] (1) Fuzzy Trajectory Control Design for Underwater Robot. Abstract. 2 Equations of Motion. 1 Introduction

Size: px
Start display at page:

Download "] (1) Fuzzy Trajectory Control Design for Underwater Robot. Abstract. 2 Equations of Motion. 1 Introduction"

Transcription

1 EUSFLAT - LFA 5 Fuzzy Trajectory Control Desgn for Underwater Robot Jerzy Garus Department of Electroncs and Electrcal Engneerng Naval Unversty 8-3 Gdyna, ul. Śmdowcza 69 Poland j.garus@amw.gdyna.pl Zygmunt Ktows Faculty of Mechancal and Electrcal Engneerng Naval Unversty 8-3 Gdyna, ul. Śmdowcza 69 Poland z.tows@amw.gdyna.pl Abstract In the paper applyng of genetc algorthms to desgnng of a fuzzy autoplot for traceepng control of underwater robot s consdered. For the tracng of a reference trajectory, the way-pont lne of sght scheme s ncorporated and three ndependent fuzzy controllers are used to generate command sgnals. Parameters of membershp functons of nput and output are tuned usng genetc algorthms. Qualty of control s concerned wthout and n presence of external dsturbances. Some computer smulatons are provded to demonstrate the effectveness and robustness of the approach. Keywords: Underwater robot, Autoplot, Fuzzy control, Artfcal ntellgence. Introducton Underwater Robotcs has nown an ncreasng nterest n the last years. The man benefts of usage of Underwater Robotc Vehcles (URVs) can be removng a man from the dangers of the undersea envronment and reducton n cost of exploraton of deep seas. Currently, t s common to use the URVs to accomplsh mssons as the nspecton of coastal and offshore structures, cable mantenance, as well as hydrographcal and bologcal surveys. In the mltary feld they are employed n such tass as survellance, ntellgence gatherng, torpedo recovery and mne counter measures. The URV s operated manually wth a joystc or automatcally wth a computer. The automatc control of the underwater robot s a dffcult problem due to ts nonlnear dynamcs. Moreover, the dynamcs can change accordng to the alteraton of confguraton to be suted to the msson. In order to cope wth those dffcultes, the control system should be flexble. An nterestng revew of classcal and modern technques adapted to control the dynamc behavour of unmanned underwater vehcles has been provded n []. Nowadays, fuzzy systems fnd wde practcal applcatons, rangng from soft regulatory control n consumer products to accurate control and modelng of complex nonlnear systems [,6,7,8,9]. In ths paper we desgn the fuzzy logc autoplot to traceepng control of the URV tunng ts parameters by genetc algorthms. Equatons of Moton The general moton of marne vehcle n 6 DOF descrbes the followng vectors [3,4]: η = v = τ = T [ x, y, z, φ, θ, ψ ] T [ u, υ, w, p, q, r [ X, Y, Z, K, M, N ] T ] () η poston and orentaton vector wth coordnates n the earth-fxed frame; v lnear and angular velocty vector wth coordnates n the body-fxed frame; 58

