Harnessing Interaction in Bursty Interference Networks

Size: px
Start display at page:

Download "Harnessing Interaction in Bursty Interference Networks"

Transcription

1 215 IEEE Hong Kong-Taiwan Joint Workshop on Information Theory and Communications Harnessing Interaction in Bursty Interference Networks I-Hsiang Wang NIC Lab, NTU GICE 1/19, 215

2 Modern Wireless: Grand Challenges Global mobile data traffic is expected to increase nearly 11-fold from (source: Cisco VNI mobile forecast) What drives this increase? - Growing # of users - Data-hungrier (smarter) mobile devices Grand challenges: Support higher data rate Accommodate more users Increase spectral efficiency 2

3 More Users + Growing Demand more interference along with abed ㄅㄆ ø kklkle #$# πø $@#ßå µ orzz Toy example: people talking in a crowded room 3

4 Also, more chances for interaction 4

5 Interference vs. Intermittence Interference: - Born-nature of wireless medium - Limits the throughput of modern wireless networks Intermittence: - Lack of coordination across distributed terminals - Born-nature of data traffic - Not a critical issue if users do not interfere with one another Major bottleneck: interference 5

6 Modern View on Interference Traditional techniques: orthogonalization (2G), treating interference as noise (3G, 4G) Recent advances in network information theory shed light on how to break the interference barrier: Two-user IC: approximate capacity to within 1 bit/s/hz - Partial interference cancellation [Etkin et al IT8] K-user IC: total # of degrees of freedom = K/2 - Interference alignment [Maddah-Ali et al IT8] [Cadambe & Jafar IT8] Caveat: (in most information theoretic literature) Assume that interference is always present 6

7 Interaction Helps Manage Interference Cooperation among Tx/Rx terminals - Cloud RAN, cooperative MIMO, etc. - Capacity increase is bounded by the cooperation capacity [W & Tse IT11] Feedback from Rx to Tx - With perfect output feedback, capacity increase is multiplicative [Suh & Tse IT11] However, interaction cannot increase the total multiplexing gain (degrees of freedom) [Cadambe & Jafar IT9] Caveat: (in most information theoretic literature) Assume that interference is always present 7

8 Interference can be Intermittent At PHY, interference may not be always present Medium access control mechanism - Decentralized resource allocation Time 1 Time 2 Time 3 User 1 f1 f1 f1 User 2 f1 f2 f1 Network layer protocol/demand - Bursty network traffic Time 1 Time 2 Time 3 User 1 On Off On User 2 Off On On 8

9 Exploit Intermittence of Interference Naive idea: send more when there is no interference but may not know if there is interference beforehand Not completely hopeless: we may have delayed information about the presence of interference, thanks to interaction (feedback/cooperation) If interferer s activity can be predicted from the past, then obviously such delayed information can help If not (in the extreme case when coherence time = 1 symbol time), it seems such delayed information will not help 9

10 Question 1: Two Major Questions In bursty/intermittent environment, does delayed state information help mitigate interference? Question 2: In bursty/intermittent environment, does interaction play a more important role in interference management, compared with the static one? Both answers are YES. 1

11 Two Case Studies in this Talk Bursty Interference Channel with Feedback Bursty Interference Channel with a Relay Intermittent Interference Bursty Traffic With delayed state information, in both cases interaction increases the multiplexing gain degrees of freedom (DoF) 11

12 Major Findings and Contributions Bursty IC with feedback: - One-bit feedback increases DoF - Characterize the approximate capacity - An adaptive coding scheme - Novel outer bounds Intermittent Interference Bursty (MIMO) IC with a relay: - In-band cooperation increases DoF - DoF increase linearly with the # of relay antennas - Derive conditions for interference-free DoF performances Bursty Traffic 12

13 Gaussian Interference Channel X 1 [t] Y 1 [t] W 1 Tx1 h 11 h 12 Rx1 cw 1 X 2 [t] h 21 Y 2 [t] W 2 Tx2 h 22 Rx2 cw 2 Unit power constraint CN(, 1) Y 1 [t] =h 11 X 1 [t]+h 12 X 2 [t]+z 1 [t] Y 2 [t] =h 22 X 2 [t]+h 21 X 1 [t]+z 2 [t] 13

14 Modeling Burstiness/Intermittence X 1 [t] Y 1 [t] W 1 Tx1 h 11 h 12 Rx1 cw 1 X 2 [t] Interference Channel h 21 Y 2 [t] W 2 Tx2 h 22 Rx2 cw 2 Random Activity State Controls the presence of interference 14

