Rematch and Forward: Joint Source-Channel Coding for Communications

Size: px
Start display at page:

Download "Rematch and Forward: Joint Source-Channel Coding for Communications"

Transcription

1 Background ρ = 1 Colored Problem Extensions Rematch and Forward: Joint Source-Channel Coding for Communications Anatoly Khina Joint work with: Yuval Kochman, Uri Erez, Ram Zamir Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel February 21st, 2011

2 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF The Parallel Relay Network Z 1 Y 1 Relay 1 X 1 W Z 2 X BC Y Encoder 2 Power P 1 X 2 Relay 2 Z MAC Y MAC Ŵ Decoder Power P BC Power P 2 Z M Y M X M Relay M Power P M Equal bandwidth (ρ = 1) - Schein and Gallager 2000 Bandwidth expansion/compression factor: ρ BW BC BW MAC.

3 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF Definitions Symmetric Case Definitions P 1 = P 2 = = P M P MAC S MAC M m=1 P m σ 2 Z MAC = MP MAC σ 2 Z MAC S BC P BC σ 2 Z BC C(S) 1/2 log(1 + S) For now: Assume equal bandwidths (ρ = 1).

4 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF Upper Bounds on Capacity Simple Upper Bounds Noiseless BC: C C (MS MAC ) Noiseless MAC: C C (MS BC ) Improved Upper Bounds Schein (Ph.D.) Other cuts. Niesen-Diggavi Consider several different cuts, simultaneously.

5 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF Decode-and-Forward Decode and Forward Encode the message at the relays and decode it again for the MAC. C DF = min {C ( ) ( ) } MS MAC, C SBC Remark Rate must be low enough, such that each relay can decode reliably.

6 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF Compress-and-Forward Compress and Forward Relays digitally compress their analog inputs and transmit them over the MAC. Optimal Compression = CEO Approach. ( ) C CF C S BC C(S MAC ) (see Gastpar & Vetterli, 2005) Remark Fails to achieve the coherence gain, due to separation.

7 Background ρ = 1 Colored Problem Extensions Model Definitions UB DF CF AF Amplify-and-Forward Amplify and Forward Send the relay inputs up to proper amplification. ( ) MSMAC S BC C AF = C S MAC + S BC + 1 Remarks Accumulates the noise. Gains coherence gains in both sections! Outperforms CF for all SNRs (ρ = 1).

8 Background ρ = 1 Colored Problem Extensions Strategies Comparsion of Different Strategies Interpretation of Different Strategies Decode & Forward: Channel coding approach. Compress & Forward: Source coding approach. Amplify & Forward: Joint source-channel coding approach. Strategy A & F D & F C & F BC coherence X X MAC coherence X avoid noise accumulation X X

9 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Colored Problem General Problem: Noises with general color Symmetric Case: Noises in each section have the same spectrum Interesting Case: Unequal Bandwidths Bandwidth Expansion/Compression

10 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Possible Solutions for Bandwidth Mismatch Case Possible Solutions C&F and D&F do not exploit the coherence gains. A&F does not exploit full bandwidth. Can we exploit both gains simultaneously? Yes we can! Rematch & Forward

11 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Joint Source-Channel Coding for Point-to-Point White Colored / W JSCC JSCC Ŵ White Codebook BW Mismatched ENC DEC DEC ENC Gauss. Channel Use white channel codebook of arbitrary BW. Treat W as a source signal. Use joint source-channel coding to transmit W. Treat the reconstruction Ŵ as output of white channel. C = R(D) for MMSE distortion Capacity is Achieved BW mismatch: Equivalent SNR SNR ρ

12 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Rematch & Forward - Idea Joint Source-Channel Coding Usage White codebook of BW = BW MAC. The codebook is not matched to the BC section. Use optimal JSCC for the first channel section (R(D) = C BC ). Reconstruction = Output of white channel with BW MAC. Apply A&F to reconstructions. Conclusion JSCC exploits coherence gains for BW BC BW MAC.

13 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Rematch & Forward - Scheme replacements Scheme: W P2P V Encoder Z 1 Y 1 JSCC ˆV 1 X 1 γ decoder Z MAC 1 Mγ JSCC X BC Y MAC ˆV P2P G Encoder BC G MAC Z Decoder M Y M JSCC ˆV M X γ M decoder Transmitter BC Section Relays MAC Section Receiver Ŵ Equivalent scheme: Z 1 ˆV 1 γ W P2P V Encoder ZM Z MAC 1 Mγ ˆV P2P Ŵ Decoder ˆV M γ

14 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Maximally Analog Reconstruction Error Problem Not every JSSC scheme achieves full possible coherence. Errors should be summed non-coherently. Need analog (codeword independent) JSCC scheme Definition (Maximally Analog Reconstruction Error JSCC Scheme) A JSCC scheme for source with BW SC and channel with BW CH, where the unbiased reconstruction error is independent of the source for all f < min{bw SC, BW CH }.