2 EUSFLAT - LFA 5 τ vector of forces and moments actng on a hull n the body-fxed frame. The dynamcal and nematcal equatons of moton can be expressed as follows [3]: ( ) Mv& + C( v) v + D v v + g( η) η& = J( η)v = τ () M nerta matrx (ncludng added mass); C(v) matrx of Corols and centrpetal terms (ncludng added mass); D(v) hydrodynamc dampng and lft matrx; g (η) vector of gravtatonal forces and moments; J velocty transformaton matrx between ( η) Let us assume that the route s composed of some straght lnes defned by turnng ponts P, P, P 3, etc., wth coordnates ( x, y ), ( x,y ), ( x,y ), etc. 3 3 A tracng error of the robot s defned n the reference coordnate system P X Y (n Fg. t s P X Y ) as a perpendcular dstance d of the robot located n poston ( x, y to the predefned ) trajectory. Accordng to ths, the two-component vector of the robot s poston [ x, y n the global ] coordnate system can be expressed as: body and earth-fxed frames. [ ] T y 3 Tracng and Coordnate Systems It s convenent to defne three coordnate systems when analysng tracng control systems for the robot s 3D moton n horzontal plane (see Fg. ) [3,4]:. the global coordnate system OXY (called also the earth-fxed frame);. the local coordnate system O X Y (fxed to the body of the robot); 3. the reference coordnate system P X Y (system s not fxed). ϕ ( ϕ ) sn( ϕ ) x + ( ) ( ) x ϕ cos ϕ y y x cos = (3) y sn x, global coordnates of the pont P ; rotaton of the reference coordnate system wth respect to the global one: y + y ϕ = arctan (4) x+ x [ x, y] T local coordnates of the robot, determned by expresson: x = y x& y& = t cos sn ( ψ ) u sn( ψ ) ( ψ ) u + cos( ψ ) υ υ ψ = ψ ϕ local headng angle defned as the angle between the trac reference lne and the robot s centrelne; ψ, u, υ robot s headng and lnear speeds n nstant t= t; x &, & ncrement of the robot s local [ ] T y t =,,,. coordnates n t= t; tme step; (5) Each tme the robot locaton ( x at the tme ( t), y ( t t satsfes: [ x x ( t) ] + [ y y () t ] (6) ρ )) Fgure : Coordnate systems used to descrpton of trac-eepng control n the horzontal plane: OXY earth-fxed system, O X Y body-fxed system, P X Y reference system where ρ s a crcle of acceptance, the next way-pont should be selected (e.g. n Fg. t s P X Y ) and the robot s poston updated correspondng to the new reference coordnate system. 59

3 EUSFLAT - LFA 5 4 Control System Membershp functons of fuzzy sets of nput varables: error sgnal e() t = η d η() t and derved The man tas of the desgned tracng control change n error e( t) = η ( t) η( t ) as well as system s to mnmze dstance of atttude of the robot s centre of gravty d to the desred trajectory output one (command sgnal) τ () t are shown under assumptons: respectvely n Fg. 4. The notaton s taen as follows: N negatve, Z zero, P postve,. robot can move wth varyng lnear veloctes u, S small, M medum and B bg. υ and angular velocty r;. the robot s poston x, y and headng ψ are measurable; 3. desred trajectory s gven by means of set of η = x, y, ψ ; ponts {( )} d d d 4. command sgnal τ conssts of three components: τ = X and τ = Y forces respectvely n x- and y-axs, τ = N moment about z-axs; 6 5. travel tme s not fxed, thus the navgaton between two ponts s not constraned by tme. A structure of the proposed control system wth the autoplot consstng of three ndependent controllers s depcted n Fg.. d Fgure 3: Fuzzy control structure Presented n Table rules from the Mac Vcar- -Whelan s standard base of rules have been chosen as the control ones [7]. Table : The fuzzy controller s base of rules Error sgnal e NB NM Z PM PB Derved N NB NM NS Z PS change n Z NM NS Z PS PM error e B NS Z PS PM PB Command sgnal τ 4. Tunng of Fuzzy Controllers Fgure : A general structure of the control system 4. Fuzzy Control Law To desgnng of the controllers the fuzzy proportonal dervatve (FPD) controller, adopted from [,8] and worng n confguraton presented n Fg. 3, has been used. The unnown parameters of the proposed fuzzy controllers have been determned usng genetc algorthms (GA), whch are based on Darwn s prncple of reproducton and survval of the fttest [5,9]. In general the GA technques manpulate sets of ndvduals (solutons) by usng genetc operators (selecton, reproducton, crossover and mutaton) n order to propose better ones. Chromosomes represent ndvduals n a populaton. A structure of the chromosome, whch has been used n the tunng procedure, s llustrated n Fg. 5. The chromosome conssts of four values that corresponded to unnown parameters of the membershp functons. Ther tunng range has been defned as follows: 6