15 Bursty Interference Channel: Two Models Intermittent Interference: motivated by the MAC layer Bursty Traffic: motivated by the Network layer 15

16 Part I: Bursty Interference Channel with Feedback Joint work with S. Diggavi, C. Suh, P. Viswanath Intermittent Interference 16

17 Model Y 1 [1 : t 1],S[1 : t 1] X 1 [t] Y 1 [t] h 11 W 1 Tx1 h 12 Rx1 cw 1 S[t] S[t] X 2 [t] h 21 Y 2 [t] W 2 Tx2 h 22 Rx2 cw 2 Y 2 [1 : t 1],S[1 : t 1] {S [t ]}: i.i.d. Bernoulli Ber(p) process Y 1 [t] =h 11 X 1 [t]+h 12 (S[t]X 2 [t]) + Z 1 [t] Y 2 [t] =h 22 X 2 [t]+h 21 (S[t]X 1 [t]) + Z 2 [t] Encoding: X i [t] =(W f i, Y i [1 : t 1],S[1 : t 1]) 17

18 Generalized Degrees of Freedom For better illustration, let us focus on the symmetric setting: h 11 2 = h 22 2 = SNR, h 21 2 = h 12 2 = INR INR INR SNR SNR Generalized degrees of freedom: d := Achievable Rate under Interference Interference Free Capacity R 2 (R sym,r sym ) d( ) = lim SNR!1 R sym log INR, with fixed := log SNR log SNR capacity region R 1 GDoF: a function of - strength of interference - probability of interference p Gain in GDoF multiplicative gain in capacity 18

19 Baseline d( ) Non-bursty, no-feedback Non-bursty, feedback Bursty, p=.5, no-feedback 1 No gain in the regime 2 2 for 3, 2 1 p 2 Can Feedback Really Help? DoF? [Suh & Tse IT11] [Etkin et al IT8] [Khude et al ISIT9]

20 In the regime 2 2, 2 3 (moderate to strong interference) Feedback in non-bursty case No gain in GDoF and DoF Exploiting intermittence without feedback No gain in GDoF and DoF 2

21 Baseline d( ) Non-bursty, no-feedback Non-bursty, feedback Bursty, p=.5, no-feedback 1 No gain in the regime 2 2 for 3, 2 1 p 2 Can Feedback Really Help? DoF? [Suh & Tse IT11] [Etkin et al IT8] [Khude et al ISIT9]

22 One- Bit Feedback Increases DoF Phase Fresh Transmit as if there is no interference X1 L1(X1,X2) State No interference Rx Operation Both Decode Tx Operation Stay in Phase F Interference Hold Phase Retransmit Retransmit the unresolved symbol State No interference Interference Rx Operation Both Decode Both Decode (exploit side info.) Jump to Phase R Tx Operation Back to Phase F Back to Phase F X2 DoF = 1 1 p F L2(X1,X2) DoF = p 1 DoF = 1 R Stationary Distribution: (F) = 1 1+p, (R) = p 1+p =) DoF = 1 1+p 22

23 Synergetic Bene_it of Feedback d( ) Non-bursty, no-feedback Non-bursty, feedback Bursty, p=.5, no-feedback Bursty, p=.5, feedback 1 No gain in the regime 2 2 for 3, 2 1 p 2 [Khude et al ISIT9] 1 1+p [Suh & Tse IT11] [Etkin et al IT8]

24 Harnessing Output Feedback Weak interference regime Analog interference refinement Strong interference regime Interference refinement with structured codes Very strong interference regime Opportunistic relaying with structured codes 24

25 Part II: Bursty Interference Channel with a Relay Joint work with S. Kim, C. Suh Bursty Traffic 25

26 Model M Tx antennas S t 1 Y R (t) Z R (t) S t L Relay antennas Enc Relay R X R (t) N Rx antennas W 1 Enc Tx11 X 1 (t) Y 1 (t) Dec Rx11 Ŵ 1 S t 1 S 1 (t) Z 1 (t) W 2 Enc Tx22 X 2 (t) Y 2 (t) Dec Rx22 Ŵ 2 S 2 (t) S := (S 1,S 2 ) Z 2 (t) Y 1 (t) =H 11 (S 1 (t)x 1 (t)) + H 12 (S 2 (t)x 2 (t)) + H 1R X R + Z 1, Y 2 (t) =H 21 (S 1 (t)x 1 (t)) + H 22 (S 2 (t)x 2 (t)) + H 2R X R + Z 2, Y R (t) =H R1 (S 1 (t)x 1 (t)) + H R2 (S 2 (t)x 2 (t)) + Z R. {S1 [t]} {S 2 [t]}: i.i.d. Bernoulli Ber(p) processes 26

