RESPONSE SURFACE MODELLING, RSM

Size: px
Start display at page:

Download "RESPONSE SURFACE MODELLING, RSM"

Transcription

1 CHEM-E3205 BIOPROCESS OPTIMIZATION AND SIMULATION LECTURE 3 RESPONSE SURFACE MODELLING, RSM Tool for process optimization

2 HISTORY Statistical experimental design pioneering work R.A. Fisher in 1925: Statistical Methods for Research Workers Randomized trials, repetitions, calculation principles, variance analysis Further development later by Box, Hunter, Scheffé, Taguchi

3

4 Fisher took apart as a statistician at Rothamsted Experimental Station which was mostly involved in agricultural research. He started with a study on wheat and continued to work with all sorts of agricultural data, becoming well known in his field. Here he developed the analysis of variance, which brought into light the problems of not just the data but the actual experiments. This led to the science of experimental design and ultimately to his famous Statistical Methods for Research Workers.

5 THE REQUIREMENTS OF THE EMPIRICAL MODEL The model fits well to the measurement results The model interpolates the space between test points reliably The model reliably predicts the direction of improvement

6 WHAT DOES RESPONSE SURFACE MODELLING MEAN? A number of mathematical methods that are utilized in modeling and analyzing the processes by which responses are affected by several variables

7 THE GOALS OF RESPONSE SURFACE MODELLING To understand the impact of the factors (controlled, independent variables) on the responses (dependent variables) and get a description of the system To make predictions or to find a suitable operating area Optimization of the response variables

8 RESPONSE SURFACE PLOTS

9 TOOLS FOR RESPONSE SURFACE MODELLING Experimental designs (factorial designs, central composite designs(ccc and CCF), Box -Behnken and D-optimal designs) Regression analysis (MLR, PLS) Model descriptive parameters (ANOVA tables, coefficients, residuals, lack of fit terms, etc.) Graphical presentation (2D and 3D figures)

10 SOFTWARE SOLUTIONS Modde SPSS Systat SAS Statistix Design Expert Excel Matlab Toolboxes

11 DESIGN OF EXPERIMENTS Factors affecting: Number of independent variables Fitted model (linear, quadratic) Number of experiment Great benefits with lesser effort Full factorial vs. fractional factorial designs Factorial, fractional factorial, L-, D-optimal, Plackett-Burman-designs

12 OBJECTIVES OF MODELING AND EXPERIMENTAL DESIGN From Modde-help During an investigation one needs answers to the following questions: Which factors have a real influence on the responses (results)? Which factors have significant interactions (synergy's or antagonism)? What are the best settings of the factors to achieve optimal conditions for best performance of a process, a system or a product? What are the predicted values of the responses (results) for given settings of the factors? An experimental design can be set up to answer all of these questions.

13 FACTOR DEFINITION Name for the factor Low and high limits Type and use Typically quantitative and controlled Process vs. mixture (formulation) qualitative vs. quantitative Transformation (lin, log, exp, etc) E.g. when max/min >10 Scaling e.g.: Orthogonal (factors are perpendicular to each other i.e. non-correlating).mid-range Unit variance

14 PROCESS FACTOR AND MIXTURE FACTORS Process factors are variables like temperature, ph, etc. which don t act as part of mixture. They are expressed in quantities or in degrees and can their magnitude can be changed independently of each other. With the mixture factors the amount of the components is expressed as a part of the total amount of the mixture. Their experimental area is within the range

15 RESPONSE DEFINITION Naming the response variables Transforming possible but normally not needed MLR (Multiple Linear Regression) and PLS- (Partial Least Squares) scaling are possible

16 MLR AND PLS You can select Multiple regression or PLS to fit the model to the data. MODDE defaults to using Multiple regression when you have 1 to 3 responses, no missing values in the data, and no uncontrolled factors, and to using PLS otherwise. You may override the system default by selecting the desired Fit Method in the Option menu MLR: will separately but automatically fit all of the responses PLS: With PLS all responses are fitted simultaneously.

17 OBJECTIVE OF THE DESIGN Screening => find the most important factors from a larger number of variables RSM => optimization with the chosen variables

18 SEARCH FOR THE OPTIMUM OR DIRECTION OF INCREASING / DECREASING RESPONSE

19 ITERATIVE ADVANCING Process design includes many steps, which may include individual optimization steps The final process consists of a sequence of optimization steps PLAN MODELING OPTIMIZING

20 RSM (RESPONSE SURFACE MODEL) OBJECTIVE Select a response surface model objective when the goal of the study is known already relatively well, with the most important variables and their operational area The object is to evaluate the response with a mathematical model which can be used for predictions, optimization or to the determination of the operating range Suitable for the process factors, mixture factors and to their combinations

21 SELECTING THE MODEL AND DESIGN Model type selection linear interactions quadratic Design types Central composite designs (CCF vs. CCC) faktorisuunnitelmat D-optimal designs Number of replicates Star distance

