Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel

Size: px
Start display at page:

Download "Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters. Katya Rykhlinskaya, University of Kassel"

Transcription

1 Computer Algebraic Tools for Studying the Symmetry Properties of Molecules and Clusters Katya Rykhlinskaya, University of Kassel

2 Computational techniques in the theoretical investigations + Analytic concept Numerical studies

3 Computational techniques in the theoretical investigations Analytic concept + = Numerical studies Advantages of using CAS in the theoretical research Computer algebraic systems (CAS) (Mathematica, Maple, Reduce,...) Knowledge of the mathematical basis Fast and reliable symbolic manipulation Interactive work (treatment step by step )

4 Computational techniques in the theoretical investigations Analytic concept + = Numerical studies Advantages of using CAS in the theoretical research Computer algebraic systems (CAS) (Mathematica, Maple, Reduce,...) Knowledge of the mathematical basis Fast and reliable symbolic manipulation Interactive work (treatment step by step ) Application of CAS (in particular!) in the theoretical threatment of many particle systems.

5 Molecular systems and the symmetry consideration Systems of identical particles Reduction of the standart quantities number

6 Molecular systems and the symmetry consideration Systems of identical particles Use of the symmetry concept! Reduction of the standart quantities number Possible applications of symmetry in the molecular physics: classification of molecular states derivation of the molecular vibrational modes determination of normal coordinates spectral activities for the IR and Raman spectra level splitting of atoms in the exteral crystal field construction of symmetry orbitals

7 Molecular systems and the symmetry consideration Systems of identical particles Use of the symmetry concept! Reduction of the standart quantities number Possible applications of symmetry in the molecular physics: classification of molecular states derivation of the molecular vibrational modes determination of normal coordinates spectral activities for the IR and Raman spectra level splitting of atoms in the exteral crystal field construction of symmetry orbitals Computer algebraic tools for dealing with symmetry are required! Group theory mathematical tool for dealing with symmetry!

8 Symmetry operations. Molecular symmetry and the group theory Proper rotation Cn Reflection Improper rotation Sn Inversion I Groups of operators Families of groups Symmetry groups Cyclic Cn, Cnh, Cnv,Sn Dihedral Dn, Dnh, Dnd Cubic T, Th, Td, O, Oh Identity E Icosahedral I, Ih

9 Symmetry operations. Molecular symmetry and the group theory Proper rotation Cn Reflection Improper rotation Sn Inversion I Identity E Groups of operators Group representation concept Families of groups Symmetry groups Cyclic Cn, Cnh, Cnv,Sn Dihedral Dn, Dnh, Dnd Cubic T, Th, Td, O, Oh Icosahedral I, Ih

10 Symmetry operations Group representation concept D3h y z x Induced transformations Representation matrices Depend on the basis! Character table. Similarity transformation Can be reduced to the block diagonal form No further reduction is available! IrRep matrices. Characters!

11 Symmetry operations Group representation concept D3h y z x Induced transformations Representation matrices Depend on the basis! IrRep matrices. Characters! Can be reduced to the block diagonal form. Character table. Similarity transformation No further reduction is available! A1'+ A2'+ E'+ E'+ A2 '+ E ' Wave functions of the molecules form a basis for the irreducible representations. Therefore, the molecular states can be described in terms of irreps!

12 Molecular systems and the symmetry consideration Systems of identical particles Use of the symmetry concept! Reduction of the standart quantities number Possible applications of symmetry in the molecular physics: classification of molecular states derivation of the molecular vibrational modes determination of normal coordinates spectral activities for the IR and Raman spectra level splitting of atoms in the exteral crystal field construction of symmetry orbitals Computer algebraic tools for dealing with symmetry are required! BETHE! Group theory mathematical tool for dealing with symmetry!