27 In- Band Relay Increases DoF Bursty P2P M Ber(p) N Tx Rx d = p min (M,N) = pn for M sufficiently large Adding a relay L Relay Ber(p) M N Tx Rx d =min{p min (M,N + L),pmin (M + L, N)+(1 p)min(l, N)} = pn + min{pl, (1 p)min(l, N)} for M sufficiently large 27

28 d N pn N L DoF increase is linear in L, # of relay antennas DoF is boost by up to p 1 times 28

29 Interference- Free Communication For two-user bursty interference channel with a relay, main focus is on getting interference-free DoF p [,1) Sufficient condition$ $ $ $ Necessary condition 2M apple N or M 2N + L and L 2N 2M apple N or M 2N + L and L 2N or or M 2N + L and 3L apple N M 2N and 3L apple N 29

30 Cooperative Zero- Forcing 4 a 5 + b t sent received a 1 + b 1 a 1 + b 1 a 1 + b 1 b 5 a 5 Relay 4 L = a 9 a 5 a 5 a b 1 b 5 a a 1 + b 1 +a 1 + b a Tx 1 Rx1 a 3 b 1 a 7 +a 1 + b 1 +a 1 + b a 1 5 a 5 a 9 b 9 b 1 b 11 b 12 a 1 b 9 sent b 1 b 11 b 12 a 1 b 9 b 9 b 5 b 6 b 7 b 8 a a 1 b 5 b 1 b 1 b1 b 2 b 3 b 4 Tx 2 t (S 1,S 2 ) 1 (1, 1) 2 (, 1) 3 (1, ) 4 (, ) Rx 2 M =7 N =3 a 4 b 2 + a 1 b 3 b 4 a 1 + b 1 b 6 received +a 1 + b 1 b 7 +a 1 + b 1 b 8 +a 1 + b 1 a 8 +a 1 + b 1 a 5 +a 1 + b 1 a 1 +a 1 + b 1 a 1 + b 1 a 5 + b 5 a 5 + b 5 a 5 + b 5 a 5 + b 5 a 5 + b 5 a 5 + b 5 3

31 Takeaway 1 Interaction (feedback and cooperation) is more helpful in bursty communication 2 Harnessing delayed state information and interaction boost up capacity greatly 31

32 Since interaction is so useful, please give us feedback and let us collaborate! Website: 32

33 Thank You! 33

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel /33 Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel Presented by Paul de Kerret Joint work with Antonio Bazco, Nicolas Gresset, and David Gesbert ESIT 2017 in Madrid,

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Approximate Capacity of Fast Fading Interference Channels with no CSIT

Approximate Capacity of Fast Fading Interference Channels with no CSIT Approximate Capacity of Fast Fading Interference Channels with no CSIT Joyson Sebastian, Can Karakus, Suhas Diggavi Abstract We develop a characterization of fading models, which assigns a number called

More information

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel Pritam Mukherjee Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park, MD 074 pritamm@umd.edu

More information

Interference Alignment at Finite SNR for TI channels

Interference Alignment at Finite SNR for TI channels Interference Alignment at Finite SNR for Time-Invariant channels Or Ordentlich Joint work with Uri Erez EE-Systems, Tel Aviv University ITW 20, Paraty Background and previous work The 2-user Gaussian interference

More information

Random Access Protocols for Massive MIMO

Random Access Protocols for Massive MIMO Random Access Protocols for Massive MIMO Elisabeth de Carvalho Jesper H. Sørensen Petar Popovski Aalborg University Denmark Emil Björnson Erik G. Larsson Linköping University Sweden 2016 Tyrrhenian International

More information

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying Ahmad Abu Al Haija, and Mai Vu, Department of Electrical and Computer Engineering McGill University Montreal, QC H3A A7 Emails: ahmadabualhaija@mailmcgillca,