22 EXAMPLE: CCC-DESIGN (CENTRAL COMPOSITE CIRCUMSCRIBED) FOR TWO FACTORS ph Temp

23 EXAMPLE: CCF-DESIGN (CENTRAL COMPOSITE FACE CENTERED) FOR TWO FACTORS ph Temp

24 EXPERIMENTAL DESIGN WORKSHEET WITH FACTORS AND RESPOSES

25 SECOND ORDER POLYNOMIAL FOR CCC-DESIGN Y a b X c X d X X e X 2 f X Here e.g. : Y is enzyme activity X 1 is ph X 2 is temperature T a f model parameters calculated with linear regression

26 MODEL EVALUATION Fit of the experimental points to the model R 2,Q 2, F-test Statistical significance of the model parameters Analysis of variance (ANOVA) Graphical and numerical presentation

27 COEFFICIENT OF DETERMINATION R 2 SS SS R 2 reg res (Ŷ (Y SSreg SS SS reg i i - Y) - Ŷ ) i res 2 2 (with regression explained sum of (residual sum of squares) (coefficient of determination) squares)

28 VARIANCES y = 9.5x + 7 R 2 = Y:n ka = Y Y Total variances Explained variances X X y = 9.5x + 7 R 2 = Y Residual variances X

29 F-VALUE CALCULATION MS MS F reg res MS MS DF SS DF reg SS res reg reg res res (Explained variance) (Residual variance) (Fisher distribution test value)

30 ANALYSIS OF VARIANCE Degrees of freedom Sum of squares Variances F-values Parameter significances Model significances Model lack of fit

31 DEGREES OF FREEDOM, RESIDUALS DF SS DF SS DF DF F lof reg resid resid pe pe lof p ki SS k SS SS lof pe lof n p 1 ( e ki ( n k n p / / SS e DF DF k k 1) lof pe ) pe ( n k 1) n = number of experiments p = number of parameters (including model constant) n k = number of replicates e k =average of residual in set k k = number of replicate sets (often 1) i= residual i in replicate set k pe=pure error; lof= lack of fit If DF lof = 0, model is saturated, and MODDE can not calculate or show R 2-, R 2 Adjusted- or Q 2 values when fitted with MLR-method.

32 COEFFICIENTS AND SIGNIFICANCES Activity Coeff. Std.Err. P Conf.int(±) Constant e ph Te ph ph Te Te e ph Te

33 Q 2 MODEL PREDICTIVE ABILITY Q 2 SS tot PRESS SS tot Measure the model prediction ability in the new experimental conditions PRESS is calculated as a sum of squares from the difference between of the observed Y values and the model predicted Ypred values using the original prediction area where the estimation points has been removed pointwise

34 GOOD MODEL Coefficient of determination R 2 >0.9 Prediction ability Q 2 >0.7 Model lack of fit not statistically significant

35 2D RESPONSE SURFACE Investigation: Kitiini (MLR) Contour of Activity Temp ph

36 3D RESPONSE SURFACE Investigation: Kitiini (MLR) Response Surface of Activity Activity ph Temp

37 MODEL COMBINATIONS

38 STATIONARY POINT LOCATIONS Response surface regression equation partial derivative zero points Min-min, max-max, or a saddle point (min-max or max-min)

39 THE IMPORTANCE OF THE DESIGN OF EXPERIMENTS A good experimental design methodology allow one to properly distribute the experiments within the factor space so that one can minimize the number of experiments required to develop a statistically sound relationship between factors and a response.

40 SCREENING EXPERIMENTS Select a screening experiments when you: start a new research and know only a little of o the effect of factors on the responses, o the behavior of the responses within the test area or o about the adequate size of the test area. aim to cut down the number of factors and find out the most important factors in relation to the responses Screening experiments fit for process factors, mixture factors or their combinations. For example, if 6 factors were tested with a 2 k experimental plan we would need 2 6 =64 experiments. But if with a screening design is used to test main effects (6) and pairwise interactions (15 cross products) only 22 experiments are needed

41 SUCCESSFUL FRACTIONAL FACTORIAL DESIGN IS BASED ON Small number of important effects The process or system is affected by just some of the main effects or the lower-order interactions form a group of several possibilities Projection feature Fractional factorial design can be projected onto a larger experimental design, in which the most significant main effects occur Consecutive experiment arrangements It is also possible to combine two or more fractional factorial designs, making it possible to find out more about the main effects or interactions

42 SCREENING DESIGNS AND DESIGN RESOLUTIONS (Full) factorial designs Factor values with two or more levels. In such experimental plans one tests every possible combinations of factorial levels. If there is p factors each in two levels one needs N =2 p experiments. Factorial design is orthogonal (balanced) in which everyfactor is independent of each other. Fractional factorial designs 2 level resolution III, IV, V or more. These designs are balanced subsets of a factorial design. Design resolution is dependent on the number of experiments. Resolution III designs: Main effects and interactions may be mixed (aliases) with two way interactions. Resolution IV designs: Two way interactions may be mixed with each other. In resolution III and IV designs only linear models. Resolution V designs: Main effects and two way interactions terms are not aliased. Plackett-Burman designs Can be used to test k=n-1 variables with N experiments. Fractional factorial designs (resolution III), Plackett-Burman designs is used with linear models and interactions are mixed with main effects.