4 EUSFLAT - LFA 5 < x e.5,.5 x <, < x M. 5,.5 x. < S < e Due to the objectve s to mnmse the control error, e.g. the tracng error d, a cost functon has been defned n the form: [ d () t + λ τ () t λ τ ( )] J = mn λ t (7) t where λ, λ and λ 3 are constant values. Calculated for the followng confguraton of genetc algorthms:. populaton,. crossover.8, 3. mutaton.5, 4. generaton, the demanded parameters of the membershp functons for three fuzzy controllers of the autoplot are shown n Table. They were obtaned on bass on analyss of the cost functon J durng the robot s movement between two set ponts: o o x B = ( m, m, 9 ), x F = ( 5 m, 5 m, 45 ). A goal of the robot was to reach the pont x F startng from x B. Table : Parameters of membershp functons trajectory n x-axs Controllers trajectory n y-axs course x e x e x S x M Smulaton Study Fgure 4: Membershp functons for fuzzy sets: sgnal e, derved change n error e and command sgnal τ Fgure 5: Chromosome defnton To valdate the performance of the developed nonlnear control law, smulatons results usng the Matlab/Smuln envronment are presented. The model of the UVR s based on a real constructon of a underwater robot called UKWIAL desgned and bult for the Polsh Navy. The URV s an open frame robot controllable n 4 DOF, beng.5 m long and havng a propulson system consstng of sx thrusters. Dsplacement n horzontal plane s done by means of four ones whch generate force up to ±75 N assurng speed up to ±. m/s and ±.6 m/s n x and y drecton, consequently. All parameters of the robot s dynamcs are presented n Appendx A. 6

5 EUSFLAT - LFA 5 Tracng control smulaton results for no added dsturbances and for a sea current dsturbance are shown n Fg. 6 and Fg. 8. The URV has to follow the desred trajectory begnnng from ( m, m), passng target wayponts: (5 m, m), ( m,5 m), ( m, 8 m), (3 m, 8 m), ( m,5 m) and comng bac to start under assumpton that the turnng pont s reached f the robot s nsde of the two-metre crcle of acceptance. In Fg. 7 and Fg. 9 courses of command sgnals are depcted respectvely wthout and wth nteracton of sea dsturbances. Fgure 8: The nfluence of sea current (speed.5 m/s and drecton 35 ) on trac-eepng performance: - desred trajectory, - real trajectory Fgure 6: Smulaton result of trac-eepng wthout envronmental dsturbances: - desred trajectory, - real trajectory Fgure 9: Tme hstores of command sgnals for trac-eepng n presence of the sea current (speed.5 m/s and drecton 35 ) 6 Concluson Fgure 7: Tme hstores of command sgnals for trac-eepng wthout envronmental dsturbances Usng of the fuzzy controllers for underwater robot s trac-eepng has been descrbed. From the results presented, t may be concluded that the proposed approach provdes the autoplot beng robust and havng good performance both wthout and n presence of the sea current dsturbances. Another advantage of the dscussed control system s ts flexblty wth regard to the change of dynamc propertes of the ROV and a performance ndex. Further wors are needed to dentfy the best fuzzy structure of the autoplot and test the robustness of ths approach n the real world. 6