More information

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR

The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR The Capacity Region of the Gaussian Cognitive Radio Channels at High SNR 1 Stefano Rini, Daniela Tuninetti and Natasha Devroye srini2, danielat, devroye @ece.uic.edu University of Illinois at Chicago Abstract

More information

On the Optimality of Treating Interference as Noise in Competitive Scenarios

On the Optimality of Treating Interference as Noise in Competitive Scenarios On the Optimality of Treating Interference as Noise in Competitive Scenarios A. DYTSO, D. TUNINETTI, N. DEVROYE WORK PARTIALLY FUNDED BY NSF UNDER AWARD 1017436 OUTLINE CHANNEL MODEL AND PAST WORK ADVANTAGES

More information

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View

Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View Secrecy in the 2-User Symmetric Interference Channel with Transmitter Cooperation: Deterministic View P. Mohapatra 9 th March 2013 Outline Motivation Problem statement Achievable scheme 1 Weak interference

More information

Cooperative Interference Alignment for the Multiple Access Channel

Cooperative Interference Alignment for the Multiple Access Channel 1 Cooperative Interference Alignment for the Multiple Access Channel Theodoros Tsiligkaridis, Member, IEEE Abstract Interference alignment (IA) has emerged as a promising technique for the interference

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Interference Channel aided by an Infrastructure Relay

Interference Channel aided by an Infrastructure Relay Interference Channel aided by an Infrastructure Relay Onur Sahin, Osvaldo Simeone, and Elza Erkip *Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Department

More information

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case 1 arxiv:0901.3580v1 [cs.it] 23 Jan 2009 Feedback Capacity of the Gaussian Interference Channel to Within 1.7075 Bits: the Symmetric Case Changho Suh and David Tse Wireless Foundations in the Department

More information

Capacity of a Two-way Function Multicast Channel

Capacity of a Two-way Function Multicast Channel Capacity of a Two-way Function Multicast Channel 1 Seiyun Shin, Student Member, IEEE and Changho Suh, Member, IEEE Abstract We explore the role of interaction for the problem of reliable computation over

More information

The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference

The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference Soheyl Gherekhloo, Anas Chaaban, and Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {soheyl.gherekhloo,

More information

K User Interference Channel with Backhaul

K User Interference Channel with Backhaul 1 K User Interference Channel with Backhaul Cooperation: DoF vs. Backhaul Load Trade Off Borna Kananian,, Mohammad A. Maddah-Ali,, Babak H. Khalaj, Department of Electrical Engineering, Sharif University

More information

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks

A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks A Systematic Approach for Interference Alignment in CSIT-less Relay-Aided X-Networks Daniel Frank, Karlheinz Ochs, Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {danielfrank, karlheinzochs,

More information

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel

On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel On the Degrees of Freedom of the Finite State Compound MISO Broadcast Channel Invited Paper Chenwei Wang, Tiangao Gou, Syed A. Jafar Electrical Engineering and Computer Science University of California,

More information

arxiv: v2 [cs.it] 27 Aug 2016

arxiv: v2 [cs.it] 27 Aug 2016 GDoF of the MISO BC: Bridging the Gap between Finite Precision and Perfect CSIT arxiv:1602.02203v2 [cs.it 27 Aug 2016 Arash Gholami Davoodi, Bofeng Yuan and Syed A. Jafar Center for Pervasive Communications

More information

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation

On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation On the Capacity and Degrees of Freedom Regions of MIMO Interference Channels with Limited Receiver Cooperation Mehdi Ashraphijuo, Vaneet Aggarwal and Xiaodong Wang 1 arxiv:1308.3310v1 [cs.it] 15 Aug 2013

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback

Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Sum Capacity of General Deterministic Interference Channel with Channel Output Feedback Achaleshwar Sahai Department of ECE, Rice University, Houston, TX 775. as27@rice.edu Vaneet Aggarwal Department of

More information

The Diversity Multiplexing Tradeoff for Interference Networks

The Diversity Multiplexing Tradeoff for Interference Networks The Diversity Multiplexing Tradeoff for Interference Networks Aydin Sezgin Ruhr-Universität Bochum Chair of Digital Communication Systems email:aydin.sezgin@rub.de Abstract The diversity-multiplexing tradeoff

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Information Theory Meets Game Theory on The Interference Channel

Information Theory Meets Game Theory on The Interference Channel Information Theory Meets Game Theory on The Interference Channel Randall A. Berry Dept. of EECS Northwestern University e-mail: rberry@eecs.northwestern.edu David N. C. Tse Wireless Foundations University