15 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Maximally Analog Reconstruction Error JSCC Shemes BW Mismatch Mittal & Phamdo (2002). Reznic et al.(2006). General Colored Case Prabhakaran et al. Kochman and Zamir.

16 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Hybrid Analog-Digital Schemes (Mittal & Phamdo, 2002) BW Expansion (ρ > 1) Use excess BW to digitally transmit quantized source. Use source BW to analogically transmit quantization error. Reconstruction error = Channel noise in source BW. BW Compression (ρ < 1) Quantize excess BW component of the source. Transmit by superposition: Digital code of quantized component + Channel BW component

17 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Analog Matching General Colored (Symmetric) Case What can we do when noises have arbitrary spectra? Analog Matching Can match any BW ratio and noise color. Uses time-domain processing. Transmits an analog signal modulo-lattice. Achieves maximally analog estimation error.

18 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Performance Example: BW Expansion For high SNRs: ( ( ) ) C CF C S ρ C(SMAC ) ρ BC ρ ( C DF = C min ( MS MAC, S ρ ) ) BC ) C AF = C (M (S MAC S BC ) C RF = C (M ( S MAC S ρ ) ) BC where a b ab a + b R&F outperforms all other strategies for large enough M.

19 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Performance Example: BW Expansion (M=1) ρ = 3, S BC = 10dB 7 6 Rematch and Forward Amplify and Forward Decode and Forward 5 Capacity[bits] MAC SNR [db]

20 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Performance Example: BW Expansion (M=2) ρ = 3, S BC = 10dB Outer bound Rematch and Forward Amplify and Forward Decode and Forward Capacity[bits] MAC SNR [db]

21 Background ρ = 1 Colored Problem Extensions Sol. JSC for P2P R&F Max. Analog HDA AM BW Expa Performance Example: BW Expansion (M=8) ρ = 3, S BC = 10dB Outer bound Rematch and Forward Amplify and Forward Decode and Forward Capacity[bits] MAC SNR [db]

22 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Improvement over A&F for ρ = 1 PSfrag replacements λ MAC 1 λ MAC Analog Digital Codebook λ BC 1 λ BC Analog Digital BC RF DF λ MAC Analog 1 λ MAC Digital MAC Yellow bands - used for R&F; Cyan bands - used for D&F. For R&F: ρ = λ BC λ MAC.

23 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Improvement over A&F for ρ = Capacity [bits] RF DF AF DF AF DF S MAC [db] R&F-D&F timesharing outperforms any known strategy.

24 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Layered Networks Layered Network

25 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Layered Networks Not a Layered Network

26 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Layered Networks Rematch and Forward can be applied to Layered Networks. Layer 1 Layer 2 Layer 3 Layer 4

27 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research Further Research Non-symmetric (different noise spectra) case. Extension to MIMO channels. Usage of R&F for more complex networks. Constructing good JSCC schemes for the MAC section.

28 Background ρ = 1 Colored Problem Extensions Improving ρ = 1 Layered Networks Further Research HAPPY BIRTHDAY!

Rematch-and-Forward: Joint Source Channel Coding for Parallel Relaying with Spectral Mismatch

Rematch-and-Forward: Joint Source Channel Coding for Parallel Relaying with Spectral Mismatch Rematch-and-Forward: Joint Source Channel Coding for Parallel Relaying with Spectral Mismatch Yuval Kochman, Anatoly Khina, Uri Erez, and Ram Zamir Abstract The Gaussian parallel relay network, introduced

More information

Physical-Layer MIMO Relaying

Physical-Layer MIMO Relaying Model Gaussian SISO MIMO Gauss.-BC General. Physical-Layer MIMO Relaying Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University August 5, 2011 Model Gaussian

More information

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Simultaneous SDR Optimality via a Joint Matrix Decomp. Simultaneous SDR Optimality via a Joint Matrix Decomposition Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv Uni. May 26, 2011 Model: Source Multicasting over MIMO Channels z 1 H 1 y 1 Rx1 ŝ 1 s

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Model Rateless SISO MIMO Applications Summary Incremental Coding over MIMO Channels Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, MIT Uri Erez, Tel Aviv University Gregory W. Wornell,

More information

Improved Rates and Coding for the MIMO Two-Way Relay Channel

Improved Rates and Coding for the MIMO Two-Way Relay Channel Improved Rates and Coding for the MIMO Two-Way Relay Channel Anatoly Khina Dept. of EE Systems, TAU Tel Aviv, Israel Email: anatolyk@eng.tau.ac.il Yuval Kochman School of CSE, HUJI Jerusalem, Israel Email:

More information

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT Network Modulation: Transmission Technique for MIMO Networks Anatoly Khina Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT ACC Workshop, Feder Family Award

More information

The Dirty MIMO Multiple-Access Channel

The Dirty MIMO Multiple-Access Channel The Dirty MIMO Multiple-Access Channel Anatoly Khina, Caltech Joint work with: Yuval Kochman, Hebrew University Uri Erez, Tel-Aviv University ISIT 2016 Barcelona, Catalonia, Spain July 12, 2016 Motivation:

More information

Joint Unitary Triangularization for MIMO Networks

Joint Unitary Triangularization for MIMO Networks 1 Joint Unitary Triangularization for MIMO Networks Anatoly Khina, Student Member, IEEE, Yuval Kochman, Member, IEEE, and Uri Erez, Member, IEEE Abstract This work considers communication networks where

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

Hybrid Coding. Young-Han Kim, UCSD. Living Information Theory Workshop Happy<70.42> th birthday,professorberger!

Hybrid Coding. Young-Han Kim, UCSD. Living Information Theory Workshop Happy<70.42> th birthday,professorberger! Hybrid Coding Young-Han Kim, UCSD Living Information Theory Workshop Happy th birthday,professorberger! 1/21 Hybrid Coding Young-Han Kim, UCSD Living Information Theory Workshop Happy th

More information

Transmission Strategies for the Gaussian Parallel Relay Channel. by Seyed Saeed Changiz Rezaei

Transmission Strategies for the Gaussian Parallel Relay Channel. by Seyed Saeed Changiz Rezaei Transmission Strategies for the Gaussian Parallel Relay Channel by Seyed Saeed Changiz Rezaei A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of

More information

THE fundamental architecture of most of today s

THE fundamental architecture of most of today s IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 4, APRIL 2015 1509 A Unified Approach to Hybrid Coding Paolo Minero, Member, IEEE, Sung Hoon Lim, Member, IEEE, and Young-Han Kim, Fellow, IEEE Abstract

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

Energy Efficient Estimation of Gaussian Sources Over Inhomogeneous Gaussian MAC Channels

Energy Efficient Estimation of Gaussian Sources Over Inhomogeneous Gaussian MAC Channels Energy Efficient Estimation of Gaussian Sources Over Inhomogeneous Gaussian MAC Channels Shuangqing Wei, Ragopal Kannan, Sitharama Iyengar and Nageswara S. Rao Abstract In this paper, we first provide

More information

On Source-Channel Communication in Networks

On Source-Channel Communication in Networks On Source-Channel Communication in Networks Michael Gastpar Department of EECS University of California, Berkeley gastpar@eecs.berkeley.edu DIMACS: March 17, 2003. Outline 1. Source-Channel Communication

More information

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results Information Theory Lecture 10 Network Information Theory (CT15); a focus on channel capacity results The (two-user) multiple access channel (15.3) The (two-user) broadcast channel (15.6) The relay channel

More information

Interference Alignment at Finite SNR for TI channels

Interference Alignment at Finite SNR for TI channels Interference Alignment at Finite SNR for Time-Invariant channels Or Ordentlich Joint work with Uri Erez EE-Systems, Tel Aviv University ITW 20, Paraty Background and previous work The 2-user Gaussian interference

More information

Sparse Regression Codes for Multi-terminal Source and Channel Coding

Sparse Regression Codes for Multi-terminal Source and Channel Coding Sparse Regression Codes for Multi-terminal Source and Channel Coding Ramji Venkataramanan Yale University Sekhar Tatikonda Allerton 2012 1 / 20 Compression with Side-Information X Encoder Rate R Decoder

More information

On the Duality between Multiple-Access Codes and Computation Codes

On the Duality between Multiple-Access Codes and Computation Codes On the Duality between Multiple-Access Codes and Computation Codes Jingge Zhu University of California, Berkeley jingge.zhu@berkeley.edu Sung Hoon Lim KIOST shlim@kiost.ac.kr Michael Gastpar EPFL michael.gastpar@epfl.ch

More information

Source-Channel Coding Techniques in the Presence of Interference and Noise

Source-Channel Coding Techniques in the Presence of Interference and Noise Source-Channel Coding Techniques in the Presence of Interference and Noise by Ahmad Abou Saleh A thesis submitted to the Department of Electrical and Computer Engineering in conformity with the requirements

More information

Binary Dirty MAC with Common State Information

Binary Dirty MAC with Common State Information Binary Dirty MAC with Common State Information Anatoly Khina Email: anatolyk@eng.tau.ac.il Tal Philosof Email: talp@eng.tau.ac.il Ram Zamir Email: zamir@eng.tau.ac.il Uri Erez Email: uri@eng.tau.ac.il