13 BETHE Maple package for dealing with symmetry. Computer algebraic package BETHE was created to support applications of the molecular symmetry groups in physics, chemistry and biology. Large set of group theoretical parameters Data structure, flexible enough to cover most applications Helpful for occasional use and advanced research work More than 100 procedures within the hierarchical structure Only about 10 commands need to be known by the user Part of the CPC Library (Computer Physics Communications)

14 BETHE Maple package for dealing with symmetry. Computer algebraic package BETHE was created to support applications of the molecular symmetry groups in physics, chemistry and biology. Large set of group theoretical parameters Data structure, flexible enough to cover most applications Helpful for occasional use and advanced research work More than 100 procedures within the hierarchical structure Only about 10 commands need to be known by the user Part of the CPC Library (Computer Physics Communications) Applications of BETHE package Point group theoretical data Cn, Cnh, Cnv, Sn, Dn, Dnh, O, Oh, T, Th, Td, I, Ih n<11 Generation of the C-G coefficients for the groups Symmetry-adapted basis functions (rel. and nonrel.) Vibrational analysis (generation of the normal coordinates) Level splitting in the external crystal field Selection rules for the IR and Raman spectroscopy (vibrational transitions)

15 BETHE Maple package for dealing with symmetry. Computer algebraic package BETHE was created to support applications of the molecular symmetry groups in physics, chemistry and biology. Large set of group theoretical parameters Data structure, flexible enough to cover most applications Helpful for occasional use and advanced research work More than 100 procedures within the hierarchical structure Only about 10 commands need to be known by the user Part of the CPC Library (Computer Physics Communications) Applications of BETHE package Point group theoretical data Cn, Cnh, Cnv, Sn, Dn, Dnh, O, Oh, T, Th, Td, I, Ih n<11 Generation of the C-G coefficients for the groups Symmetry-adapted basis functions (rel. and nonrel.) Vibrational analysis (generation of the normal coordinates) Level splitting in the external crystal field Selection rules for the IR and Raman spectroscopy (vibrational transitions)

16 Generation of point group theoretical data Bethe_group(D3h, operators); [ E, C3+, C3-, C21, C22, C23, sigma_h, S3+, S3-, sigma_v1, sigma_v2, sigma_v3 ] Bethe_group(D3h, irreps); [ A1`, A2`, E`, A1``, A2``, E`` ] Bethe_group_character(D3h, E`, C3+ ); -1 Bethe_group_character(D3h, E` ); [ 2, -1, 0, 2, -1, 0] Bethe_group_irrep(D3h, E`, C3+ ); [ 1/2 ] [-1/2-1/2 I 3 0 ] [ 1/2] [ 0-1/2+1/2 I 3 ]

17 BETHE Maple package for dealing with symmetry. Computer algebraic package BETHE was created to support applications of the molecular symmetry groups in physics, chemistry and biology. Large set of group theoretical parameters Data structure, flexible enough to cover most applications Helpful for occasional use and advanced research work More than 100 procedures within the hierarchical structure Only about 10 commands need to be known by the user Part of the CPC Library (Computer Physics Communications) Applications of BETHE package Point group theoretical data Cn, Cnh, Cnv, Sn, Dn, Dnh, O, Oh, T, Th, Td, I, Ih n<11 Generation of the C-G coefficients for the groups Symmetry-adapted basis functions (rel. and nonrel.) Vibrational analysis (generation of the normal coordinates) Level splitting in the external crystal field Selection rules for the IR and Raman spectroscopy (vibrational transitions)

18 Molecular vibrational analysis. Types of molecular motion. Example of the H 20 molecule. Rotational motion Translational motion Vibrational motion Vibrational motion of molecule: interatomic distances and internal angles change periodically without moving of the center of mass.

19 Molecular vibrational analysis. Types of molecular motion. Example of the H 20 molecule. Rotational motion Translational motion Vibrational motion Vibrational motion of molecule: interatomic distances and internal angles change periodically without moving of the center of mass. = + + Symmetric stretching Assymetric stretching Bending Overall vibrations of a molecule result from the superposition of a number of (relatively small) vibrational motions, known as normal modes of vibrations.

20 Vibrational motion. Normal modes of vibration. = + + Symmetric stretching Assymetric stretching Bending Normal modes of vibration can be determined as functions of the internal displacement coordinates (interatomic distances or bond angles).