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels

Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels Mahdi Jafari Siavoshani Sharif University of Technology, Iran Shaunak Mishra, Suhas Diggavi, Christina Fragouli Institute of

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User

More information

Approximate Ergodic Capacity of a Class of Fading Networks

Approximate Ergodic Capacity of a Class of Fading Networks Approximate Ergodic Capacity of a Class of Fading Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer and Communication Sciences EPFL Lausanne, Switzerland {sangwoon.jeon, chien-yi.wang,

More information

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong Multi-User Gain Maximum Eigenmode Beamforming, and IDMA Peng Wang and Li Ping City University of Hong Kong 1 Contents Introduction Multi-user gain (MUG) Maximum eigenmode beamforming (MEB) MEB performance

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

2-user 2-hop Networks

2-user 2-hop Networks 2012 IEEE International Symposium on Information Theory roceedings Approximate Ergodic Capacity of a Class of Fading 2-user 2-hop Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling

Degrees-of-Freedom for the 4-User SISO Interference Channel with Improper Signaling Degrees-of-Freedom for the -User SISO Interference Channel with Improper Signaling C Lameiro and I Santamaría Dept of Communications Engineering University of Cantabria 9005 Santander Cantabria Spain Email:

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Wednesday, June 1, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Generalized Degrees-of-Freedom of the 2-User Case MISO Broadcast Channel with Distributed CSIT

Generalized Degrees-of-Freedom of the 2-User Case MISO Broadcast Channel with Distributed CSIT 207 IEEE IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, June 207 DOI: 009/ECCE2078096480 Generalized Degrees-of-Freedom of the 2-User Case MISO Broadcast Channel with Distributed

More information

Approximate Sum-Capacity of Full- and Half-Duplex Asymmetric Interference Channels with Unilateral Source Cooperation

Approximate Sum-Capacity of Full- and Half-Duplex Asymmetric Interference Channels with Unilateral Source Cooperation 1 Approximate Sum-Capacity of Full- and Half-Duplex Asymmetric Interference Channels with Unilateral Source Cooperation Martina Cardone, Daniela Tuninetti, Raymond Knopp, Umer Salim Eurecom, Sophia Antipolis,

More information

ELG7177: MIMO Comunications. Lecture 8

ELG7177: MIMO Comunications. Lecture 8 ELG7177: MIMO Comunications Lecture 8 Dr. Sergey Loyka EECS, University of Ottawa S. Loyka Lecture 8, ELG7177: MIMO Comunications 1 / 32 Multi-User Systems Can multiple antennas offer advantages for multi-user

More information

Graph-based Codes for Quantize-Map-and-Forward Relaying

Graph-based Codes for Quantize-Map-and-Forward Relaying 20 IEEE Information Theory Workshop Graph-based Codes for Quantize-Map-and-Forward Relaying Ayan Sengupta, Siddhartha Brahma, Ayfer Özgür, Christina Fragouli and Suhas Diggavi EPFL, Switzerland, UCLA,

More information

Interactive Interference Alignment

Interactive Interference Alignment Interactive Interference Alignment Quan Geng, Sreeram annan, and Pramod Viswanath Coordinated Science Laboratory and Dept. of ECE University of Illinois, Urbana-Champaign, IL 61801 Email: {geng5, kannan1,

More information

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Ayfer Özgür, Olivier Lévêque Faculté Informatique et Communications Ecole Polytechnique Fédérale de Lausanne 05 Lausanne, Switzerland

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

On Network Interference Management

On Network Interference Management On Network Interference Management Aleksandar Jovičić, Hua Wang and Pramod Viswanath March 3, 2008 Abstract We study two building-block models of interference-limited wireless networks, motivated by the

More information

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems

Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Introduction Main Results Simulation Conclusions Trust Degree Based Beamforming for Multi-Antenna Cooperative Communication Systems Mojtaba Vaezi joint work with H. Inaltekin, W. Shin, H. V. Poor, and

More information

Information Theory for Wireless Communications, Part II:

Information Theory for Wireless Communications, Part II: Information Theory for Wireless Communications, Part II: Lecture 5: Multiuser Gaussian MIMO Multiple-Access Channel Instructor: Dr Saif K Mohammed Scribe: Johannes Lindblom In this lecture, we give the

More information

The Optimality of Beamforming: A Unified View

The Optimality of Beamforming: A Unified View The Optimality of Beamforming: A Unified View Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 92697-2625 Email: sudhirs@uciedu,