6 EUSFLAT - LFA 5 References [] J. Craven, R. Sutton, R.S. Burns, Control Strateges for Unmanned Underwater Vehcles, J. Navgaton, vol. 5, pp. 79-5, 998. [] D. Dranov, H. Hellendoorn, M. Renfran, An Introducton to Fuzzy Control, Sprnger-Verlag, 993. [3] T.I. Fossen, Marne Control Systems, Marne Cybernetcs AS,. [4] J. Garus, Z. Ktows, Fuzzy Control of Underwater Vehcle s Moton, n Advances n Fuzzy Systems and Evolutonary Computaton, N. E. Mastoras, Ed. WSES Press,, pp. -3. [5] D. Goldberg, Genetc Algorthms n Search, Optmsaton, and Machne learnng, Adson- Wesley, 989. [6] J. Kacprzy, Multstage Fuzzy Control, John Wley and Sons, 997. [7] Z. Mchalewcz, Genetc Algorthms + Data Structures = Evoluton Programs, Sprnger- Verlag, 994. [8] R.R. Yager, D.P. Flev, Essental of Fuzzy Modellng and Control, John Wley and Sons, 994 [9] R.R. Yager, L.A. Zadeh, An Introducton to Fuzzy Logc Applcatons n Intellgent Systems, Kluwer Academc Publshers, 99. Appendx A The URV model The followng parameters of robot s dynamcs were used n the computer smulatons: M = dag { } ( ) = dag{ } D v 7.8 u dag C( v) = 6.w 8.υ g ( η) 6.w 8.5u 45.4υ 3. p 8.υ 8.5u 7.sn( θ ) 7.cos( θ )sn( φ ) 7.cos( θ )cos( φ ) = 79. cos( θ )sn( φ ) w 4. q 6.w 8.υ 5.9r 6.8q ( ) sn( θ ) + cos( θ )cos( φ) 6.w 8.5u 5.9r.3p r 8.υ 8.5u 6.8q.3p 63

Modelling of the precise movement of a ship at slow speed to minimize the trajectory deviation risk

Modelling of the precise movement of a ship at slow speed to minimize the trajectory deviation risk Computatonal Methods and Expermental Measurements XIV 29 Modellng of the precse movement of a shp at slow speed to mnmze the trajectory devaton rsk J. Maleck Polsh Naval Academy, Poland Faculty of Mechancs

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm

Design and Optimization of Fuzzy Controller for Inverse Pendulum System Using Genetic Algorithm Desgn and Optmzaton of Fuzzy Controller for Inverse Pendulum System Usng Genetc Algorthm H. Mehraban A. Ashoor Unversty of Tehran Unversty of Tehran h.mehraban@ece.ut.ac.r a.ashoor@ece.ut.ac.r Abstract:

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI

Study on Active Micro-vibration Isolation System with Linear Motor Actuator. Gong-yu PAN, Wen-yan GU and Dong LI 2017 2nd Internatonal Conference on Electrcal and Electroncs: echnques and Applcatons (EEA 2017) ISBN: 978-1-60595-416-5 Study on Actve Mcro-vbraton Isolaton System wth Lnear Motor Actuator Gong-yu PAN,

More information

The Study of Teaching-learning-based Optimization Algorithm

The Study of Teaching-learning-based Optimization Algorithm Advanced Scence and Technology Letters Vol. (AST 06), pp.05- http://dx.do.org/0.57/astl.06. The Study of Teachng-learnng-based Optmzaton Algorthm u Sun, Yan fu, Lele Kong, Haolang Q,, Helongang Insttute

More information

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES

STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES STUDY OF A THREE-AXIS PIEZORESISTIVE ACCELEROMETER WITH UNIFORM AXIAL SENSITIVITIES Abdelkader Benchou, PhD Canddate Nasreddne Benmoussa, PhD Kherreddne Ghaffour, PhD Unversty of Tlemcen/Unt of Materals

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS Avalable onlne at http://sck.org J. Math. Comput. Sc. 3 (3), No., 6-3 ISSN: 97-537 COMPARISON OF SOME RELIABILITY CHARACTERISTICS BETWEEN REDUNDANT SYSTEMS REQUIRING SUPPORTING UNITS FOR THEIR OPERATIONS

More information

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors

An Algorithm to Solve the Inverse Kinematics Problem of a Robotic Manipulator Based on Rotation Vectors An Algorthm to Solve the Inverse Knematcs Problem of a Robotc Manpulator Based on Rotaton Vectors Mohamad Z. Al-az*, Mazn Z. Othman**, and Baker B. Al-Bahr* *AL-Nahran Unversty, Computer Eng. Dep., Baghdad,

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Advanced Mechanical Elements

Advanced Mechanical Elements May 3, 08 Advanced Mechancal Elements (Lecture 7) Knematc analyss and moton control of underactuated mechansms wth elastc elements - Moton control of underactuated mechansms constraned by elastc elements

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

MEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut

MEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut MEV442 Introducton to Robotcs Module 2 Dr. Santhakumar Mohan Assstant Professor Mechancal Engneerng Natonal Insttute of Technology Calcut Jacobans: Veloctes and statc forces Introducton Notaton for tme-varyng

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.

