concepts Simula5ons 1. Radio Waves h;p://phet.colorado.edu/en/simula5on/radio- waves 2. Propaga5on of EM Waves h;p://www.phys.hawaii.edu/~teb/java/ntnujava/emwave/emwave.html 3. 2D EM Waves

More information

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons. Publication II Ilkka Laakso and Tero Uusitupa. 2008. Alternative approach for modeling material interfaces in FDTD. Microwave and Optical Technology Letters, volume 50, number 5, pages 1211-1214. 2008

More information

Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment

Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment Study of Specific Absorption Rate (SAR) in the human head by metamaterial attachment M. T Islam 1a), M. R. I. Faruque 2b), and N. Misran 1,2c) 1 Institute of Space Science (ANGKASA), Universiti Kebangsaan

More information

A Time Domain Approach to Power Integrity for Printed Circuit Boards

A Time Domain Approach to Power Integrity for Printed Circuit Boards A Time Domain Approach to Power Integrity for Printed Circuit Boards N. L. Mattey 1*, G. Edwards 2 and R. J. Hood 2 1 Electrical & Optical Systems Research Division, Faculty of Engineering, University

More information

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie FDTD method and models in optical education Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du Xiaogang Lin, Nan Wan, Lingdong

More information

Publication I Institute of Physics Publishing (IOPP) Reprinted by permission of Institute of Physics Publishing.

Publication I Institute of Physics Publishing (IOPP) Reprinted by permission of Institute of Physics Publishing. Publication I Ilkka Laakso, Sami Ilvonen, and Tero Uusitupa. 7. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations. Physics in Medicine and

More information

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE Ioana SĂRĂCUŢ Victor POPESCU Marina Dana ŢOPA Technical University of Cluj-Napoca, G. Bariţiu Street 26-28,

More information

A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations

A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic Simulations Syracuse University SURFACE Electrical Engineering and Computer Science - Dissertations College of Engineering and Computer Science 2011 A Single-Field Finite-Difference Time-Domain Formulations for Electromagnetic

More information

Electromagne,c Waves. All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light.

Electromagne,c Waves. All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light. Electromagne,c Waves All electromagne-c waves travel in a vacuum with the same speed, a speed that we now call the speed of light. Proper,es of Electromagne,c Waves Any electromagne-c wave must sa-sfy

More information

Model Order Reduction and Stability Enforcement of Finite-Difference Time-Domain Equations Beyond the CFL Limit. Xihao Li

Model Order Reduction and Stability Enforcement of Finite-Difference Time-Domain Equations Beyond the CFL Limit. Xihao Li Model Order Reduction and Stability Enforcement of Finite-Difference Time-Domain Equations Beyond the CFL Limit by Xihao Li A thesis submitted in conformity with the requirements for the degree of Master

More information

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems

Electromagnetic wave propagation. ELEC 041-Modeling and design of electromagnetic systems Electromagnetic wave propagation ELEC 041-Modeling and design of electromagnetic systems EM wave propagation In general, open problems with a computation domain extending (in theory) to infinity not bounded

More information

Numerical Methods in Biomedical Engineering

Numerical Methods in Biomedical Engineering Numerical Methods in Biomedical Engineering Lecture s website for updates on lecture materials: h5p://9nyurl.com/m4frahb Individual and group homework Individual and group midterm and final projects (Op?onal)

More information

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann

Part E1. Transient Fields: Leapfrog Integration. Prof. Dr.-Ing. Rolf Schuhmann Part E1 Transient Fields: Leapfrog Integration Prof. Dr.-Ing. Rolf Schuhmann MAXWELL Grid Equations in time domain d 1 h() t MC e( t) dt d 1 e() t M Ch() t j( t) dt Transient Fields system of 1 st order

More information

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index PIERS ONLINE, VOL. 4, NO. 2, 2008 296 A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index S. Haxha 1 and F. AbdelMalek 2 1 Photonics Group, Department of Electronics, University

More information

2D-FINITE DIFFERENCE TIME DOMAIN (FDTD) NUMERICAL SIMULATION (REBAR SIZE DETECTION IN FREE SPACE)