More information

Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel

Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel Capacity of All Nine Models of Channel Output Feedback for the Two-user Interference Channel Achaleshwar Sahai, Vaneet Aggarwal, Melda Yuksel and Ashutosh Sabharwal 1 Abstract arxiv:1104.4805v3 [cs.it]

More information

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback

Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback IEEE INFOCOM Workshop On Cognitive & Cooperative Networks Transmitter-Receiver Cooperative Sensing in MIMO Cognitive Network with Limited Feedback Chao Wang, Zhaoyang Zhang, Xiaoming Chen, Yuen Chau. Dept.of

More information

Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA

Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA Adaptive Successive Transmission in Virtual Full-Duplex Cooperative NOMA Young-bin Kim Future Access Network Division KDDI Research, Inc Fujimino-shi, Japan yo-kim@kddi-researchjp Kosuke Yamazaki Future

More information

Multiple-Input Multiple-Output Systems

Multiple-Input Multiple-Output Systems Multiple-Input Multiple-Output Systems What is the best way to use antenna arrays? MIMO! This is a totally new approach ( paradigm ) to wireless communications, which has been discovered in 95-96. Performance

More information

The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel

The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel The Capacity of the Semi-Deterministic Cognitive Interference Channel and its Application to Constant Gap Results for the Gaussian Channel Stefano Rini, Daniela Tuninetti, and Natasha Devroye Department

More information

Interference Alignment under Training and Feedback Constraints

Interference Alignment under Training and Feedback Constraints Interference Alignment under Training and Feedbac Constraints Baile Xie, Student Member, IEEE, Yang Li, Student Member, IEEE, Hlaing Minn, Senior Member, IEEE, and Aria Nosratinia, Fellow, IEEE The University

More information

The Nash Equilibrium Region of the Linear Deterministic Interference Channel with Feedback

The Nash Equilibrium Region of the Linear Deterministic Interference Channel with Feedback The Nash Equilibrium Region of the Linear Deterministic Interference Channel with Feedback Samir M. Perlaza, Ravi Tandon, H. Vincent Poor and Zhu Han. Department of Electrical Engineering. Princeton University,

More information

Using Noncoherent Modulation for Training

Using Noncoherent Modulation for Training EE8510 Project Using Noncoherent Modulation for Training Yingqun Yu May 5, 2005 0-0 Noncoherent Channel Model X = ρt M ΦH + W Rayleigh flat block-fading, T: channel coherence interval Marzetta & Hochwald

More information

Minimum Mean Squared Error Interference Alignment

Minimum Mean Squared Error Interference Alignment Minimum Mean Squared Error Interference Alignment David A. Schmidt, Changxin Shi, Randall A. Berry, Michael L. Honig and Wolfgang Utschick Associate Institute for Signal Processing Technische Universität

More information

Compute-and-Forward for the Interference Channel: Diversity Precoding

Compute-and-Forward for the Interference Channel: Diversity Precoding Compute-and-Forward for the Interference Channel: Diversity Precoding Ehsan Ebrahimi Khaleghi, Jean-Claude Belfiore To cite this version: Ehsan Ebrahimi Khaleghi, Jean-Claude Belfiore. Compute-and-Forward

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels Giuseppe Caire University of Southern California Los Angeles, CA, USA Email: caire@usc.edu Nihar

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

Survey of Interference Channel

Survey of Interference Channel Survey of Interference Channel Alex Dytso Department of Electrical and Computer Engineering University of Illinois at Chicago, Chicago IL 60607, USA, Email: odytso2 @ uic.edu Abstract Interference Channel(IC)

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE

DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE DEVICE-TO-DEVICE COMMUNICATIONS: THE PHYSICAL LAYER SECURITY ADVANTAGE Daohua Zhu, A. Lee Swindlehurst, S. Ali A. Fakoorian, Wei Xu, Chunming Zhao National Mobile Communications Research Lab, Southeast

More information

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation Chongbin Xu, Peng Wang, Zhonghao Zhang, and Li Ping City University of Hong Kong 1 Outline Background Mutual Information

More information

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Ahmad Abu Al Haija ECE Department, McGill University, Montreal, QC, Canada Email: ahmad.abualhaija@mail.mcgill.ca