21 Vibrational motion. Normal modes of vibration. = + + Symmetric stretching Assymetric stretching Bending Normal modes of vibration can be determined as functions of the internal displacement coordinates (interatomic distances or bond angles). ar +r r r α Vibrational modes possess a certain symmetry. Normal coordinates are the basis functions of irreducible representations. Vibrational modes can be classified and determined according to the molecular symmetry!

22 Use of the BETHE for the vibrational analysis of the water molecule. >Bethe_group(C2v, operators); [ E, C2, sigma_x, sigma_y ] >Bethe_group(C2v, irreps); [ A1, A2, B1, B2 ] Classification of the molecular vibrations in terms of the irreducible representations. Construction of normal coordinates H2O := molecule(atom(h1, [-a,0,-b]), atom(o, [0,0,0]), atom(h2, [a,0,-b])); >VR := Bethe_group_representation(C2v, vibrational, H2O) VR := [3, 1, 1, 3]; >Bethe_decompose_representation(C2v, VR); [ A1, A1, B1 ] > Bethe_internal_coordinates(C2, H2O, bending); [ [H1, O, H2] ]; >Bethe_normal_coordinates(C2v, H2O, A1, bending); [[1]] >Bethe_normal_coordinates(C2v, H2O, B1, bending); [ ] > Bethe_internal_coordinates(C2, H2O, stretching);[[o, H1],[O,H2]]; >Bethe_normal_coordinates(C2v, H2O, B1, stretching); 1/2 1/2 2 2 [[- ----, ----]] 2 2

23 BETHE Maple package for dealing with symmetry. Computer algebraic package BETHE was created to support applications of the molecular symmetry groups in physics, chemistry and biology. Large set of group theoretical parameters Data structure, flexible enough to cover most applications Helpful for occasional use and advanced research work More than 100 procedures within the hierarchical structure Only about 10 commands need to be known by the user Part of the CPC Library (Computer Physics Communications) Applications of BETHE package Point group theoretical data Cn, Cnh, Cnv, Sn, Dn, Dnh, O, Oh, T, Th, Td, I, Ih n<11 Generation of the C-G coefficients for the groups Symmetry-adapted basis functions (rel. and nonrel.) Vibrational analysis (generation of the normal coordinates) Level splitting in the external crystal field Selection rules for the IR and Raman spectroscopy (vibrational transitions)

24 Level sptitting in the external crystal field Consider a free atom, containing one d electron ( l = 2 ) outside a filled shell. This atom has 2l +1=5 orbitals. The d state is (5 fold) degenerate. Therefore, the energies of the five atomic d orbitals are identical. The atomic states can be classified according to the irreducible representations of the corresponding symmetry group. The free atom belongs to the continuous rotation group O3. Its states refer to the atomic functions with the angular factor Ylm. Atom, placed into the crystal environment belongs to the crystal symmetry point group.

25 Level sptitting in the external crystal field The states of one electron atom, placed into the crystal field, become split. This splitting can be classified in terms of the irreducible representations of the surrounding crystal point group. Free Oh D4h Distortion of the crystal configuration leads to the additional splitting. Example demonstrate the energy levels behaviour in the octahedral Oh and dihedral D4h crystal environments. Bethe_group_subduction_O3(Oh, 2); [ Eg, T2g ] (irreps of Oh group) Bethe_group_subduction(Oh, Eg, D4h); [ A1g, B1g ] (irreps of D4h group) Bethe_group_subduction(Oh, T2g, D4h): [ B2g, Eg ] (irreps of D4h group)

26 Summary: BETHE package for applications of symmetry Molecular geometry Point group theoretical data Cn, Cnh, Cnv, Sn, Dn, Dnh, O, Oh, T, Th, Td, I, Ih n<11 Double group data Level splitting in the external crystal field MAPLE package BETHE Symmetry-adapted basis functions (rel. and nonrel.) Vibrational analysis (generation of the normal coordinates) Selection rules for the IR and Raman spectroscopy (vibrational transitions) Generation of the C-G coefficients for the groups

27 Outlook: future development of the BETHE package. Problem of the molecular symmetry distortion (known as the Jahn Teller effect) Further treatment of the atomic energy levels behaviour in the external (crystal) field and studying the magnetic properties of materials Development of the vibrational analysis of the molecule as well as the related problems, such as resonance Raman spectroscopy, polarization of the vibrational modes and many others..... your request

28 Outlook: future development of the BETHE package. Problem of the molecular symmetry distortion (known as the Jahn Teller effect) Further treatment of the atomic energy levels behaviour in the external (crystal) field and studying the magnetic properties of materials Development of the vibrational analysis of the molecule as well as the related problems, such as resonance Raman spectroscopy, polarization of the vibrational modes and many others..... your request Thank you for attention!