43 TWO LEVEL FULL FACTORIAL DESIGNS

44 TWO LEVEL FRACTIONAL FACTORIAL DESIGNS Consider the main design for a 2 level full factorial experiment for three factors (a,b, and c) shown above. We have multiplied out the values of the interaction terms and split the design into two half fractions based on the value of a b c. One could take a half fraction of the full factorial design based on the runs that a b c = 1 (principle fraction) or a b c = -1 (complimentary fraction). These two fractions have different shadings in the table. In the principle fraction c = a b and in the complimentary fraction c = -a b. These equations are called the generators for the design. The word abc is called the defining word for the design. The defining relation is developed by setting the defining words equal to plus or minus one depending on the fraction of interest. So it can happen that when interpreting the behavior in Y with a model one cannot distinct here is the factor c or interaction ab causing behavior or changes in Y.

45 SCREENING DESIGN (FRACTIONAL FACTORIAL DESIGN) FOR IONS, VITAMIN AND TRACE ELEMENTS TEST

46 CONFOUNDINGS (MIXED INTERACTIONS) Main effect: Confoundings: CO 2-3 Cl - Na + NO - 3 Cl - Ca 2+ Sitraatti - Na + Ca 2+ Zn 2+ Cl - Na + Ca 2+ Mg 2+ Cl - SO2-4 Vitamin Na + SO2-4 Trace el. Ca 2+ SO 2-4 Mn 2+ Cl - Na + SO2-4 Fe 2+ /Fe 3+ Cl - Ca 2+ SO2-4 Cu 2+ Na + Ca 2+ SO2-4 Co 2+ Cl - Na + Ca 2+ SO2-4

47 FACTOR EFFECTS TO FINAL ABSORBANCE WITH THE P- VALUES, COEFFICIENT OF DETERMINATION (R2) AND STATISTICAL SIGNIFICANCE

48 CENTRAL COMPOSITE DESIGN AND THE RESULTING MODEL FOR SPECIFIC GROWTH RATE FOR ION CONCENTRATION OPTIMISATION Cl - 2- SO 4 Mg 2+ Mn 2+ nr: mm mm mm mm 1/h , , , , , , , , , , , , , , , , , , , , ,22 5 0, ,78 5 0, ,24 0, ,76 0, , , , , , ,

49 ITERATIVE OPTIMUM SEARCH WITH MODDE

Response Surface Methodology

Response Surface Methodology Response Surface Methodology Process and Product Optimization Using Designed Experiments Second Edition RAYMOND H. MYERS Virginia Polytechnic Institute and State University DOUGLAS C. MONTGOMERY Arizona

More information

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur

Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Design and Analysis of Experiments Prof. Jhareshwar Maiti Department of Industrial and Systems Engineering Indian Institute of Technology, Kharagpur Lecture 51 Plackett Burman Designs Hello, welcome. We

More information

Response Surface Methodology:

Response Surface Methodology: Response Surface Methodology: Process and Product Optimization Using Designed Experiments RAYMOND H. MYERS Virginia Polytechnic Institute and State University DOUGLAS C. MONTGOMERY Arizona State University

More information

SIX SIGMA IMPROVE

SIX SIGMA IMPROVE SIX SIGMA IMPROVE 1. For a simplex-lattice design the following formula or equation determines: A. The canonical formula for linear coefficients B. The portion of each polynomial in the experimental model

More information

What If There Are More Than. Two Factor Levels?

What If There Are More Than. Two Factor Levels? What If There Are More Than Chapter 3 Two Factor Levels? Comparing more that two factor levels the analysis of variance ANOVA decomposition of total variability Statistical testing & analysis Checking

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Design & Analysis of Experiments 7E 2009 Montgomery

Design & Analysis of Experiments 7E 2009 Montgomery Chapter 5 1 Introduction to Factorial Design Study the effects of 2 or more factors All possible combinations of factor levels are investigated For example, if there are a levels of factor A and b levels

More information

DESIGN OF EXPERIMENT ERT 427 Response Surface Methodology (RSM) Miss Hanna Ilyani Zulhaimi

DESIGN OF EXPERIMENT ERT 427 Response Surface Methodology (RSM) Miss Hanna Ilyani Zulhaimi + DESIGN OF EXPERIMENT ERT 427 Response Surface Methodology (RSM) Miss Hanna Ilyani Zulhaimi + Outline n Definition of Response Surface Methodology n Method of Steepest Ascent n Second-Order Response Surface

More information

8 RESPONSE SURFACE DESIGNS

8 RESPONSE SURFACE DESIGNS 8 RESPONSE SURFACE DESIGNS Desirable Properties of a Response Surface Design 1. It should generate a satisfactory distribution of information throughout the design region. 2. It should ensure that the

More information

OPTIMIZATION OF FIRST ORDER MODELS

OPTIMIZATION OF FIRST ORDER MODELS Chapter 2 OPTIMIZATION OF FIRST ORDER MODELS One should not multiply explanations and causes unless it is strictly necessary William of Bakersville in Umberto Eco s In the Name of the Rose 1 In Response

More information

Experimental Design and Optimization

Experimental Design and Optimization . Experimental Design Stages a) Identifying the factors which may affect the results of an experiment; b) Designing the experiment so that the effects of uncontrolled factors are minimized; c) Using statistical