More information

829. An adaptive method for inertia force identification in cantilever under moving mass

829. An adaptive method for inertia force identification in cantilever under moving mass 89. An adaptve method for nerta force dentfcaton n cantlever under movng mass Qang Chen 1, Mnzhuo Wang, Hao Yan 3, Haonan Ye 4, Guola Yang 5 1,, 3, 4 Department of Control and System Engneerng, Nanng Unversty,

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy

More information

Army Ants Tunneling for Classical Simulations

Army Ants Tunneling for Classical Simulations Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Iterative General Dynamic Model for Serial-Link Manipulators

Iterative General Dynamic Model for Serial-Link Manipulators EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

A Genetic-Algorithm-Based Approach to UAV Path Planning Problem

A Genetic-Algorithm-Based Approach to UAV Path Planning Problem A Genetc-Algorm-Based Approach to UAV Pa Plannng Problem XIAO-GUAG GAO 1 XIAO-WEI FU 2 and DA-QIG CHE 3 1 2 School of Electronc and Informaton orwestern Polytechncal Unversty X An 710072 CHIA 3 Dept of

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA

Statistical Energy Analysis for High Frequency Acoustic Analysis with LS-DYNA 14 th Internatonal Users Conference Sesson: ALE-FSI Statstcal Energy Analyss for Hgh Frequency Acoustc Analyss wth Zhe Cu 1, Yun Huang 1, Mhamed Soul 2, Tayeb Zeguar 3 1 Lvermore Software Technology Corporaton

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Chapter - 2. Distribution System Power Flow Analysis

Chapter - 2. Distribution System Power Flow Analysis Chapter - 2 Dstrbuton System Power Flow Analyss CHAPTER - 2 Radal Dstrbuton System Load Flow 2.1 Introducton Load flow s an mportant tool [66] for analyzng electrcal power system network performance. Load

More information

APPLICATION OF EDDY CURRENT PRINCIPLES FOR MEASUREMENT OF TUBE CENTERLINE

APPLICATION OF EDDY CURRENT PRINCIPLES FOR MEASUREMENT OF TUBE CENTERLINE APPLICATION OF EDDY CURRENT PRINCIPLES FOR MEASUREMENT OF TUBE CENTERLINE DEFLECTION E. J. Chern Martn Maretta Laboratores 1450 South Rollng Road Baltmore, MD 21227 INTRODUCTION Tubes are a vtal component

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

The classical spin-rotation coupling

The classical spin-rotation coupling LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spn-rotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

Second Order Analysis

Second Order Analysis Second Order Analyss In the prevous classes we looked at a method that determnes the load correspondng to a state of bfurcaton equlbrum of a perfect frame by egenvalye analyss The system was assumed to

More information

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017 17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

More information

SIMULTANEOUS TUNING OF POWER SYSTEM STABILIZER PARAMETERS FOR MULTIMACHINE SYSTEM

SIMULTANEOUS TUNING OF POWER SYSTEM STABILIZER PARAMETERS FOR MULTIMACHINE SYSTEM SIMULTANEOUS TUNING OF POWER SYSTEM STABILIZER PARAMETERS FOR MULTIMACHINE SYSTEM Mr.M.Svasubramanan 1 Mr.P.Musthafa Mr.K Sudheer 3 Assstant Professor / EEE Assstant Professor / EEE Assstant Professor

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion

Assessment of Site Amplification Effect from Input Energy Spectra of Strong Ground Motion Assessment of Ste Amplfcaton Effect from Input Energy Spectra of Strong Ground Moton M.S. Gong & L.L Xe Key Laboratory of Earthquake Engneerng and Engneerng Vbraton,Insttute of Engneerng Mechancs, CEA,