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

Chapter 3 Introduction to Molecular Symmetry

Chapter 3 Introduction to Molecular Symmetry CHEM 511 Chapter 3 page 1 of 12 Chapter 3 Introduction to Molecular Symmetry This chapter will deal with the symmetry characteristics of individual molecules, i.e., how molecules can be rotated or imaged

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals

Molecular Symmetry. Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals Molecular Symmetry Symmetry is relevant to: spectroscopy, chirality, polarity, Group Theory, Molecular Orbitals - A molecule has a symmetry element if it is unchanged by a particular symmetry operation

More information

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables.

M.S. Dresselhaus G. Dresselhaus A. Jorio. Group Theory. Application to the Physics of Condensed Matter. With 131 Figures and 219 Tables. M.S. Dresselhaus G. Dresselhaus A. Jorio Group Theory Application to the Physics of Condensed Matter With 131 Figures and 219 Tables 4) Springer Contents Part I Basic Mathematics 1 Basic Mathematical Background:

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

SYMMETRY IN CHEMISTRY

SYMMETRY IN CHEMISTRY SYMMETRY IN CHEMISTRY Professor MANOJ K. MISHRA CHEMISTRY DEPARTMENT IIT BOMBAY ACKNOWLEGDEMENT: Professor David A. Micha Professor F. A. Cotton WHY SYMMETRY? An introduction to symmetry analysis For H

More information

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours:

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane   Office: CTH 311 Phone Office Hours: Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CT 311 Phone 257-4941 Office ours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Use of group theory for the analysis of vibrational spectra

Use of group theory for the analysis of vibrational spectra Computer Physics Communications 162 (2004) 124 142 www.elsevier.com/locate/cpc Use of group theory for the analysis of vibrational spectra K. Rykhlinskaya,S.Fritzsche Fachbereich Physik, Universität Kassel,

More information

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES

LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES SYMMETRY II. J. M. GOICOECHEA. LECTURE 3 1 LECTURE 3 DIRECT PRODUCTS AND SPECTROSCOPIC SELECTION RULES 3.1 Direct products and many electron states Consider the problem of deciding upon the symmetry of

More information

Symmetry and Group Theory

Symmetry and Group Theory Symmetry and Group Theory Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education,

More information

B7 Symmetry : Questions

B7 Symmetry : Questions B7 Symmetry 009-10: Questions 1. Using the definition of a group, prove the Rearrangement Theorem, that the set of h products RS obtained for a fixed element S, when R ranges over the h elements of the

More information

LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS

LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS SYMMETRY II. J. M. GOICOECHEA. LECTURE 2. 1 LECTURE 2 DEGENERACY AND DESCENT IN SYMMETRY: LIGAND FIELD SPLITTINGS AND RELATED MATTERS 2.1 Degeneracy When dealing with non-degenerate symmetry adapted wavefunctions

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

Consider a s ystem with 2 parts with well defined transformation properties

Consider a s ystem with 2 parts with well defined transformation properties Direct Product of Representations Further important developments of the theory of symmetry are needed for systems that consist of parts (e.g. two electrons, spin and orbit of an electron, one electron

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Chapter 6 Answers to Problems

Chapter 6 Answers to Problems Chapter 6 Answers to Problems 6.1 (a) NH 3 C3v E 2C3 3 v 4 1 2 3 0 1 12 0 2 3n = 3A 1 A 2 4E trans = A 1 E rot = A 2 E = 2A 2E = 4 frequencies 3n-6 1 Infrared 4 (2A 1 2E) Raman 4 (2A 1 2E) Polarized 2

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall, 008

More information

5.03 In-Class Exam 2

5.03 In-Class Exam 2 5.03 In-Class Exam 2 Christopher C. Cummins March 12, 2010 Instructions Clearly write your name at the top of this front page, but otherwise do not write on this front page as it will be used for scoring.