More information

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Edition

Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Edition Brochure More information from http://www.researchandmarkets.com/reports/705963/ Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd Edition Description: Identifying

More information

CHAPTER 4 EXPERIMENTAL DESIGN. 4.1 Introduction. Experimentation plays an important role in new product design, manufacturing

CHAPTER 4 EXPERIMENTAL DESIGN. 4.1 Introduction. Experimentation plays an important role in new product design, manufacturing CHAPTER 4 EXPERIMENTAL DESIGN 4.1 Introduction Experimentation plays an important role in new product design, manufacturing process development and process improvement. The objective in all cases may be

More information

Process/product optimization using design of experiments and response surface methodology

Process/product optimization using design of experiments and response surface methodology Process/product optimization using design of experiments and response surface methodology Mikko Mäkelä Sveriges landbruksuniversitet Swedish University of Agricultural Sciences Department of Forest Biomaterials

More information

Design of Engineering Experiments Chapter 5 Introduction to Factorials

Design of Engineering Experiments Chapter 5 Introduction to Factorials Design of Engineering Experiments Chapter 5 Introduction to Factorials Text reference, Chapter 5 page 170 General principles of factorial experiments The two-factor factorial with fixed effects The ANOVA

More information

Chemometrics Unit 4 Response Surface Methodology

Chemometrics Unit 4 Response Surface Methodology Chemometrics Unit 4 Response Surface Methodology Chemometrics Unit 4. Response Surface Methodology In Unit 3 the first two phases of experimental design - definition and screening - were discussed. In

More information

7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology)

7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology) 7. Response Surface Methodology (Ch.10. Regression Modeling Ch. 11. Response Surface Methodology) Hae-Jin Choi School of Mechanical Engineering, Chung-Ang University 1 Introduction Response surface methodology,

More information

Addition of Center Points to a 2 k Designs Section 6-6 page 271

Addition of Center Points to a 2 k Designs Section 6-6 page 271 to a 2 k Designs Section 6-6 page 271 Based on the idea of replicating some of the runs in a factorial design 2 level designs assume linearity. If interaction terms are added to model some curvature results

More information

Response Surface Methodology

Response Surface Methodology Response Surface Methodology Bruce A Craig Department of Statistics Purdue University STAT 514 Topic 27 1 Response Surface Methodology Interested in response y in relation to numeric factors x Relationship

More information

Process/product optimization using design of experiments and response surface methodology

Process/product optimization using design of experiments and response surface methodology Process/product optimization using design of experiments and response surface methodology M. Mäkelä Sveriges landbruksuniversitet Swedish University of Agricultural Sciences Department of Forest Biomaterials

More information

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Experimental design. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Experimental design Matti Hotokka Department of Physical Chemistry Åbo Akademi University Contents Elementary concepts Regression Validation Design of Experiments Definitions Random sampling Factorial

More information

Mixed Designs: Between and Within. Psy 420 Ainsworth

Mixed Designs: Between and Within. Psy 420 Ainsworth Mixed Designs: Between and Within Psy 420 Ainsworth Mixed Between and Within Designs Conceptualizing the Design Types of Mixed Designs Assumptions Analysis Deviation Computation Higher order mixed designs

More information

An Introduction to Design of Experiments

An Introduction to Design of Experiments An Introduction to Design of Experiments Douglas C. Montgomery Regents Professor of Industrial Engineering and Statistics ASU Foundation Professor of Engineering Arizona State University Bradley Jones

More information

MATH602: APPLIED STATISTICS

MATH602: APPLIED STATISTICS MATH602: APPLIED STATISTICS Dr. Srinivas R. Chakravarthy Department of Science and Mathematics KETTERING UNIVERSITY Flint, MI 48504-4898 Lecture 10 1 FRACTIONAL FACTORIAL DESIGNS Complete factorial designs

More information

Experimental Optimization and Response Surfaces

Experimental Optimization and Response Surfaces 5 Experimental Optimization and Response Surfaces Veli-Matti Tapani Taavitsainen Helsinki Metropolia University of Applied Sciences Finland 1. Introduction Statistical design of experiments (DOE) is commonly

More information

Quality Improvement in Hot Dip Galvanizing Process Using Robust Design tools

Quality Improvement in Hot Dip Galvanizing Process Using Robust Design tools Quality Improvement in Hot Dip Galvanizing Process Using Robust Design tools Abdosalam R. Dalef 1 and Mohammed E. Alaalem 2 1 Faculty of Marine Resources, Al-Asmarya Islamic University, Zliten, Libya,

More information

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University Chemometrics Matti Hotokka Physical chemistry Åbo Akademi University Linear regression Experiment Consider spectrophotometry as an example Beer-Lamberts law: A = cå Experiment Make three known references

More information

Unit 12: Response Surface Methodology and Optimality Criteria

Unit 12: Response Surface Methodology and Optimality Criteria Unit 12: Response Surface Methodology and Optimality Criteria STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Revisit your knowledge of polynomial regression Know how to use