More information

Error Exponent Region for Gaussian Broadcast Channels

Error Exponent Region for Gaussian Broadcast Channels Error Exponent Region for Gaussian Broadcast Channels Lihua Weng, S. Sandeep Pradhan, and Achilleas Anastasopoulos Electrical Engineering and Computer Science Dept. University of Michigan, Ann Arbor, MI

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

Cut-Set Bound and Dependence Balance Bound

Cut-Set Bound and Dependence Balance Bound Cut-Set Bound and Dependence Balance Bound Lei Xiao lxiao@nd.edu 1 Date: 4 October, 2006 Reading: Elements of information theory by Cover and Thomas [1, Section 14.10], and the paper by Hekstra and Willems

More information

Approximately achieving the feedback interference channel capacity with point-to-point codes

Approximately achieving the feedback interference channel capacity with point-to-point codes Approximately achieving the feedback interference channel capacity with point-to-point codes Joyson Sebastian*, Can Karakus*, Suhas Diggavi* Abstract Superposition codes with rate-splitting have been used

More information

Improved Rates and Coding for the MIMO Two-Way Relay Channel

Improved Rates and Coding for the MIMO Two-Way Relay Channel Improved Rates and Coding for the MIMO Two-Way Relay Channel Anatoly Khina Dept. of EE Systems, TAU Tel Aviv, Israel Email: anatolyk@eng.tau.ac.il Yuval Kochman School of CSE, HUJI Jerusalem, Israel Email:

More information

Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source

Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source Noise-Shaped Predictive Coding for Multiple Descriptions of a Colored Gaussian Source Yuval Kochman, Jan Østergaard, and Ram Zamir Abstract It was recently shown that the symmetric multiple-description

More information

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel Ahmad Abu Al Haija ECE Department, McGill University, Montreal, QC, Canada Email: ahmad.abualhaija@mail.mcgill.ca

More information

CROSS LAYER CODING SCHEMES FOR BROADCASTING AND RELAYING. A Dissertation MAKESH PRAVIN JOHN WILSON

CROSS LAYER CODING SCHEMES FOR BROADCASTING AND RELAYING. A Dissertation MAKESH PRAVIN JOHN WILSON CROSS LAYER CODING SCHEMES FOR BROADCASTING AND RELAYING A Dissertation by MAKESH PRAVIN JOHN WILSON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Decomposing the MIMO Wiretap Channel

Decomposing the MIMO Wiretap Channel Decomposing the MIMO Wiretap Channel Anatoly Khina, Tel Aviv University Joint work with: Yuval Kochman, Hebrew University Ashish Khisti, University of Toronto ISIT 2014 Honolulu, Hawai i, USA June 30,

More information

MMSE estimation and lattice encoding/decoding for linear Gaussian channels. Todd P. Coleman /22/02

MMSE estimation and lattice encoding/decoding for linear Gaussian channels. Todd P. Coleman /22/02 MMSE estimation and lattice encoding/decoding for linear Gaussian channels Todd P. Coleman 6.454 9/22/02 Background: the AWGN Channel Y = X + N where N N ( 0, σ 2 N ), 1 n ni=1 X 2 i P X. Shannon: capacity

More information

Decode-and-Forward Relaying via Standard AWGN Coding and Decoding

Decode-and-Forward Relaying via Standard AWGN Coding and Decoding 1 Decode-and-Forward Relaying via tandard AWGN Coding and Decoding Anatoly Khina, tudent Member, IEEE, Yuval Kochman, Member, IEEE, Uri Erez, Member, IEEE, and Gregory W. Wornell, Fellow, IEEE Abstract

More information

The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference

The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference The Generalized Degrees of Freedom of the Interference Relay Channel with Strong Interference Soheyl Gherekhloo, Anas Chaaban, and Aydin Sezgin Chair of Communication Systems RUB, Germany Email: {soheyl.gherekhloo,

More information

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering

Multi-User Communication: Capacity, Duality, and Cooperation. Nihar Jindal Stanford University Dept. of Electrical Engineering Multi-User Communication: Capacity, Duality, and Cooperation Niar Jindal Stanford University Dept. of Electrical Engineering February 3, 004 Wireless Communication Vision Cellular Networks Wireless LAN

More information

Structured interference-mitigation in two-hop networks

Structured interference-mitigation in two-hop networks tructured interference-mitigation in two-hop networks Yiwei ong Department of Electrical and Computer Eng University of Illinois at Chicago Chicago, IL, UA Email: ysong34@uicedu Natasha Devroye Department