2D-FINITE DIFFERENCE TIME DOMAIN (FDTD) NUMERICAL SIMULATION (REBAR SIZE DETECTION IN FREE SPACE) Summer Seminar Series #3 June 6, 2014 2D-FINITE DIFFERENCE TIME DOMAIN (FDTD) NUMERICAL SIMULATION (REBAR SIZE DETECTION IN FREE SPACE) Jones Owusu Twumasi Doctoral Student Department of Civil and Environmental

More information

Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach

Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach Journal of Electrical Engineering 5 (2017) 67-73 doi: 10.17265/2328-2223/2017.02.002 D DAVID PUBLISHING Multi-transmission Lines Loaded by Linear and Nonlinear Lumped Elements: FDTD Approach Ismail ALAOUI

More information

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations Atef Z. Elsherbeni and Veysel Demir SciTech Publishing, Inc Raleigh, NC scitechpublishing.com Contents Preface Author

More information

Guangye Chen, Luis Chacón,

Guangye Chen, Luis Chacón, JIFT workshop! Oct. 31, 2014 New Orleans, LA.! Guangye Chen, Luis Chacón, CoCoMANs team Los Alamos National Laboratory, Los Alamos, NM 87545, USA gchen@lanl.gov 1 Los Alamos National Laboratory Motivation

More information

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION

USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION October 4-6, 2007 - Chiinu, Rep.Moldova USAGE OF NUMERICAL METHODS FOR ELECTROMAGNETIC SHIELDS OPTIMIZATION Ionu- P. NICA, Valeriu Gh. DAVID, /tefan URSACHE Gh. Asachi Technical University Iai, Faculty

More information

Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009

Pseudospectral Methods For Op2mal Control. Jus2n Ruths March 27, 2009 Pseudospectral Methods For Op2mal Control Jus2n Ruths March 27, 2009 Introduc2on Pseudospectral methods arose to find solu2ons to Par2al Differen2al Equa2ons Recently adapted for Op2mal Control Key Ideas

More information

1-D Implementation of Maxwell s Equations in MATLAB to Study the Effect of Absorption Using PML

1-D Implementation of Maxwell s Equations in MATLAB to Study the Effect of Absorption Using PML 1-D Implementation of Mawell s Equations in MATLAB to Study the Effect of Absorption Using PML 1 Vikas Rathi, Pranav 2 K. Shrivastava, 3 Hemant S Pokhariya ECE Department Graphic Era University Dehradun,

More information

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses

Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Journal of the Korean Physical Society, Vol. 58, No. 4, April 2011, pp. 1014 1020 Comparison Study of the Band-gap Structure of a 1D-Photonic Crystal by Using TMM and FDTD Analyses Jian-Bo Chen, Yan Shen,

More information

EFFECTS OF SOIL PHYSICAL PROPERTIES ON LAND- MINES DETECTION USING MICROSTRIP ANTENNA AS A SENSOR

EFFECTS OF SOIL PHYSICAL PROPERTIES ON LAND- MINES DETECTION USING MICROSTRIP ANTENNA AS A SENSOR Progress In Electromagnetics Research C, Vol. 7, 13 24, 2009 EFFECTS OF SOIL PHYSICAL PROPERTIES ON LAND- MINES DETECTION USING MICROSTRIP ANTENNA AS A SENSOR S. H. Zainud-Deen, M. E. Badr, E. M. Ali,

More information

FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media

FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media American Journal of Electromagnetics and Applications 2017; 5(2): 14-19 http://www.sciencepublishinggroup.com/j/ajea doi: 10.11648/j.ajea.20170502.11 ISSN: 2376-5968 (Print); ISSN: 2376-5984 (Online) Review

More information

Progress In Electromagnetics Research, PIER 35, , 2002

Progress In Electromagnetics Research, PIER 35, , 2002 Progress In Electromagnetics Research, PIER 35, 315 334, 2002 NUMERICAL STUDIES OF LEFT HANDED METAMATERIALS C. D. Moss, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong Research Laboratory of Electronics Massachusetts

More information

Nonlinear optical properties of photonic crystals

Nonlinear optical properties of photonic crystals Available online at www.worldscientificnews.com WSN 97 (2018) 1-27 EISSN 2392-2192 Nonlinear optical properties of photonic crystals M. G. Pravini S. Fernando a, K. A. I. L. Wijewardena Gamalath b Department