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Chem 673, Problem Set 5 Due Thursday, November 29, 2007

Chem 673, Problem Set 5 Due Thursday, November 29, 2007 Chem 673, Problem Set 5 Due Thursday, November 29, 2007 (1) Trigonal prismatic coordination is fairly common in solid-state inorganic chemistry. In most cases the geometry of the trigonal prism is such

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008

Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 Chem 673, Problem Set 5 Due Tuesday, December 2, 2008 (1) (a) Trigonal bipyramidal (tbp) coordination is fairly common. Calculate the group overlaps of the appropriate SALCs for a tbp with the 5 d-orbitals

More information

Symmetry in Formation of Molecules

Symmetry in Formation of Molecules International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 7 Issue 8 Ver V Aug 2018 PP 78-84 U. Lakshmi Priya 1, M.Sc., T.Pravallika 2, M.Sc.,

More information

Electronic Spectra of Coordination Compounds

Electronic Spectra of Coordination Compounds Electronic Spectra of Coordination Compounds Microstates and free-ion terms for electron configurations Identify the lowest-energy term Electronic Spectra of Coordination Compounds Identify the lowest-energy

More information

Symmetries in Physics

Symmetries in Physics W. Ludwig C. Falter Symmetries in Physics Group Theory Applied to Physical Problems With 87 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Contents 1. Introduction 1 2. Elements

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Inorganic Chemistry review sheet Exam #1

Inorganic Chemistry review sheet Exam #1 Inorganic Chemistry review sheet Exam #1 Ch. 1 General Chemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

A COMPUTERIZED PROGRAM FOR FINDING THE SYMMETRIES OF THE MOLECULAR NORMAL MODES OF VIBRATION

A COMPUTERIZED PROGRAM FOR FINDING THE SYMMETRIES OF THE MOLECULAR NORMAL MODES OF VIBRATION Journal of Optoelectronics and Advanced Materials Vol. 5, No. 2, June 23, p. 479-491 A COMPUTERIZED PROGRAM FOR FINDING THE SYMMETRIES OF THE MOLECULAR NORMAL MODES OF VIBRATION Ath. Trutia * University

More information

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Chem 673, Problem Set 5 Due Thursday, December 1, 2005 otton, Problem 9.3 (assume D 4h symmetry) Additional Problems: hem 673, Problem Set 5 Due Thursday, December 1, 2005 (1) Infrared and Raman spectra of Benzene (a) Determine the symmetries (irreducible

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Group Theory and Vibrational Spectroscopy

Group Theory and Vibrational Spectroscopy Group Theory and Vibrational Spectroscopy Pamela Schleissner Physics 251 Spring 2017 Outline Molecular Symmetry Representations of Molecular Point Groups Group Theory and Quantum Mechanics Vibrational

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Other Crystal Fields

Other Crystal Fields Other Crystal Fields! We can deduce the CFT splitting of d orbitals in virtually any ligand field by " Noting the direct product listings in the appropriate character table to determine the ways in which

More information

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings

Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings CHEM481 Chapter 6 Page 1 of 71 Chapter 6. Molecular Symmetry An introduction to symmetry analysis. M.C. Escherand Symmetry Drawings M.C. Escher has uncommon visions and intuitions. Many of Escher's drawings

More information

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d )

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d ) hemistry 6330 Problem Set 4 Answers (1) (a) B 4 - tetrahedral (T d ) B T d E 8 3 3 2 6S 4 6s d G xyz 3 0-1 -1 1 G unmoved atoms 5 2 1 1 3 G total 15 0-1 -1 3 If we reduce G total we find that: G total

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry)

Molecular Orbitals in Inorganic Chemistry. Dr. P. Hunt Rm 167 (Chemistry) Molecular Orbitals in Inorganic Chemistry Dr. P. unt p.hunt@imperial.ac.uk Rm 167 (Chemistry) http://www.ch.ic.ac.uk/hunt/ Resources Web notes AND slides link to panopto when it becomes available model