More information

WIRELESS networks with multiple users are interference-limited

WIRELESS networks with multiple users are interference-limited 4170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014 On the Capacity and Degrees of Freedom Regions of Two-User MIMO Interference Channels With Limited Receiver Cooperation Mehdi Ashraphijuo,

More information

The Dirty MIMO Multiple-Access Channel

The Dirty MIMO Multiple-Access Channel The Dirty MIMO Multiple-Access Channel Anatoly Khina, Caltech Joint work with: Yuval Kochman, Hebrew University Uri Erez, Tel-Aviv University ISIT 2016 Barcelona, Catalonia, Spain July 12, 2016 Motivation:

More information

Lecture 4 Capacity of Wireless Channels

Lecture 4 Capacity of Wireless Channels Lecture 4 Capacity of Wireless Channels I-Hsiang Wang ihwang@ntu.edu.tw 3/0, 014 What we have learned So far: looked at specific schemes and techniques Lecture : point-to-point wireless channel - Diversity:

More information

An Uplink-Downlink Duality for Cloud Radio Access Network

An Uplink-Downlink Duality for Cloud Radio Access Network An Uplin-Downlin Duality for Cloud Radio Access Networ Liang Liu, Prati Patil, and Wei Yu Department of Electrical and Computer Engineering University of Toronto, Toronto, ON, 5S 3G4, Canada Emails: lianguotliu@utorontoca,

More information

Vector Channel Capacity with Quantized Feedback

Vector Channel Capacity with Quantized Feedback Vector Channel Capacity with Quantized Feedback Sudhir Srinivasa and Syed Ali Jafar Electrical Engineering and Computer Science University of California Irvine, Irvine, CA 9697-65 Email: syed@ece.uci.edu,

More information

Minimum Repair Bandwidth for Exact Regeneration in Distributed Storage

Minimum Repair Bandwidth for Exact Regeneration in Distributed Storage 1 Minimum Repair andwidth for Exact Regeneration in Distributed Storage Vivec R Cadambe, Syed A Jafar, Hamed Malei Electrical Engineering and Computer Science University of California Irvine, Irvine, California,

More information

Cooperative HARQ with Poisson Interference and Opportunistic Routing

Cooperative HARQ with Poisson Interference and Opportunistic Routing Cooperative HARQ with Poisson Interference and Opportunistic Routing Amogh Rajanna & Mostafa Kaveh Department of Electrical and Computer Engineering University of Minnesota, Minneapolis, MN USA. Outline

More information

Diversity Multiplexing Tradeoff in Multiple Antenna Multiple Access Channels with Partial CSIT

Diversity Multiplexing Tradeoff in Multiple Antenna Multiple Access Channels with Partial CSIT 1 Diversity Multiplexing Tradeoff in Multiple Antenna Multiple Access Channels with artial CSIT Kaushi Josiam, Dinesh Rajan and Mandyam Srinath, Department of Electrical Engineering, Southern Methodist

More information

HetNets: what tools for analysis?

HetNets: what tools for analysis? HetNets: what tools for analysis? Daniela Tuninetti (Ph.D.) Email: danielat@uic.edu Motivation Seven Ways that HetNets are a Cellular Paradigm Shift, by J. Andrews, IEEE Communications Magazine, March

More information

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective

Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Interference, Cooperation and Connectivity A Degrees of Freedom Perspective Chenwei Wang, Syed A. Jafar, Shlomo Shamai (Shitz) and Michele Wigger EECS Dept., University of California Irvine, Irvine, CA,

More information

ELEC E7210: Communication Theory. Lecture 10: MIMO systems

ELEC E7210: Communication Theory. Lecture 10: MIMO systems ELEC E7210: Communication Theory Lecture 10: MIMO systems Matrix Definitions, Operations, and Properties (1) NxM matrix a rectangular array of elements a A. an 11 1....... a a 1M. NM B D C E ermitian transpose

More information

Interference Channels with Source Cooperation

Interference Channels with Source Cooperation Interference Channels with Source Cooperation arxiv:95.319v1 [cs.it] 19 May 29 Vinod Prabhakaran and Pramod Viswanath Coordinated Science Laboratory University of Illinois, Urbana-Champaign Urbana, IL

More information

12.4 Known Channel (Water-Filling Solution)

12.4 Known Channel (Water-Filling Solution) ECEn 665: Antennas and Propagation for Wireless Communications 54 2.4 Known Channel (Water-Filling Solution) The channel scenarios we have looed at above represent special cases for which the capacity