More information

Numerical Technique for Electromagnetic Field Computation Including High Contrast Composite Material

Numerical Technique for Electromagnetic Field Computation Including High Contrast Composite Material Chapter 30 Numerical Technique for Electromagnetic Field Computation Including High Contrast Composite Material Hiroshi Maeda Additional information is available at the end of the chapter http://dx.doi.org/10.5772/50555

More information

Linear Regression with mul2ple variables. Mul2ple features. Machine Learning

Linear Regression with mul2ple variables. Mul2ple features. Machine Learning Linear Regression with mul2ple variables Mul2ple features Machine Learning Mul4ple features (variables). Size (feet 2 ) Price ($1000) 2104 460 1416 232 1534 315 852 178 Mul4ple features (variables). Size

More information

2018/10/09 02:58 1/2 Optical force calculation. Table of Contents. Optical force calculation GSvit documentation -

2018/10/09 02:58 1/2 Optical force calculation. Table of Contents. Optical force calculation GSvit documentation - 2018/10/09 02:58 1/2 Optical force calculation Table of Contents Optical force calculation... 1 Last update: 2018/01/30 16:41 app:optical_force http://www.gsvit.net/wiki/doku.php/app:optical_force http://www.gsvit.net/wiki/

More information

Applications of Time Domain Vector Potential Formulation to 3-D Electromagnetic Problems

Applications of Time Domain Vector Potential Formulation to 3-D Electromagnetic Problems Applications of Time Domain Vector Potential Formulation to 3-D Electromagnetic Problems F. De Flaviis, M. G. Noro, R. E. Diaz, G. Franceschetti and N. G. Alexopoulos Department of Electrical Engineering

More information

Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III

Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III Advanced Engineering Electromagnetics, ECE750 LECTURE 11 THE FDTD METHOD PART III 1 11. Yee s discrete algorithm Maxwell s equations are discretized using central FDs. We set the magnetic loss equal to

More information

SCITECH Volume 4, Issue 1 RESEARCH ORGANISATION November 09, 2017

SCITECH Volume 4, Issue 1 RESEARCH ORGANISATION November 09, 2017 SCITECH Volume 4, Issue 1 RESEARCH ORGANISATION November 9, 17 Boson Journal of Modern Physics www.scitecresearch.com Numerical Study The Dielectric Properties And Specific Absorption Rate Of Nerve Human

More information

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method

Simulation and Numerical Modeling of a Rectangular Patch Antenna Using Finite Difference Time Domain (FDTD) Method Journal of Computer Science and Information Technology June 2014, Vol. 2, No. 2, pp. 01-08 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). 2014. All Rights Reserved. Published by American

More information

From average to instantaneous rates of change. (and a diversion on con4nuity and limits)

From average to instantaneous rates of change. (and a diversion on con4nuity and limits) From average to instantaneous rates of change (and a diversion on con4nuity and limits) Extra prac4ce problems? Problems in the Book Problems at the end of my slides Math Exam Resource (MER): hcp://wiki.ubc.ca/science:math_exam_resources

More information

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method

Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite Element Method Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 425 Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave Using a High Order Time Domain Vector Finite

More information

Modul 3. Finite-difference time-domain (FDTD)

Modul 3. Finite-difference time-domain (FDTD) Modul 3 Finite-difference time-domain (FDTD) based on Dennis Sullivan, A Brief Introduction to The Finite-Difference Time-Domain (FDTD) Method http://www.mrc.uidaho.edu/~dennis/ece538-files/intro(fdtd).doc

More information

Pseudospectral and High-Order Time-Domain Forward Solvers

Pseudospectral and High-Order Time-Domain Forward Solvers Pseudospectral and High-Order Time-Domain Forward Solvers Qing H. Liu G. Zhao, T. Xiao, Y. Zeng Department of Electrical and Computer Engineering Duke University DARPA/ARO MURI Review, August 15, 2003

More information

Surface Impedance Absorbing Boundary for Terminating FDTD Simulations

Surface Impedance Absorbing Boundary for Terminating FDTD Simulations 135 ACS JOURNAL, Vol. 29, No. 12, DCMBR 214 Surface Impedance Absorbing Boundary for Terminating FDTD Simulations Yunlong Mao 1,2, Atef Z. lsherbeni 2,SiLi 1,2, and Tao Jiang 1 1 College of Information