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Ge Homework Problem

Ge Homework Problem Ge 214 - Homework Problem Vibrations of SO 4 units in low symmetry environments Most minerals have structures which are lower symmetry than cubic. As a consequence, symmetrical anions such as SiO 4 2-

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

Lecture 12. Symmetry Operations. NC State University

Lecture 12. Symmetry Operations. NC State University Chemistry 431 Lecture 12 Group Theory Symmetry Operations NC State University Wave functions as the basis for irreducible representations The energy of the system will not change when symmetry Operations

More information

130 points on 6 pages + a useful page Circle the element/compound most likely to have the desired property. Briefly explain your choice

130 points on 6 pages + a useful page Circle the element/compound most likely to have the desired property. Briefly explain your choice Name Chemistry 35 Spring 212 Exam #2, March 3, 212 5 minutes 13 points on 6 pages + a useful page 7 1. Circle the element/compound most likely to have the desired property. Briefly explain your choice

More information

2.3 Band structure and lattice symmetries: example of diamond

2.3 Band structure and lattice symmetries: example of diamond 2.2.9 Product of representaitons Besides the sums of representations, one can also define their products. Consider two groups G and H and their direct product G H. If we have two representations D 1 and

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling

Colors of Co(III) solutions. Electronic-Vibrational Coupling. Vibronic Coupling Colors of Co(III) solutions Electronic-Vibrational Coupling Vibronic Coupling Because they have g g character, the d-d transitions of complees of the transition metals are forbidden (LaPorte forbidden).

More information

130 points on 6 pages + a useful page 7

130 points on 6 pages + a useful page 7 Name KEY Chemistry 350 Spring 2012 Exam #2, March 30, 2012 50 minutes 130 points on 6 pages + a useful page 7 1. Circle the element/compound most likely to have the desired property. Briefly explain your

More information

M.Sc. (Previous) DEGREE EXAMINATION, MAY (First Year) CHEMISTRY. Paper - I : General Chemistry. Time : 03 Hours Maximum Marks : 80

M.Sc. (Previous) DEGREE EXAMINATION, MAY (First Year) CHEMISTRY. Paper - I : General Chemistry. Time : 03 Hours Maximum Marks : 80 (DCHE 01) M.Sc. (Previous) DEGREE EXAMINATION, MAY - 2014 (First Year) CHEMISTRY Paper - I : General Chemistry Time : 03 Hours Maximum Marks : 80 PART - A (4 8 = 32) 1) Discuss the micro wave spectra of

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

Brief introduction to molecular symmetry

Brief introduction to molecular symmetry Chapter 1 Brief introduction to molecular symmetry It is possible to understand the electronic structure of diatomic molecules and their interaction with light without the theory of molecular symmetry.

More information

Assignment 3 Due Tuesday, March 31, 2009

Assignment 3 Due Tuesday, March 31, 2009 Assignment 3 Due Tuesday, March 31, 2009 Download and read the Math_techniques.pdf file from the Handouts section of the class web page. Do problems 1, 2, and 4 following section C (for problem 1, you

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

Quote from Eugene Paul Wigner

Quote from Eugene Paul Wigner Quote from Eugene Paul Wigner See also: Current Science, vol. 69, no. 4, 25 August 1995, p. 375 From the preface to his book on group theory: Wigner relates a conversation with von Laue on the use of group

More information

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ;

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ; Chemistry 4715/8715 Physical Inorganic Chemistry Fall 2017 12:20 pm 1:10 pm MWF 121 Smith Instructor: Text: be made available). Kent Mann; 668B Kolthoff; 625-3563; krmann@umn.edu R.S. Drago, Physical Methods

More information

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University Chemistry 431 Lecture 14 Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory NC State University Wave functions as the basis for irreducible representations The energy of the

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 5 and Transition probabilities and transition dipole moment, Overview of selection rules CHE_P8_M5 TABLE

More information

CH103 General Chemistry II 2018 Fall semester Quiz 4

CH103 General Chemistry II 2018 Fall semester Quiz 4 CH103 General Chemistry II 2018 Fall semester Quiz 4 Date: Dec. 3 rd (Mon) Time: 19:00~19:45 Professor Name Class Student I.D. Number Name 1. Circle on the correct answer in underlined parentheses. (1