More information

Gaussian Relay Channel Capacity to Within a Fixed Number of Bits

Gaussian Relay Channel Capacity to Within a Fixed Number of Bits Gaussian Relay Channel Capacity to Within a Fixed Number of Bits Woohyuk Chang, Sae-Young Chung, and Yong H. Lee arxiv:.565v [cs.it] 23 Nov 2 Abstract In this paper, we show that the capacity of the threenode

More information

The Robustness of Dirty Paper Coding and The Binary Dirty Multiple Access Channel with Common Interference

The Robustness of Dirty Paper Coding and The Binary Dirty Multiple Access Channel with Common Interference The and The Binary Dirty Multiple Access Channel with Common Interference Dept. EE - Systems, Tel Aviv University, Tel Aviv, Israel April 25th, 2010 M.Sc. Presentation The B/G Model Compound CSI Smart

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

Joint Wyner-Ziv/Dirty-Paper Coding by Modulo-Lattice Modulation

Joint Wyner-Ziv/Dirty-Paper Coding by Modulo-Lattice Modulation 1 Joint Wyner-Ziv/Dirty-Paper Coding by Modulo-Lattice Modulation Yuval Kochman and Ram Zamir Dept. Electrical Engineering - Systems, Tel Aviv University arxiv:0801.0815v3 [cs.it] 17 Dec 2008 Abstract

More information

The Duality Between Information Embedding and Source Coding With Side Information and Some Applications

The Duality Between Information Embedding and Source Coding With Side Information and Some Applications IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 5, MAY 2003 1159 The Duality Between Information Embedding and Source Coding With Side Information and Some Applications Richard J. Barron, Member,

More information

Performance Analysis of Physical Layer Network Coding

Performance Analysis of Physical Layer Network Coding Performance Analysis of Physical Layer Network Coding by Jinho Kim A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Electrical Engineering: Systems)

More information

Lecture 4. Capacity of Fading Channels

Lecture 4. Capacity of Fading Channels 1 Lecture 4. Capacity of Fading Channels Capacity of AWGN Channels Capacity of Fading Channels Ergodic Capacity Outage Capacity Shannon and Information Theory Claude Elwood Shannon (April 3, 1916 February

More information

The Gaussian Channel with Noisy Feedback: Improving Reliability via Interaction

The Gaussian Channel with Noisy Feedback: Improving Reliability via Interaction The Gaussian Channel with Noisy Feedback: Improving Reliability via Interaction Assaf Ben-Yishai and Ofer Shayevitz arxiv:500667v [csit] 5 Apr 05 Abstract Consider a pair of terminals connected by two

More information

Incremental Coding over MIMO Channels

Incremental Coding over MIMO Channels Incremental Coding over MIMO Channels Anatoly Khina EE-Systems Dept, TAU Tel Aviv, Israel Email: anatolyk@engtauacil Yuval Kochman EECS Dept, MIT Cambridge, MA 02139, USA Email: yuvalko@mitedu Uri Erez

More information

L interférence dans les réseaux non filaires

L interférence dans les réseaux non filaires L interférence dans les réseaux non filaires Du contrôle de puissance au codage et alignement Jean-Claude Belfiore Télécom ParisTech 7 mars 2013 Séminaire Comelec Parts Part 1 Part 2 Part 3 Part 4 Part

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information

Reliable Computation over Multiple-Access Channels

Reliable Computation over Multiple-Access Channels Reliable Computation over Multiple-Access Channels Bobak Nazer and Michael Gastpar Dept. of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA, 94720-1770 {bobak,

More information

Partially Block Markov Superposition Transmission of Gaussian Source with Nested Lattice Codes

Partially Block Markov Superposition Transmission of Gaussian Source with Nested Lattice Codes Partially Block Markov Superposition Transmission of Gaussian Source with Nested Lattice Codes 1 arxiv:1603.01943v1 [cs.it] 7 Mar 2016 Shancheng Zhao and Xiao Ma Abstract This paper studies the transmission

More information

Space-Time Coding for Multi-Antenna Systems

Space-Time Coding for Multi-Antenna Systems Space-Time Coding for Multi-Antenna Systems ECE 559VV Class Project Sreekanth Annapureddy vannapu2@uiuc.edu Dec 3rd 2007 MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures

More information

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function

Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Lattices for Distributed Source Coding: Jointly Gaussian Sources and Reconstruction of a Linear Function Dinesh Krithivasan and S. Sandeep Pradhan Department of Electrical Engineering and Computer Science,

More information

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case

Feedback Capacity of the Gaussian Interference Channel to Within Bits: the Symmetric Case 1 arxiv:0901.3580v1 [cs.it] 23 Jan 2009 Feedback Capacity of the Gaussian Interference Channel to Within 1.7075 Bits: the Symmetric Case Changho Suh and David Tse Wireless Foundations in the Department