More information

Plane Waves and Planar Boundaries in FDTD Simulations

Plane Waves and Planar Boundaries in FDTD Simulations Plane Waves and Planar Boundaries in FDTD Simulations School of Electrical Engineering and Computer Science John B. Schneider Elec. Eng. & Comp. Sci. Washington State Univ. Pullman, WA Robert J. Kruhlak

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

DOING PHYSICS WITH MATLAB

DOING PHYSICS WITH MATLAB DOING PHYSICS WITH MATLAB ELECTROMAGNETISM USING THE FDTD METHOD [1D] Propagation of Electromagnetic Waves Matlab Download Director ft_3.m ft_sources.m Download and run the script ft_3.m. Carefull inspect

More information

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering

A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering INTRODUCTION OF THE DEBYE MEDIA TO THE FILTERED FINITE-DIFFERENCE TIME-DOMAIN METHOD WITH COMPLEX-FREQUENCY-SHIFTED PERFECTLY MATCHED LAYER ABSORBING BOUNDARY CONDITIONS A thesis submitted to the University

More information

Plasma heating in stellarators at the fundamental ion cyclotron frequency

Plasma heating in stellarators at the fundamental ion cyclotron frequency PHYSICS OF PLASMAS VOLUME 7, NUMBER FEBRUARY 000 Plasma heating in stellarators at the fundamental ion cyclotron frequency V. A. Svidzinski and D. G. Swanson Department of Physics, Auburn University, Auburn,

More information

Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media

Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media Contemporary Mathematics Volume 586 013 http://dx.doi.org/.90/conm/586/11666 Stability and dispersion analysis of high order FDTD methods for Maxwell s equations in dispersive media V. A. Bokil and N.

More information

Fibonacci Sequences Quasiperiodic A 5 B 6 C 7 Ferroelectric Based Photonic Crystal: FDTD analysis

Fibonacci Sequences Quasiperiodic A 5 B 6 C 7 Ferroelectric Based Photonic Crystal: FDTD analysis ADVANCED ELECTROMAGNETICS, VOL. 6, NO. 4, OCTOBER 2017 Fibonacci Sequences Quasiperiodic A 5 B 6 C 7 Ferroelectric Based Photonic Crystal: FDTD analysis Sevket Simsek 1, Selami Palaz 2, Amirullah M. Mamedov*

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

Electromagnetic Metamaterials

Electromagnetic Metamaterials Electromagnetic Metamaterials Dr. Alkim Akyurtlu Center for Electromagnetic Materials and Optical Systems University of Massachusetts Lowell September 19, 2006 Objective Outline Background on Metamaterials

More information

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1 Electricity & Magnetism Lecture 23 Electricity & Magne/sm Lecture 23, Slide 1 Your Comments the whole E-M wave graph, I s/ll don't understand what it is trying to tell us and where the sin(kz-ωt) even

More information

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on

Least Square Es?ma?on, Filtering, and Predic?on: ECE 5/639 Sta?s?cal Signal Processing II: Linear Es?ma?on Least Square Es?ma?on, Filtering, and Predic?on: Sta?s?cal Signal Processing II: Linear Es?ma?on Eric Wan, Ph.D. Fall 2015 1 Mo?va?ons If the second-order sta?s?cs are known, the op?mum es?mator is given

More information

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Progress In Electromagnetics Research M, Vol. 3, 239 252, 213 COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Lijuan Shi 1, 3, Lixia Yang 2, *, Hui Ma 2, and Jianning Ding 3 1 School

More information

An Electromagnetic-Simulation based Investigation of the Dielectric Padding Approach for Head Imaging at 7 T

An Electromagnetic-Simulation based Investigation of the Dielectric Padding Approach for Head Imaging at 7 T 7007 An Electromagnetic-Simulation based Investigation of the Dielectric Padding Approach for Head Imaging at 7 T Andreas Rennings 1, Keran Wang 1, Le Chen 1, Friedrich Wetterling 2, and Daniel Erni 1

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

FDTD implementations for electromagnetic shields

FDTD implementations for electromagnetic shields FDTD implementations for electromagnetic shields S.Ursache 1, M. Branzila 1, C. Bratescu 1, R. Burlacu 1 1 Technical University of Iasi, Faculty of Electrical Engineering, Bd. Profesor Dimitrie Mangeron,

More information

Acoustic Wave Equation

Acoustic Wave Equation Acoustic Wave Equation Sjoerd de Ridder (most of the slides) & Biondo Biondi January 16 th 2011 Table of Topics Basic Acoustic Equations Wave Equation Finite Differences Finite Difference Solution Pseudospectral

More information

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule.