More information

CHAPTER 6 MACHINABILITY MODELS WITH THREE INDEPENDENT VARIABLES

CHAPTER 6 MACHINABILITY MODELS WITH THREE INDEPENDENT VARIABLES CHAPTER 6 MACHINABILITY MODELS WITH THREE INDEPENDENT VARIABLES 6.1 Introduction It has been found from the literature review that not much research has taken place in the area of machining of carbon silicon

More information

Answer Keys to Homework#10

Answer Keys to Homework#10 Answer Keys to Homework#10 Problem 1 Use either restricted or unrestricted mixed models. Problem 2 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean

More information

Assignment 9 Answer Keys

Assignment 9 Answer Keys Assignment 9 Answer Keys Problem 1 (a) First, the respective means for the 8 level combinations are listed in the following table A B C Mean 26.00 + 34.67 + 39.67 + + 49.33 + 42.33 + + 37.67 + + 54.67

More information

CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS

CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS 134 CHAPTER 6 A STUDY ON DISC BRAKE SQUEAL USING DESIGN OF EXPERIMENTS 6.1 INTRODUCTION In spite of the large amount of research work that has been carried out to solve the squeal problem during the last

More information

Study on Optimal Design of Automotive Body Structure Crashworthiness

Study on Optimal Design of Automotive Body Structure Crashworthiness 7 th International LS-DYNA Users Conference Simulation Technology () Study on Optimal Design of Automotive Body Structure Crashworthiness Wang Hailiang Lin Zhongqin Jin Xianlong Institute for Automotive

More information

Lecture 1. Overview and Basic Principles

Lecture 1. Overview and Basic Principles Lecture 1 Overview and Basic Principles Montgomery: Chapter 1 Fall, 2013 Page 1 Fall, 2013 Page 2 Why Using Statistical Methods for Design and Analysis of Experiments 1 Experimental error 2 Confusion of

More information

Response Surface Methods

Response Surface Methods Response Surface Methods 3.12.2014 Goals of Today s Lecture See how a sequence of experiments can be performed to optimize a response variable. Understand the difference between first-order and second-order

More information

DOE Wizard Screening Designs

DOE Wizard Screening Designs DOE Wizard Screening Designs Revised: 10/10/2017 Summary... 1 Example... 2 Design Creation... 3 Design Properties... 13 Saving the Design File... 16 Analyzing the Results... 17 Statistical Model... 18

More information

Practical Statistics for the Analytical Scientist Table of Contents

Practical Statistics for the Analytical Scientist Table of Contents Practical Statistics for the Analytical Scientist Table of Contents Chapter 1 Introduction - Choosing the Correct Statistics 1.1 Introduction 1.2 Choosing the Right Statistical Procedures 1.2.1 Planning

More information

Regression Analysis. Simple Regression Multivariate Regression Stepwise Regression Replication and Prediction Error EE290H F05

Regression Analysis. Simple Regression Multivariate Regression Stepwise Regression Replication and Prediction Error EE290H F05 Regression Analysis Simple Regression Multivariate Regression Stepwise Regression Replication and Prediction Error 1 Regression Analysis In general, we "fit" a model by minimizing a metric that represents

More information

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization.

The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 1 Chapter 1: Research Design Principles The legacy of Sir Ronald A. Fisher. Fisher s three fundamental principles: local control, replication, and randomization. 2 Chapter 2: Completely Randomized Design

More information

BIOMETRICS INFORMATION

BIOMETRICS INFORMATION BIOMETRICS INFORMATION Index of Pamphlet Topics (for pamphlets #1 to #60) as of December, 2000 Adjusted R-square ANCOVA: Analysis of Covariance 13: ANCOVA: Analysis of Covariance ANOVA: Analysis of Variance

More information

Fractional Factorial Designs

Fractional Factorial Designs Fractional Factorial Designs ST 516 Each replicate of a 2 k design requires 2 k runs. E.g. 64 runs for k = 6, or 1024 runs for k = 10. When this is infeasible, we use a fraction of the runs. As a result,

More information

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks.

Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. 58 2. 2 factorials in 2 blocks Suppose we needed four batches of formaldehyde, and coulddoonly4runsperbatch. Thisisthena2 4 factorial in 2 2 blocks. Some more algebra: If two effects are confounded with

More information

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS

TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS STAT 512 2-Level Factorial Experiments: Irregular Fractions 1 TWO-LEVEL FACTORIAL EXPERIMENTS: IRREGULAR FRACTIONS A major practical weakness of regular fractional factorial designs is that N must be a

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

Mean Comparisons PLANNED F TESTS

Mean Comparisons PLANNED F TESTS Mean Comparisons F-tests provide information on significance of treatment effects, but no information on what the treatment effects are. Comparisons of treatment means provide information on what the treatment

More information

Classes of Second-Order Split-Plot Designs

Classes of Second-Order Split-Plot Designs Classes of Second-Order Split-Plot Designs DATAWorks 2018 Springfield, VA Luis A. Cortés, Ph.D. The MITRE Corporation James R. Simpson, Ph.D. JK Analytics, Inc. Peter Parker, Ph.D. NASA 22 March 2018 Outline