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

Technical Report TR05

Technical Report TR05 Techncal Report TR05 An Introducton to the Floatng Frame of Reference Formulaton for Small Deformaton n Flexble Multbody Dynamcs Antono Recuero and Dan Negrut May 11, 2016 Abstract Ths techncal report

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010)

Pivot-Wheel Drive Crab with a Twist! Clem McKown Team November-2009 (eq 1 edited 29-March-2010) Pvot-Wheel Drve Crab wth a Twst! Clem McKown Team 1640 13-November-2009 (eq 1 edted 29-March-2010) 4-Wheel Independent Pvot-Wheel Drve descrbes a 4wd drve-tran n whch each of the (4) wheels are ndependently

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Design and Analysis of Landing Gear Mechanic Structure for the Mine Rescue Carrier Robot

Design and Analysis of Landing Gear Mechanic Structure for the Mine Rescue Carrier Robot Sensors & Transducers 214 by IFSA Publshng, S. L. http://www.sensorsportal.com Desgn and Analyss of Landng Gear Mechanc Structure for the Mne Rescue Carrer Robot We Juan, Wu Ja-Long X an Unversty of Scence

More information

Parameter Estimation for Dynamic System using Unscented Kalman filter

Parameter Estimation for Dynamic System using Unscented Kalman filter Parameter Estmaton for Dynamc System usng Unscented Kalman flter Jhoon Seung 1,a, Amr Atya F. 2,b, Alexander G.Parlos 3,c, and Klto Chong 1,4,d* 1 Dvson of Electroncs Engneerng, Chonbuk Natonal Unversty,

More information

Adaptive RFID Indoor Positioning Technology for Wheelchair Home Health Care Robot. T. C. Kuo

Adaptive RFID Indoor Positioning Technology for Wheelchair Home Health Care Robot. T. C. Kuo Adaptve RFID Indoor Postonng Technology for Wheelchar Home Health Care Robot Contents Abstract Introducton RFID Indoor Postonng Method Fuzzy Neural Netor System Expermental Result Concluson -- Abstract

More information

The Analysis of Coriolis Effect on a Robot Manipulator

The Analysis of Coriolis Effect on a Robot Manipulator Internatonal Journal of Innovatons n Engneerng and echnology (IJIE) he Analyss of Corols Effect on a Robot Manpulator Pratap P homas Assstant Professor Department of Mechancal Engneerng K G Reddy college

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Solving Nonlinear Differential Equations by a Neural Network Method

Solving Nonlinear Differential Equations by a Neural Network Method Solvng Nonlnear Dfferental Equatons by a Neural Network Method Luce P. Aarts and Peter Van der Veer Delft Unversty of Technology, Faculty of Cvlengneerng and Geoscences, Secton of Cvlengneerng Informatcs,

More information

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1 C/CS/Phy9 Problem Set 3 Solutons Out: Oct, 8 Suppose you have two qubts n some arbtrary entangled state ψ You apply the teleportaton protocol to each of the qubts separately What s the resultng state obtaned

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrcal Engneerng 6 Volodymyr KONOVAL* Roman PRYTULA** PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY Ths paper provdes a

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Entropy Generation Minimization of Pin Fin Heat Sinks by Means of Metaheuristic Methods

Entropy Generation Minimization of Pin Fin Heat Sinks by Means of Metaheuristic Methods Indan Journal of Scence and Technology Entropy Generaton Mnmzaton of Pn Fn Heat Snks by Means of Metaheurstc Methods Amr Jafary Moghaddam * and Syfollah Saedodn Department of Mechancal Engneerng, Semnan

More information

OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES

OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES ICAMS 204 5 th Internatonal Conference on Advanced Materals and Systems OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES VLAD LUPĂŞTEANU, NICOLAE ŢĂRANU, RALUCA HOHAN, PAUL CIOBANU Gh. Asach Techncal Unversty