CSE 473: Ar+ficial Intelligence. Probability Recap. Markov Models - II. Condi+onal probability. Product rule. Chain rule. CSE 473: Ar+ficial Intelligence Markov Models - II Daniel S. Weld - - - University of Washington [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

arxiv: v1 [physics.comp-ph] 9 Dec 2008

arxiv: v1 [physics.comp-ph] 9 Dec 2008 arxiv:812.187v1 [physics.comp-ph] 9 Dec 28 Three-dimensional Finite Difference-Time Domain Solution of Dirac Equation Neven Simicevic Center for Applied Physics Studies, Louisiana Tech University, Ruston,

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i

FDTD for 1D wave equation. Equation: 2 H Notations: o o. discretization. ( t) ( x) i i i i i FDTD for 1D wave equation Equation: 2 H = t 2 c2 2 H x 2 Notations: o t = nδδ, x = iδx o n H nδδ, iδx = H i o n E nδδ, iδx = E i discretization H 2H + H H 2H + H n+ 1 n n 1 n n n i i i 2 i+ 1 i i 1 = c

More information

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products

Other types of errors due to using a finite no. of bits: Round- off error due to rounding of products ECE 8440 Unit 12 More on finite precision representa.ons (See sec.on 6.7) Already covered: quan.za.on error due to conver.ng an analog signal to a digital signal. 1 Other types of errors due to using a

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory Materials with Engineered Dispersion for the Enhancement of Light-Matter Interactions 10 January 2013 Ilya Vitebskiy, AFRL/RYDP Integrity Service Excellence SUBTOPIC 1 Nonreciprocal

More information

Transparent boundary conditions for simulation

Transparent boundary conditions for simulation Peter Junglas 42 Transparent boundary conditions for simulation programs The Problem A lot of simulation programs are available today as invaluable tools for teaching physics covering many different application

More information

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001). Overview in Images 5 nm K.S. Min et al. PhD Thesis K.V. Vahala et al, Phys. Rev. Lett, 85, p.74 (000) J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) T.Thio et al., Optics Letters 6, 197-1974

More information

(Refer Slide Time: 01:11) So, in this particular module series we will focus on finite difference methods.

(Refer Slide Time: 01:11) So, in this particular module series we will focus on finite difference methods. Computational Electromagnetics and Applications Professor Krish Sankaran Indian Institute of Technology, Bombay Lecture 01 Finite Difference Methods - 1 Good Morning! So, welcome to the new lecture series

More information

An Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis

An Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 1 An Explicit and Unconditionally Stable FDTD Method for Electromagnetic Analysis Md. Gaffar and Dan Jiao, Senior Member, IEEE Abstract In this paper,

More information

FOR most applications, the finite-difference time-domain

FOR most applications, the finite-difference time-domain ECE 1252 INTRODUCTION TO COMPUTATIONAL ELECTRODYNAMICS 1 The Finite-Difference Frequency-Domain Method Hans-Dieter Lang, Student-Member, IEEE Abstract The finite-difference frequency-domain (FDFD) method

More information

free- electron lasers I (FEL)

free- electron lasers I (FEL) free- electron lasers I (FEL) produc'on of copious radia'on using charged par'cle beam relies on coherence coherence is achieved by insuring the electron bunch length is that desired radia'on wavelength

More information

Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers

Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers Moscow, Russia, September 25-26, 2017 Numerical Simulation of Light Propagation Through Composite and Anisotropic Media Using Supercomputers R.V. Galev, A.N. Kudryavtsev, S.I. Trashkeev Khristianovich