More information

Design of experiments

Design of experiments Design of experiments CIRAD - UMR Ecologie des forêts de Guyane vivien.rossi@cirad.fr Master 2 - Ecologie des Forêts Tropicale AgroParisTech - Université Antilles-Guyane Kourou, novembre 2010 objectives

More information

Taguchi Method and Robust Design: Tutorial and Guideline

Taguchi Method and Robust Design: Tutorial and Guideline Taguchi Method and Robust Design: Tutorial and Guideline CONTENT 1. Introduction 2. Microsoft Excel: graphing 3. Microsoft Excel: Regression 4. Microsoft Excel: Variance analysis 5. Robust Design: An Example

More information

Design and Analysis of Experiments

Design and Analysis of Experiments Design and Analysis of Experiments Part IX: Response Surface Methodology Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com Methods Math Statistics Models/Analyses Response

More information

Unbalanced Data in Factorials Types I, II, III SS Part 1

Unbalanced Data in Factorials Types I, II, III SS Part 1 Unbalanced Data in Factorials Types I, II, III SS Part 1 Chapter 10 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 14 When we perform an ANOVA, we try to quantify the amount of variability in the data accounted

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Objective Experiments Glossary of Statistical Terms

Objective Experiments Glossary of Statistical Terms Objective Experiments Glossary of Statistical Terms This glossary is intended to provide friendly definitions for terms used commonly in engineering and science. It is not intended to be absolutely precise.

More information

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo

Reference: Chapter 6 of Montgomery(8e) Maghsoodloo Reference: Chapter 6 of Montgomery(8e) Maghsoodloo 51 DOE (or DOX) FOR BASE BALANCED FACTORIALS The notation k is used to denote a factorial experiment involving k factors (A, B, C, D,..., K) each at levels.

More information

Appendix IV Experimental Design

Appendix IV Experimental Design Experimental Design The aim of pharmaceutical formulation and development is to develop an acceptable pharmaceutical formulation in the shortest possible time, using minimum number of working hours and

More information

Chapter 14 Student Lecture Notes 14-1

Chapter 14 Student Lecture Notes 14-1 Chapter 14 Student Lecture Notes 14-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 14 Multiple Regression Analysis and Model Building Chap 14-1 Chapter Goals After completing this

More information

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya

DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Genap 2017/2018 Jurusan Teknik Industri Universitas Brawijaya DESAIN EKSPERIMEN Analysis of Variances (ANOVA) Semester Jurusan Teknik Industri Universitas Brawijaya Outline Introduction The Analysis of Variance Models for the Data Post-ANOVA Comparison of Means Sample

More information

Disegno Sperimentale (DoE) come strumento per QbD

Disegno Sperimentale (DoE) come strumento per QbD Giornata di Studio Disegno Sperimentale (DoE) come strumento per QbD Università degli Studi di Milano Dipartimento di Scienze Farmaceutiche Milano, 22 aprile 2013 Dr. Lorenza Broccardo Introduction Nowadays,

More information

STAT 350: Geometry of Least Squares

STAT 350: Geometry of Least Squares The Geometry of Least Squares Mathematical Basics Inner / dot product: a and b column vectors a b = a T b = a i b i a b a T b = 0 Matrix Product: A is r s B is s t (AB) rt = s A rs B st Partitioned Matrices

More information

Comparing Several Means: ANOVA

Comparing Several Means: ANOVA Comparing Several Means: ANOVA Understand the basic principles of ANOVA Why it is done? What it tells us? Theory of one way independent ANOVA Following up an ANOVA: Planned contrasts/comparisons Choosing

More information

Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology

Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology Diponegoro University From the SelectedWorks of Istadi May 12, 2008 Optimization of Methane Conversion to Liquid Fuels over W-Cu/ZSM5 Catalysts by Response Surface Methodology Istadi Istadi, Diponegoro

More information

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES

4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES 4:3 LEC - PLANNED COMPARISONS AND REGRESSION ANALYSES FOR SINGLE FACTOR BETWEEN-S DESIGNS Planned or A Priori Comparisons We previously showed various ways to test all possible pairwise comparisons for

More information

Unit 6: Fractional Factorial Experiments at Three Levels

Unit 6: Fractional Factorial Experiments at Three Levels Unit 6: Fractional Factorial Experiments at Three Levels Larger-the-better and smaller-the-better problems. Basic concepts for 3 k full factorial designs. Analysis of 3 k designs using orthogonal components

More information

Laboratory Exercise System Identification. Laboratory Experiment AS-PA6. "Design of Experiments"

Laboratory Exercise System Identification. Laboratory Experiment AS-PA6. Design of Experiments Formel-Kapitel Abschnitt FACHGEBIET Systemanalyse Laboratory Exercise System Identification Laboratory Experiment AS-PA6 "Design of Experiments" Responsible professor: Dr.-Ing. Thomas Glotzbach Responsible

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: 1.0 ial Experiment Design by Block... 3 1.1 ial Experiment in Incomplete Block... 3 1. ial Experiment with Two Blocks... 3 1.3 ial Experiment with Four Blocks... 5 Example 1... 6.0 Fractional ial Experiment....1