More information

Degrees of freedom of wireless interference network

Degrees of freedom of wireless interference network Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2011 Degrees of freedom of wireless interference network Lei Ke Iowa State University Follow this and additional

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS

POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS POWER ALLOCATION AND OPTIMAL TX/RX STRUCTURES FOR MIMO SYSTEMS R. Cendrillon, O. Rousseaux and M. Moonen SCD/ESAT, Katholiee Universiteit Leuven, Belgium {raphael.cendrillon, olivier.rousseaux, marc.moonen}@esat.uleuven.ac.be

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS June Chul Roh and Bhaskar D Rao Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 9293 47,

More information

Multiuser Capacity in Block Fading Channel

Multiuser Capacity in Block Fading Channel Multiuser Capacity in Block Fading Channel April 2003 1 Introduction and Model We use a block-fading model, with coherence interval T where M independent users simultaneously transmit to a single receiver

More information

THE practical bottleneck of today s communication networks

THE practical bottleneck of today s communication networks 1 Interference Channel with Generalized Feedback (a.k.a. with source cooperation: Part I: Achievable Region Shuang (Echo Yang and Daniela Tuninetti Abstract An Interference Channel with Generalized Feedback

More information

USING multiple antennas has been shown to increase the

USING multiple antennas has been shown to increase the IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007 11 A Comparison of Time-Sharing, DPC, and Beamforming for MIMO Broadcast Channels With Many Users Masoud Sharif, Member, IEEE, and Babak

More information

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay

Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay Taneli Riihonen, Stefan Werner, and Risto Wichman Helsinki University of Technology, Finland IEEE WCNC, Budapest,

More information

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12 Lecture 1: The Multiple Access Channel Copyright G. Caire 12 Outline Two-user MAC. The Gaussian case. The K-user case. Polymatroid structure and resource allocation problems. Copyright G. Caire 13 Two-user

More information

Joint Multi-Cell Processing for Downlink Channels with Limited-Capacity Backhaul

Joint Multi-Cell Processing for Downlink Channels with Limited-Capacity Backhaul Joint Multi-Cell Processing for Downlink Channels with Limited-Capacity Backhaul Shlomo Shamai (Shitz) Department of Electrical Engineering Technion Haifa, 3000, Israel sshlomo@ee.technion.ac.il Osvaldo

More information

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming Authors: Christian Lameiro, Alfredo Nazábal, Fouad Gholam, Javier Vía and Ignacio Santamaría University of Cantabria,

More information

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm

Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm Lattice Reduction Aided Precoding for Multiuser MIMO using Seysen s Algorithm HongSun An Student Member IEEE he Graduate School of I & Incheon Korea ahs3179@gmail.com Manar Mohaisen Student Member IEEE

More information

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering Multi-User Communication: Capacity, Duality, and Cooperation Niar Jindal Stanford University Dept. of Electrical Engineering February 3, 004 Wireless Communication Vision Cellular Networks Wireless LAN

More information

Rematch and Forward: Joint Source-Channel Coding for Communications

Rematch and Forward: Joint Source-Channel Coding for Communications Background ρ = 1 Colored Problem Extensions Rematch and Forward: Joint Source-Channel Coding for Communications Anatoly Khina Joint work with: Yuval Kochman, Uri Erez, Ram Zamir Dept. EE - Systems, Tel

More information

On Feasibility of Interference Alignment in MIMO Interference Networks

On Feasibility of Interference Alignment in MIMO Interference Networks On Feasibility of Interference Alignment in MIMO Interference Networks Cenk M. Yetis, Member, IEEE, Tiangao Gou, Student Member, IEEE, Syed A. Jafar Senior Member, IEEE and Ahmet H. Kayran, Senior Member,

More information

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems

Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems 1 Pilot Optimization and Channel Estimation for Multiuser Massive MIMO Systems Tadilo Endeshaw Bogale and Long Bao Le Institute National de la Recherche Scientifique (INRS) Université de Québec, Montréal,

More information

Augmented Lattice Reduction for MIMO decoding

Augmented Lattice Reduction for MIMO decoding Augmented Lattice Reduction for MIMO decoding LAURA LUZZI joint work with G. Rekaya-Ben Othman and J.-C. Belfiore at Télécom-ParisTech NANYANG TECHNOLOGICAL UNIVERSITY SEPTEMBER 15, 2010 Laura Luzzi Augmented

More information