More information

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media

New Scaling Factors of 2-D Isotropic-Dispersion Finite Difference Time Domain (ID-FDTD) Algorithm for Lossy Media IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO., FEBRUARY 8 63 is shown by squares. Each point is computed by averaging reflection coefficient values calculated for each component of the regular

More information

Technique for the electric and magnetic parameter measurement of powdered materials

Technique for the electric and magnetic parameter measurement of powdered materials Computational Methods and Experimental Measurements XIV 41 Technique for the electric and magnetic parameter measurement of powdered materials R. Kubacki,. Nowosielski & R. Przesmycki Faculty of Electronics,

More information

Novel electro-magnetic phenomena: and. wireless power transfer

Novel electro-magnetic phenomena: and. wireless power transfer Novel electro-magnetic phenomena: one-way-waveguides waveguides and wireless power transfer Unidirectional backscattering-immune immune topological electromagnetic states Dr. Zheng Wang Dr. Yidong Chong

More information

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from

Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from Frequency: the number of complete waves that pass a point in a given time. It has the symbol f. 1) SI Units: Hertz (Hz) Wavelength: The length from the one crest of a wave to the next. I. Electromagnetic

More information

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver

Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver PHOTONIC SENSORS / Vol., No., : 58 6 Propagation of Surface Plasmon Polariton in the Single Interface of Gallium Lanthanum Sulfide and Silver Rakibul Hasan SAGOR, Md. Ghulam SABER *, and Md. Ruhul AMIN

More information

Modelling IP effects in airborne time domain electromagnetics

Modelling IP effects in airborne time domain electromagnetics Modelling IP effects in airborne time domain electromagnetics Dave Marchant* Seogi Kang Mike McMillian Eldad Haber Computational Geosciences University of British Columbia Computational Geosciences University

More information

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1

Electricity & Magnetism Lecture 23. Electricity & Magne/sm Lecture 23, Slide 1 Electricity & Magnetism Lecture 23 Electricity & Magne/sm Lecture 23, Slide 1 Today you will play around with the polariza2on filters. Con2nue on Friday. Friday s lecture will be on circular polariza2on

More information

Fundamentals of Data Assimila1on

Fundamentals of Data Assimila1on 2015 GSI Community Tutorial NCAR Foothills Campus, Boulder, CO August 11-14, 2015 Fundamentals of Data Assimila1on Milija Zupanski Cooperative Institute for Research in the Atmosphere Colorado State University

More information

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain

Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit Finite-Difference-Time-Domain Proceedings of the Federated Conference on Computer Science and Information Systems pp. 255 260 ISBN 978-83-60810-22-4 Numerical Assessment of Finite Difference Time Domain and Complex-Envelope Alternating-Direction-Implicit

More information

1. Reminder: E-Dynamics in homogenous media and at interfaces

1. Reminder: E-Dynamics in homogenous media and at interfaces 0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.4.1

More information

Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method

Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method Mark S. Mirotznik, Dennis W. Prather, Joseph N. Mait, William A. Beck, Shouyuan Shi,

More information

Reduced Models for Process Simula2on and Op2miza2on

Reduced Models for Process Simula2on and Op2miza2on Reduced Models for Process Simulaon and Opmizaon Yidong Lang, Lorenz T. Biegler and David Miller ESI annual meeng March, 0 Models are mapping Equaon set or Module simulators Input space Reduced model Surrogate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION An effective magnetic field from optically driven phonons T. F. Nova 1 *, A. Cartella 1, A. Cantaluppi 1, M. Först 1, D. Bossini 2 #, R. V. Mikhaylovskiy 2, A.V. Kimel 2, R. Merlin 3 and A. Cavalleri 1,

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Large omnidirectional band gaps in metallodielectric photonic crystals

Large omnidirectional band gaps in metallodielectric photonic crystals PHYSICAL REVIEW B VOLUME, NUMBER 16 15 OCTOBER 1996-II Large omnidirectional band gaps in metallodielectric photonic crystals Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos Department of Physics,

More information

Left-handed materials: Transfer matrix method studies

Left-handed materials: Transfer matrix method studies Left-handed materials: Transfer matrix method studies Peter Markos and C. M. Soukoulis Outline of Talk What are Metamaterials? An Example: Left-handed Materials Results of the transfer matrix method Negative