More information

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying Ahmad Abu Al Haija, and Mai Vu, Department of Electrical and Computer Engineering McGill University Montreal, QC H3A A7 Emails: ahmadabualhaija@mailmcgillca,

More information

Harnessing Interaction in Bursty Interference Networks

Harnessing Interaction in Bursty Interference Networks 215 IEEE Hong Kong-Taiwan Joint Workshop on Information Theory and Communications Harnessing Interaction in Bursty Interference Networks I-Hsiang Wang NIC Lab, NTU GICE 1/19, 215 Modern Wireless: Grand

More information

Compute-and-Forward: Harnessing Interference through Structured Codes

Compute-and-Forward: Harnessing Interference through Structured Codes IEEE TRANS INFO THEORY, TO AEAR 1 Compute-and-Forward: Harnessing Interference through Structured Codes Bobak Nazer, Member, IEEE and Michael Gastpar, Member, IEEE Abstract Interference is usually viewed

More information

Transmitting k samples over the Gaussian channel: energy-distortion tradeoff

Transmitting k samples over the Gaussian channel: energy-distortion tradeoff Transmitting samples over the Gaussian channel: energy-distortion tradeoff Victoria Kostina Yury Polyansiy Sergio Verdú California Institute of Technology Massachusetts Institute of Technology Princeton

More information

Tightened Upper Bounds on the ML Decoding Error Probability of Binary Linear Block Codes and Applications

Tightened Upper Bounds on the ML Decoding Error Probability of Binary Linear Block Codes and Applications on the ML Decoding Error Probability of Binary Linear Block Codes and Moshe Twitto Department of Electrical Engineering Technion-Israel Institute of Technology Haifa 32000, Israel Joint work with Igal

More information

Efficient Decoding Algorithms for the. Compute-and-Forward Strategy

Efficient Decoding Algorithms for the. Compute-and-Forward Strategy IEEE TRANSACTIONS ON COMMUNICATIONS 1 Efficient Decoding Algorithms for the Compute-and-Forward Strategy Asma Mejri, Student Member, IEEE, Ghaya Rekaya, Member, IEEE arxiv:1404.4453v1 [cs.it] 17 Apr 2014

More information

Phase Precoded Compute-and-Forward with Partial Feedback

Phase Precoded Compute-and-Forward with Partial Feedback Phase Precoded Compute-and-Forward with Partial Feedback Amin Sakzad, Emanuele Viterbo Dept. Elec. & Comp. Sys. Monash University, Australia amin.sakzad,emanuele.viterbo@monash.edu Joseph Boutros, Dept.

More information

Generalized Writing on Dirty Paper

Generalized Writing on Dirty Paper Generalized Writing on Dirty Paper Aaron S. Cohen acohen@mit.edu MIT, 36-689 77 Massachusetts Ave. Cambridge, MA 02139-4307 Amos Lapidoth lapidoth@isi.ee.ethz.ch ETF E107 ETH-Zentrum CH-8092 Zürich, Switzerland

More information

An Achievable Rate for the Multiple Level Relay Channel

An Achievable Rate for the Multiple Level Relay Channel An Achievable Rate for the Multiple Level Relay Channel Liang-Liang Xie and P. R. Kumar Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University of Illinois, Urbana-Champaign

More information

MMSE DECODING FOR ANALOG JOINT SOURCE CHANNEL CODING USING MONTE CARLO IMPORTANCE SAMPLING

MMSE DECODING FOR ANALOG JOINT SOURCE CHANNEL CODING USING MONTE CARLO IMPORTANCE SAMPLING MMSE DECODING FOR ANALOG JOINT SOURCE CHANNEL CODING USING MONTE CARLO IMPORTANCE SAMPLING Yichuan Hu (), Javier Garcia-Frias () () Dept. of Elec. and Comp. Engineering University of Delaware Newark, DE

More information

CONSIDER the Two-Way Relay Channel (TWRC) depicted

CONSIDER the Two-Way Relay Channel (TWRC) depicted IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 0, OCTOBER 04 5607 Achievable Rate Regions for Two-Way Relay Channel Using Nested Lattice Coding Sinda Smirani, Mohamed Kamoun, Mireille Sarkiss,

More information

Joint Source-Channel Coding for the Multiple-Access Relay Channel

Joint Source-Channel Coding for the Multiple-Access Relay Channel Joint Source-Channel Coding for the Multiple-Access Relay Channel Yonathan Murin, Ron Dabora Department of Electrical and Computer Engineering Ben-Gurion University, Israel Email: moriny@bgu.ac.il, ron@ee.bgu.ac.il

More information

CS6304 / Analog and Digital Communication UNIT IV - SOURCE AND ERROR CONTROL CODING PART A 1. What is the use of error control coding? The main use of error control coding is to reduce the overall probability