More information

Tables for Group Theory

Tables for Group Theory Tables for Group Theory By P. W. ATKINS, M. S. CHILD, and C. S. G. PHILLIPS This provides the essential tables (character tables, direct products, descent in symmetry and subgroups) required for those

More information

Little Orthogonality Theorem (LOT)

Little Orthogonality Theorem (LOT) Little Orthogonality Theorem (LOT) Take diagonal elements of D matrices in RG * D R D R i j G ij mi N * D R D R N i j G G ij ij RG mi mi ( ) By definition, D j j j R TrD R ( R). Sum GOT over β: * * ( )

More information

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions

Quantum Mechanical Operators and Wavefunctions. Orthogonality of Wavefunctions. Commuting Operators have Common Eigenfunctions Quantum Mechanical perators and Wavefunctions "well behaved" functions (φ), have the following properties must be continuous (no "breaks") must have continuous derivatives (no "kinks") must be normalizable.

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Electron Correlation

Electron Correlation Series in Modern Condensed Matter Physics Vol. 5 Lecture Notes an Electron Correlation and Magnetism Patrik Fazekas Research Institute for Solid State Physics & Optics, Budapest lb World Scientific h Singapore

More information

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08)

$ +! j. % i PERTURBATION THEORY AND SUBGROUPS (REVISED 11/15/08) PERTURBATION THEORY AND SUBGROUPS REVISED 11/15/08) The use of groups and their subgroups is of much importance when perturbation theory is employed in understanding molecular orbital theory and spectroscopy

More information

CHAPTER 2 - APPLICATIONS OF GROUP THEORY

CHAPTER 2 - APPLICATIONS OF GROUP THEORY 36 HAPTER 2 APPLIATIONS OF GROUP THEORY 2 How Group Theory Applies to a Variety of hemical Problems The classification of molecules according to their symmetry point groups, provides a rigorous method

More information

Landau & Lifshits, Quantum Mechanics, Ch. 12. Tinkham, Group Theory and Quantum Mechanics

Landau & Lifshits, Quantum Mechanics, Ch. 12. Tinkham, Group Theory and Quantum Mechanics Suggested reading: Landau & Lifshits, Quantum Mechanics, Ch. 2 Tinkham, Group Theory and Quantum Mechanics Dresselhaus, Dresselhaus, Jorio, Group Theory: Applications to the Physics of Condensed Matter

More information

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS

PHYSICS 220 : GROUP THEORY FINAL EXAMINATION SOLUTIONS PHYSICS 0 : GROUP THEORY FINAL EXAMINATION SOLUTIONS This exam is due in my office, 5438 Mayer Hall, at 9 am, Monday, June 6. You are allowed to use the course lecture notes, the Lax text, and the character

More information

The Relativistic Jahn-Teller Effect

The Relativistic Jahn-Teller Effect The Relativistic Jahn-Teller Effect Wolfgang Domcke Technical University of Munich Leonid V. Poluyanov Russian Academy of Sciences, Moscow 1 The Jahn-Teller Theorem: A configuration of a polyatomic molecule

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations 4.1. Introduction CHAPTER-IV FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations m-xylol is a material for thermally stable aramid fibers or alkyd resins [1]. In recent

More information

arxiv:physics/ v1 [physics.chem-ph] 14 Nov 2005

arxiv:physics/ v1 [physics.chem-ph] 14 Nov 2005 A NEW APPROACH to ANALYSE H (h g) JAHN-TELLER SYSTEM for C 60 Ramazan Koç and Hayriye Tütüncüler Department of Physics, Faculty of Engineering University of Gaziantep, 710 Gaziantep, Turkey arxiv:physics/0111v1

More information

7. Nuclear Magnetic Resonance

7. Nuclear Magnetic Resonance 7. Nuclear Magnetic Resonance Nuclear Magnetic Resonance (NMR) is another method besides crystallography that can be used to find structures of proteins. NMR spectroscopy is the observation of spins of

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

MOLECULAR SYMMETRY. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry 11/5/2018