More information

Chapter 5 Introduction to Factorial Designs

Chapter 5 Introduction to Factorial Designs Chapter 5 Introduction to Factorial Designs 5. Basic Definitions and Principles Stud the effects of two or more factors. Factorial designs Crossed: factors are arranged in a factorial design Main effect:

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analysis of Variance and Design of Experiments-II MODULE VIII LECTURE - 36 RESPONSE SURFACE DESIGNS Dr. Shalabh Department of Mathematics & Statistics Indian Institute of Technology Kanpur 2 Design for

More information

EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1

EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1 EXPERIMENTAL DESIGN TECHNIQUES APPLIED TO STUDY OF OXYGEN CONSUMPTION IN A FERMENTER 1 Blanca VELÁZQUEZ MSc, Department of Biotechnology Development Institute of Hygiene, Faculty of Medicine, University

More information

Six Sigma Black Belt Study Guides

Six Sigma Black Belt Study Guides Six Sigma Black Belt Study Guides 1 www.pmtutor.org Powered by POeT Solvers Limited. Analyze Correlation and Regression Analysis 2 www.pmtutor.org Powered by POeT Solvers Limited. Variables and relationships

More information

Contents. Response Surface Designs. Contents. References.

Contents. Response Surface Designs. Contents. References. Response Surface Designs Designs for continuous variables Frédéric Bertrand 1 1 IRMA, Université de Strasbourg Strasbourg, France ENSAI 3 e Année 2017-2018 Setting Visualizing the Response First-Order

More information

Study the effect of the weather strip on side door closing effort for passenger vehicle

Study the effect of the weather strip on side door closing effort for passenger vehicle Study the effect of the weather strip on side door closing effort for passenger vehicle Mukdam Kena and Dick Newton Ford motor company Dearborn, MI 48124, USA mkena@ford.com, rnewton4@ford.com Ahad Ali

More information

Experimental designs for multiple responses with different models

Experimental designs for multiple responses with different models Graduate Theses and Dissertations Graduate College 2015 Experimental designs for multiple responses with different models Wilmina Mary Marget Iowa State University Follow this and additional works at:

More information

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is

Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Lecture 15 Multiple regression I Chapter 6 Set 2 Least Square Estimation The quadratic form to be minimized is Q = (Y i β 0 β 1 X i1 β 2 X i2 β p 1 X i.p 1 ) 2, which in matrix notation is Q = (Y Xβ) (Y

More information

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value.

3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 Completed table is: One-way

More information

Hardware/Software Design Methodologies Introduction to DoE and Course Projects

Hardware/Software Design Methodologies Introduction to DoE and Course Projects Hardware/Software Design Methodologies Introduction to DoE and Course Projects Vittorio Zaccaria Dipartimento di Elettronica e Informazione Politecnico di Milano zaccaria@elet.polimi.it for informations

More information

Strategy of Experimentation II

Strategy of Experimentation II LECTURE 2 Strategy of Experimentation II Comments Computer Code. Last week s homework Interaction plots Helicopter project +1 1 1 +1 [4I 2A 2B 2AB] = [µ 1) µ A µ B µ AB ] +1 +1 1 1 +1 1 +1 1 +1 +1 +1 +1

More information

Design and Analysis of

Design and Analysis of Design and Analysis of Multi-Factored Experiments Module Engineering 7928-2 Two-level Factorial Designs L. M. Lye DOE Course 1 The 2 k Factorial Design Special case of the general factorial design; k factors,

More information

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons

Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons Self-Assessment Weeks 8: Multiple Regression with Qualitative Predictors; Multiple Comparisons 1. Suppose we wish to assess the impact of five treatments while blocking for study participant race (Black,

More information

20.0 Experimental Design

20.0 Experimental Design 20.0 Experimental Design Answer Questions 1 Philosophy One-Way ANOVA Egg Sample Multiple Comparisons 20.1 Philosophy Experiments are often expensive and/or dangerous. One wants to use good techniques that

More information

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs

Chapter 9 Other Topics on Factorial and Fractional Factorial Designs Chapter 9 Other Topics on Factorial and Fractional Factorial Designs 許湘伶 Design and Analysis of Experiments (Douglas C. Montgomery) hsuhl (NUK) DAE Chap. 9 1 / 26 The 3 k Factorial Design 3 k factorial

More information

Project: PAJ3: Combined Cyclic Loading and Hostile Environments Report 3. A Guide to the use of Design of Experiment Methods

Project: PAJ3: Combined Cyclic Loading and Hostile Environments Report 3. A Guide to the use of Design of Experiment Methods Project: PAJ3: Combined Cyclic Loading and Hostile Environments Report 3 A Guide to the use of Design of Experiment Methods A OLUSANYA M HALL, XYRATEX, HAVANT May 1997 A Guide to the use of Design of Experiment

More information

Definitive Screening Designs

Definitive Screening Designs Definitive Screening Designs Bradley Jones September 2011 Copyright 2008, SAS Institute Inc. All rights reserved. Joint work with Chris Nachtsheim Outline 1. Motivation 2. Design Structure 3. Design Construction

More information

STAT 571A Advanced Statistical Regression Analysis. Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR

STAT 571A Advanced Statistical Regression Analysis. Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR STAT 571A Advanced Statistical Regression Analysis Chapter 8 NOTES Quantitative and Qualitative Predictors for MLR 2015 University of Arizona Statistics GIDP. All rights reserved, except where previous

More information

Determining Machining Parameters of Corn Byproduct Filled Plastics

Determining Machining Parameters of Corn Byproduct Filled Plastics Iowa State University From the SelectedWorks of Kurt A. Rosentrater 8 Determining Machining Parameters of Corn Byproduct Filled Plastics Kurt A. Rosentrater, United States Department of Agriculture Andrew

More information

20g g g Analyze the residuals from this experiment and comment on the model adequacy.