More information

On the Capacity of the Interference Channel with a Relay

On the Capacity of the Interference Channel with a Relay On the Capacity of the Interference Channel with a Relay Ivana Marić, Ron Dabora and Andrea Goldsmith Stanford University, Stanford, CA {ivanam,ron,andrea}@wsl.stanford.edu Abstract Capacity gains due

More information

Iterative Quantization. Using Codes On Graphs

Iterative Quantization. Using Codes On Graphs Iterative Quantization Using Codes On Graphs Emin Martinian and Jonathan S. Yedidia 2 Massachusetts Institute of Technology 2 Mitsubishi Electric Research Labs Lossy Data Compression: Encoding: Map source

More information

Joint Source-Channel Coding

Joint Source-Channel Coding Winter School on Information Theory Joint Source-Channel Coding Giuseppe Caire, University of Southern California La Colle sur Loup, France, March 2007 Outline: Part I REVIEW OF BASIC RESULTS Capacity-cost

More information

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap Or Ordentlich Dept EE-Systems, TAU Tel Aviv, Israel Email: ordent@engtauacil Uri Erez Dept EE-Systems, TAU Tel Aviv,

More information

THE practical bottleneck of today s communication networks

THE practical bottleneck of today s communication networks 1 Interference Channel with Generalized Feedback (a.k.a. with source cooperation: Part I: Achievable Region Shuang (Echo Yang and Daniela Tuninetti Abstract An Interference Channel with Generalized Feedback

More information

Multi-Layer Hybrid-ARQ for an Out-of-Band Relay Channel

Multi-Layer Hybrid-ARQ for an Out-of-Band Relay Channel 203 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications: Fundamentals and PHY Track Multi-Layer Hybrid-ARQ for an Out-of-Band Relay Channel Seok-Hwan Park Osvaldo Simeone

More information

Information Theory Meets Game Theory on The Interference Channel

Information Theory Meets Game Theory on The Interference Channel Information Theory Meets Game Theory on The Interference Channel Randall A. Berry Dept. of EECS Northwestern University e-mail: rberry@eecs.northwestern.edu David N. C. Tse Wireless Foundations University

More information

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes.

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes. 5 Binary Codes You have already seen how check digits for bar codes (in Unit 3) and ISBN numbers (Unit 4) are used to detect errors. Here you will look at codes relevant for data transmission, for example,

More information

Advanced Topics in Information Theory

Advanced Topics in Information Theory Advanced Topics in Information Theory Lecture Notes Stefan M. Moser c Copyright Stefan M. Moser Signal and Information Processing Lab ETH Zürich Zurich, Switzerland Institute of Communications Engineering

More information

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS

CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS CHANNEL FEEDBACK QUANTIZATION METHODS FOR MISO AND MIMO SYSTEMS June Chul Roh and Bhaskar D Rao Department of Electrical and Computer Engineering University of California, San Diego La Jolla, CA 9293 47,

More information

Capacity Bounds for Diamond Networks

Capacity Bounds for Diamond Networks Technische Universität München Capacity Bounds for Diamond Networks Gerhard Kramer (TUM) joint work with Shirin Saeedi Bidokhti (TUM & Stanford) DIMACS Workshop on Network Coding Rutgers University, NJ

More information

On Capacity Under Received-Signal Constraints

On Capacity Under Received-Signal Constraints On Capacity Under Received-Signal Constraints Michael Gastpar Dept. of EECS, University of California, Berkeley, CA 9470-770 gastpar@berkeley.edu Abstract In a world where different systems have to share

More information

Integer-Forcing Linear Receiver Design over MIMO Channels

Integer-Forcing Linear Receiver Design over MIMO Channels Globecom 0 - Signal Processing for Communications Symposium Integer-Forcing inear Receiver Design over MIMO Channels ili Wei, Member, IEEE and Wen Chen, Senior Member, IEEE Department of Electronic Engineering,

More information

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Min Dai Electrical Engineering, Texas A&M University Dmitri Loguinov Computer Science, Texas A&M University

More information

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining

Secrecy Outage Performance of Cooperative Relay Network With Diversity Combining Secrecy Outage erformance of Cooperative Relay Network With Diversity Combining Khyati Chopra Dept. of lectrical ngineering Indian Institute of Technology, Delhi New Delhi-110016, India mail: eez148071@ee.iitd.ac.in

More information

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12

Lecture 1: The Multiple Access Channel. Copyright G. Caire 12 Lecture 1: The Multiple Access Channel Copyright G. Caire 12 Outline Two-user MAC. The Gaussian case. The K-user case. Polymatroid structure and resource allocation problems. Copyright G. Caire 13 Two-user