More information

CONSTRUCTION AND ANALYSIS OF WEIGHTED SEQUENTIAL SPLITTING FDTD METHODS FOR THE 3D MAXWELL S EQUATIONS

CONSTRUCTION AND ANALYSIS OF WEIGHTED SEQUENTIAL SPLITTING FDTD METHODS FOR THE 3D MAXWELL S EQUATIONS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5 Number 6 Pages 747 784 c 08 Institute for Scientific Computing and Information CONSTRUCTION AND ANALYSIS OF WEIGHTED SEQUENTIAL SPLITTING

More information

A FV Scheme for Maxwell s equations

A FV Scheme for Maxwell s equations A FV Scheme for Maxwell s equations Convergence Analysis on unstructured meshes Stephanie Lohrengel * Malika Remaki ** *Laboratoire J.A. Dieudonné (UMR CNRS 6621), Université de Nice Sophia Antipolis,

More information

Detectors in Nuclear Physics: Monte Carlo Methods. Dr. Andrea Mairani. Lectures I-II

Detectors in Nuclear Physics: Monte Carlo Methods. Dr. Andrea Mairani. Lectures I-II Detectors in Nuclear Physics: Monte Carlo Methods Dr. Andrea Mairani Lectures I-II INTRODUCTION Sampling from a probability distribution Sampling from a probability distribution X λ Sampling from a probability

More information

Light scattering from normal and cervical cancer cells

Light scattering from normal and cervical cancer cells 3608 Vol. 56, No. 12 / April 20 2017 / Applied Optics Research Article Light scattering from normal and cervical cancer cells XIAOGANG LIN,* NAN WAN, LINGDONG WENG, AND YONG ZHOU Key Laboratory of Optoelectronic

More information

Evanescent modes stored in cavity resonators with backward-wave slabs

Evanescent modes stored in cavity resonators with backward-wave slabs arxiv:cond-mat/0212392v1 17 Dec 2002 Evanescent modes stored in cavity resonators with backward-wave slabs S.A. Tretyakov, S.I. Maslovski, I.S. Nefedov, M.K. Kärkkäinen Radio Laboratory, Helsinki University

More information

Theoretical studies on the transmission and reflection properties of metallic planar fractals

Theoretical studies on the transmission and reflection properties of metallic planar fractals INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 37 (2004) 368 373 PII: S0022-3727(04)63919-2 Theoretical studies on the transmission and reflection properties

More information

Quantum Electromagnetics A Local-Ether Wave Equation Unifying Quantum Mechanics, Electromagnetics, and Gravitation

Quantum Electromagnetics A Local-Ether Wave Equation Unifying Quantum Mechanics, Electromagnetics, and Gravitation Quantum Electromagnetics A Local-Ether Wave Equation Unifying Quantum Mechanics, Electromagnetics, and Gravitation Ching-Chuan Su Department of Electrical Engineering National Tsinghua University Hsinchu,

More information

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes Cold plasma waves Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes EM wave propagation through and interaction with plasmas belong to central issues of plasma physics.

More information

Monolayer Black Phosphorus

Monolayer Black Phosphorus Supporting Information: Localized Surface Plasmons in Nanostructured Monolayer Black Phosphorus Zizhuo Liu and Koray Aydin* Department of Electrical Engineering and Computer Science, Northwestern University,

More information

Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer

Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer ACES JOURNAL, VOL. 6, NO., FEBRUARY 011 153 Nonstandard Finite Difference Time Domain Algorithm for Berenger s Perfectly Matched Layer Naoki Okada and James B. Cole Graduate School of Systems and Information

More information

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS

AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS Progress In Electromagnetics Research, PIER 1, 329 341, 2 AXIALLY SLOTTED ANTENNA ON A CIRCULAR OR ELLIPTIC CYLINDER COATED WITH METAMATERIALS A-K. Hamid Department of Electrical/Electronics and Computer

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

LIGHT and Telescopes

LIGHT and Telescopes Astro 201: Sept. 14, 2010 Read: Hester, Chapter 4 Chaos and Fractal informa@on on class web page On- Line quiz #3: available amer class, due next Tuesday before class HW #3 on line Today: Light LIGHT and

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information