20g g g Analyze the residuals from this experiment and comment on the model adequacy. 3.4. A computer ANOVA output is shown below. Fill in the blanks. You may give bounds on the P-value. One-way ANOVA Source DF SS MS F P Factor 3 36.15??? Error??? Total 19 196.04 3.11. A pharmaceutical

More information

Unit 9: Confounding and Fractional Factorial Designs

Unit 9: Confounding and Fractional Factorial Designs Unit 9: Confounding and Fractional Factorial Designs STA 643: Advanced Experimental Design Derek S. Young 1 Learning Objectives Understand what it means for a treatment to be confounded with blocks Know

More information

Lecture 3: Inference in SLR

Lecture 3: Inference in SLR Lecture 3: Inference in SLR STAT 51 Spring 011 Background Reading KNNL:.1.6 3-1 Topic Overview This topic will cover: Review of hypothesis testing Inference about 1 Inference about 0 Confidence Intervals

More information

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1

The 2 k Factorial Design. Dr. Mohammad Abuhaiba 1 The 2 k Factorial Design Dr. Mohammad Abuhaiba 1 HoweWork Assignment Due Tuesday 1/6/2010 6.1, 6.2, 6.17, 6.18, 6.19 Dr. Mohammad Abuhaiba 2 Design of Engineering Experiments The 2 k Factorial Design Special

More information

Contents. 2 2 factorial design 4

Contents. 2 2 factorial design 4 Contents TAMS38 - Lecture 10 Response surface methodology Lecturer: Zhenxia Liu Department of Mathematics - Mathematical Statistics 12 December, 2017 2 2 factorial design Polynomial Regression model First

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

7.3 Ridge Analysis of the Response Surface

7.3 Ridge Analysis of the Response Surface 7.3 Ridge Analysis of the Response Surface When analyzing a fitted response surface, the researcher may find that the stationary point is outside of the experimental design region, but the researcher wants

More information

Introduction to the Design and Analysis of Experiments

Introduction to the Design and Analysis of Experiments Introduction to the Design and Analysis of Experiments Geoffrey M. Clarke, MA,Dip.stats.,c.stat. Honorary Reader in Applied Statistics, University of Kent at Canterbury and Consultant to the Applied Statistics

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Design of Engineering Experiments Part 5 The 2 k Factorial Design

Design of Engineering Experiments Part 5 The 2 k Factorial Design Design of Engineering Experiments Part 5 The 2 k Factorial Design Text reference, Special case of the general factorial design; k factors, all at two levels The two levels are usually called low and high

More information

Data Set 1A: Algal Photosynthesis vs. Salinity and Temperature

Data Set 1A: Algal Photosynthesis vs. Salinity and Temperature Data Set A: Algal Photosynthesis vs. Salinity and Temperature Statistical setting These data are from a controlled experiment in which two quantitative variables were manipulated, to determine their effects

More information

Response Surface Methodology IV

Response Surface Methodology IV LECTURE 8 Response Surface Methodology IV 1. Bias and Variance If y x is the response of the system at the point x, or in short hand, y x = f (x), then we can write η x = E(y x ). This is the true, and

More information

14.0 RESPONSE SURFACE METHODOLOGY (RSM)

14.0 RESPONSE SURFACE METHODOLOGY (RSM) 4. RESPONSE SURFACE METHODOLOGY (RSM) (Updated Spring ) So far, we ve focused on experiments that: Identify a few important variables from a large set of candidate variables, i.e., a screening experiment.

More information

DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition

DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition DESIGN AND ANALYSIS OF EXPERIMENTS Third Edition Douglas C. Montgomery ARIZONA STATE UNIVERSITY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents Chapter 1. Introduction 1-1 What

More information

Chapter 4 - Mathematical model

Chapter 4 - Mathematical model Chapter 4 - Mathematical model For high quality demands of production process in the micro range, the modeling of machining parameters is necessary. Non linear regression as mathematical modeling tool

More information

Design and Analysis of Experiments Lecture 6.1

Design and Analysis of Experiments Lecture 6.1 Lecture 6.1 1. Review of split unit experiments Why split? Why block? 2. Review of Laboratory 2 Cambridge grassland experiment Soup mix packet filling 3. Extending plot and treatment structures Wood stain

More information

CHAPTER 5 NON-LINEAR SURROGATE MODEL

CHAPTER 5 NON-LINEAR SURROGATE MODEL 96 CHAPTER 5 NON-LINEAR SURROGATE MODEL 5.1 INTRODUCTION As set out in the research methodology and in sequent with the previous section on development of LSM, construction of the non-linear surrogate

More information