More information

Interference Channel aided by an Infrastructure Relay

Interference Channel aided by an Infrastructure Relay Interference Channel aided by an Infrastructure Relay Onur Sahin, Osvaldo Simeone, and Elza Erkip *Department of Electrical and Computer Engineering, Polytechnic Institute of New York University, Department

More information

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 11, NOVEMBER

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 62, NO. 11, NOVEMBER IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 6, NO., NOVEMBER 04 3997 Source-Channel Coding for Fading Channels With Correlated Interference Ahmad Abou Saleh, Wai-Yip Chan, and Fady Alajaji, Senior Member,

More information

Error Exponent Regions for Gaussian Broadcast and Multiple Access Channels

Error Exponent Regions for Gaussian Broadcast and Multiple Access Channels Error Exponent Regions for Gaussian Broadcast and Multiple Access Channels Lihua Weng, S. Sandeep Pradhan, and Achilleas Anastasopoulos Submitted: December, 5 Abstract In modern communication systems,

More information

Distributed Hypothesis Testing Over Discrete Memoryless Channels

Distributed Hypothesis Testing Over Discrete Memoryless Channels 1 Distributed Hypothesis Testing Over Discrete Memoryless Channels Sreejith Sreekumar and Deniz Gündüz Imperial College London, UK Email: {s.sreekumar15, d.gunduz}@imperial.ac.uk Abstract A distributed

More information

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014

Scalar and Vector Quantization. National Chiao Tung University Chun-Jen Tsai 11/06/2014 Scalar and Vector Quantization National Chiao Tung University Chun-Jen Tsai 11/06/014 Basic Concept of Quantization Quantization is the process of representing a large, possibly infinite, set of values

More information

COMBINING DECODED-AND-FORWARDED SIGNALS IN GAUSSIAN COOPERATIVE CHANNELS

COMBINING DECODED-AND-FORWARDED SIGNALS IN GAUSSIAN COOPERATIVE CHANNELS COMBINING DECODED-AND-FORWARDED SIGNALS IN GAUSSIAN COOPERATIVE CHANNELS Brice Djeumou, Samson Lasaulce, Andrew Klein To cite this version: Brice Djeumou, Samson Lasaulce, Andrew Klein. COMBINING DECODED-AND-FORWARDED

More information

Computing sum of sources over an arbitrary multiple access channel

Computing sum of sources over an arbitrary multiple access channel Computing sum of sources over an arbitrary multiple access channel Arun Padakandla University of Michigan Ann Arbor, MI 48109, USA Email: arunpr@umich.edu S. Sandeep Pradhan University of Michigan Ann

More information

Diversity-Fidelity Tradeoff in Transmission of Analog Sources over MIMO Fading Channels

Diversity-Fidelity Tradeoff in Transmission of Analog Sources over MIMO Fading Channels Diversity-Fidelity Tradeo in Transmission o Analog Sources over MIMO Fading Channels Mahmoud Taherzadeh, Kamyar Moshksar and Amir K. Khandani Coding & Signal Transmission Laboratory www.cst.uwaterloo.ca

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

2-user 2-hop Networks

2-user 2-hop Networks 2012 IEEE International Symposium on Information Theory roceedings Approximate Ergodic Capacity of a Class of Fading 2-user 2-hop Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer

More information

Information Theory (Information Theory by J. V. Stone, 2015)

Information Theory (Information Theory by J. V. Stone, 2015) Information Theory (Information Theory by J. V. Stone, 2015) Claude Shannon (1916 2001) Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379 423. A mathematical

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH MIMO : MIMO Theoretical Foundations of Wireless Communications 1 Wednesday, May 25, 2016 09:15-12:00, SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 20 Overview MIMO

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information

Approximate Ergodic Capacity of a Class of Fading Networks

Approximate Ergodic Capacity of a Class of Fading Networks Approximate Ergodic Capacity of a Class of Fading Networks Sang-Woon Jeon, Chien-Yi Wang, and Michael Gastpar School of Computer and Communication Sciences EPFL Lausanne, Switzerland {sangwoon.jeon, chien-yi.wang,

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

E303: Communication Systems

E303: Communication Systems E303: Communication Systems Professor A. Manikas Chair of Communications and Array Processing Imperial College London Principles of PCM Prof. A. Manikas (Imperial College) E303: Principles of PCM v.17

More information

Soft-Output Trellis Waveform Coding

Soft-Output Trellis Waveform Coding Soft-Output Trellis Waveform Coding Tariq Haddad and Abbas Yongaçoḡlu School of Information Technology and Engineering, University of Ottawa Ottawa, Ontario, K1N 6N5, Canada Fax: +1 (613) 562 5175 thaddad@site.uottawa.ca

More information