MOLECULAR SYMMETRY. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry. Molecular Symmetry 11/5/2018 MLECULAR YMMETRY Bundet Boekfa Chem Div, Faculty Lib Arts & ci Kasetsart University Kamphaeng aen Campus 1 (b) The groups C n, C nv, and C nh bjects that in addition to the identity and an nfold principal

More information

Supplementary Material

Supplementary Material Titel Y-Achse Intensity Electronic Supplementary Material (ESI) for Dalton Transactions Supplementary Material 2000 Isotropic Raman profile of the O-H band of HOD/D 2 O of a 1.664 moll -1 Ca(ClO 4 ) 2

More information

13 Applications of molecular symmetry and group theory

13 Applications of molecular symmetry and group theory Subject Chemistry Paper No and Title Module No and Title Module Tag 13 Applications of molecular symmetry and 26 and and vibrational spectroscopy part-iii CHE_P13_M26 TABLE OF CONTENTS 1. Learning Outcomes

More information

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 189-202 The Unshifted

More information

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10) 2009, Department of Chemistry, The University of Western Ontario 7a.1 7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text 11.1 11.5, 12.1 12.5, 12.10) A. Electromagnetic Radiation Energy is

More information

Crystal field effect on atomic states

Crystal field effect on atomic states Crystal field effect on atomic states Mehdi Amara, Université Joseph-Fourier et Institut Néel, C.N.R.S. BP 66X, F-3842 Grenoble, France References : Articles - H. Bethe, Annalen der Physik, 929, 3, p.

More information

Group Theory and Its Applications in Physics

Group Theory and Its Applications in Physics T. Inui Y Tanabe Y. Onodera Group Theory and Its Applications in Physics With 72 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Contents Sections marked with

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

11-1 Absorption of Light Quantum Numbers of Multielectron Atoms Electronic Spectra of Coordination Compounds

11-1 Absorption of Light Quantum Numbers of Multielectron Atoms Electronic Spectra of Coordination Compounds Chapter 11 Coordination Chemistry III: Electronic Spectra 11-1 Absorption of Light 11-2 Quantum Numbers of Multielectron Atoms 11-3 Electronic Spectra of Coordination Compounds Chapter 11 Coordination

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy.

b) For this ground state, obtain all possible J values and order them from lowest to highest in energy. Problem 1 (2 points) Part A Consider a free ion with a d 3 electronic configuration. a) By inspection, obtain the term symbol ( 2S+1 L) for the ground state. 4 F b) For this ground state, obtain all possible

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Calculation of band structure using group theory. Sudeep Kumar Ghosh, Department of Physics, Indian Institute of Science, Bangalore.

Calculation of band structure using group theory. Sudeep Kumar Ghosh, Department of Physics, Indian Institute of Science, Bangalore. Calculation of band structure using group theory Sudeep Kumar Ghosh, Department of Physics, Indian Institute of Science, Bangalore. Plan of the talk Brief overview of the representation theory and the

More information

Notation. Irrep labels follow Mulliken s convention: A and B label nondegenerate E irreps, doubly T degenerate, triply degenerate

Notation. Irrep labels follow Mulliken s convention: A and B label nondegenerate E irreps, doubly T degenerate, triply degenerate Notation Irrep labels follow Mulliken s convention: A and B label nondegenerate E irreps, doubly T degenerate, triply degenerate Spectroscopists sometimes use F for triply degenerate; almost everyone G

More information

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group.

Concept of a basis. Based on this treatment we can assign the basis to one of the irreducible representations of the point group. Concept of a basis A basis refers to a type of function that is transformed by the symmetry operations of a point group. Examples include the spherical harmonics, vectors, internal coordinates (e..g bonds,

More information

Nanotechnology, the Technology of Small Thermodynamic Systems 1

Nanotechnology, the Technology of Small Thermodynamic Systems 1 Contents Chapter 1 Nanotechnology, the Technology of Small Thermodynamic Systems 1 1.1 Introduction 1 1.2 Origins of Nanotechnology 1 1.3 What Nanotechnology Is 4 1.3.1 What Can Nanotechnology Do For Us?

More information