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Solving of Single-objective Problems based on a Modified Multiple-crossover Genetic Algorithm: Test Function Study

Solving of Single-objective Problems based on a Modified Multiple-crossover Genetic Algorithm: Test Function Study Internatonal Conference on Systems, Sgnal Processng and Electroncs Engneerng (ICSSEE'0 December 6-7, 0 Duba (UAE Solvng of Sngle-objectve Problems based on a Modfed Multple-crossover Genetc Algorthm: Test

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

On a direct solver for linear least squares problems

On a direct solver for linear least squares problems ISSN 2066-6594 Ann. Acad. Rom. Sc. Ser. Math. Appl. Vol. 8, No. 2/2016 On a drect solver for lnear least squares problems Constantn Popa Abstract The Null Space (NS) algorthm s a drect solver for lnear

More information

A Robust H Speed Tracking Controller for Underwater Vehicles via Particle Swarm Optimization

A Robust H Speed Tracking Controller for Underwater Vehicles via Particle Swarm Optimization Internatonal Journal of Scentfc & Engneerng Research, Volume, Issue 5, May- ISSN 9-558 A Robust H Speed Trackng Controller for Underwater Vehcles va Partcle Swarm Optmzaton Mohammad Pourmahmood Aghababa,

More information

Research on the Fuzzy Control for Vehicle Semi-active Suspension. Xiaoming Hu 1, a, Wanli Li 1,b

Research on the Fuzzy Control for Vehicle Semi-active Suspension. Xiaoming Hu 1, a, Wanli Li 1,b Advanced Materals Research Onlne: 0-0- ISSN: -9, Vol., pp -9 do:0.0/www.scentfc.net/amr.. 0 Trans Tech Publcatons, Swterland Research on the Fuy Control for Vehcle Sem-actve Suspenson Xaomng Hu, a, Wanl

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY. Proceedngs of the th Brazlan Congress of Thermal Scences and Engneerng -- ENCIT 006 Braz. Soc. of Mechancal Scences and Engneerng -- ABCM, Curtba, Brazl,- Dec. 5-8, 006 A PROCEDURE FOR SIMULATING THE NONLINEAR

More information

DERIVATION OF THE PROBABILITY PLOT CORRELATION COEFFICIENT TEST STATISTICS FOR THE GENERALIZED LOGISTIC DISTRIBUTION

DERIVATION OF THE PROBABILITY PLOT CORRELATION COEFFICIENT TEST STATISTICS FOR THE GENERALIZED LOGISTIC DISTRIBUTION Internatonal Worshop ADVANCES IN STATISTICAL HYDROLOGY May 3-5, Taormna, Italy DERIVATION OF THE PROBABILITY PLOT CORRELATION COEFFICIENT TEST STATISTICS FOR THE GENERALIZED LOGISTIC DISTRIBUTION by Sooyoung

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

Multi-Robot Formation Control Based on Leader-Follower Optimized by the IGA

Multi-Robot Formation Control Based on Leader-Follower Optimized by the IGA IOSR Journal of Computer Engneerng (IOSR-JCE e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 1, Ver. III (Jan.-Feb. 2017, PP 08-13 www.osrjournals.org Mult-Robot Formaton Control Based on Leader-Follower

More information

Fuzzy Boundaries of Sample Selection Model

Fuzzy Boundaries of Sample Selection Model Proceedngs of the 9th WSES Internatonal Conference on ppled Mathematcs, Istanbul, Turkey, May 7-9, 006 (pp309-34) Fuzzy Boundares of Sample Selecton Model L. MUHMD SFIIH, NTON BDULBSH KMIL, M. T. BU OSMN

More information

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion

Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion Proceedings of the 11th WSEAS International Conference on SSTEMS Agios ikolaos Crete Island Greece July 23-25 27 38 Model Reference Adaptive Control of Underwater Robotic Vehicle in Plane Motion j.garus@amw.gdynia.pl

More information