The Normal Distribution

Size: px
Start display at page:

Download "The Normal Distribution"

Transcription

1 The Normal Distribution image: Etsy Will Monroe July 19, 017 with materials by Mehran Sahami and Chris Piech

2 Announcements: Midterm A week from yesterday: Tuesday, July 5, 7:00-9:00pm Building One page (both sides) of notes Material through today s lecture Review session: Tomorrow, July 0, :30-3:0pm in Gates B01

3 Review: A grid of random variables number of successes One trial X Ber( p) n=1 Several trials Interval of time X Bin(n, p) X Poi(λ) time to get successes X Geo( p) One success r=1 X NegBin (r, p) X Exp(λ) (continuous!) Several successes One success after interval of time

4 Review: Continuous distributions A continuous random variable has a value that s a real number (not necessarily an integer). Replace sums with integrals! P (a< X b)=f X (b) F X (a) a F X (a)= x= dx f X (x)

5 Review: Probability density function The probability density function (PDF) of a continuous random variable represents the relative likelihood of various values. Units of probability divided by units of X. Integrate it to get probabilities! b P (a< X b)= dx f X (x) x=a

6 Continuous expectation and variance Remember: replace sums with integrals! E [ X ]= x p X (x) E [ X ]= x= E [ X ]= x p X ( x) x= E [ X ]= x= dx x f X ( x) dx x f X ( x) x= Var( X )=E [( X E [ X ]) ]=E [ X ] (E [ X ]) (still!)

7 Review: Uniform random variable A uniform random variable is equally likely to be any value in a single real number interval. X Uni(α,β) 1 f X (x)= β α 0 { if x [α,β] otherwise

8 Uniform: Fact sheet minimum value X Uni(α,β) maximum value PDF: CDF: 1 f X ( x)= β α 0 { x α β α F X ( x)= 1 0 { if x [α,β] otherwise if x [α,β] if x>β expectation: otherwise variance: image: Haha169 α+β E[ X ]= (β α) Var( X )= 1

9 Review: Exponential random variable An exponential random variable is the amount of time until the first event when events occur as in the Poisson distribution. X Exp(λ) λ x λe f X (x)= 0 { image: Adrian Sampson if x 0 otherwise

10 Exponential: Fact sheet rate of events per unit time X Exp(λ) time until first event PDF: CDF: expectation: variance: image: Adrian Sampson λ x λe f X ( x)= 0 { { 1 e F X ( x)= 0 1 E [ X ]= λ 1 Var( X )= λ λ x if x 0 otherwise if x 0 otherwise

11 Normal random variable An normal (= Gaussian) random variable is a good approximation to many other distributions. It often results from sums or averages of independent random variables. X N (μ, σ ) 1 x μ ( 1 σ ) f X ( x)= e σ π

12 Déjà vu?

13 Déjà vu? P( X =k ) k

14 Déjà vu? f X ( x) x X = sum of n independent Uni(0, 1) variables image: Thomasda

15 The normal distribution Also known as: Gaussian distribution Shape: bell curve Personality: easygoing

16 What is normally distributed? Natural phenomena: heights, weights (approximately) Noise in measurements Sums/averages of many random variables (caveats: independence, equal weighting, continuity...) Averages of samples from a population (with sufficient sample sizes)

17 The Know-Nothing Distribution maximum entropy The normal is the most spread-out distribution with a fixed expectation and variance. If you know E[X] and Var(X) but nothing else, a normal is probably a good starting point!

18 Normal: Fact sheet mean X N (μ, σ ) variance (σ = standard deviation) PDF: 1 x μ σ 1 f X ( x)= e σ π ( )

19 The Standard Normal Z N (0,1) μ X N (μ, σ ) σ² X =σ Z +μ X μ Z= σ

20 De-scarifying the normal PDF 1 x μ σ 1 f X ( x)= e σ π ( )

21 De-scarifying the normal PDF 1 z f Z ( z)= e 1 π ( )

22 De-scarifying the normal PDF 1 z 1 f Z ( z)= e π

23 De-scarifying the normal PDF 1 z f Z ( z)=c e

24 De-scarifying the normal PDF 1 z f Z ( z)=c e 1 z

25 De-scarifying the normal PDF 1 z f Z ( z)=c e 1 z

26 De-scarifying the normal PDF 1 x μ σ 1 f X ( x)= e σ π normalizing constant ( ) X μ Z= σ

27 Normal: Fact sheet mean X N (μ, σ ) variance (σ = standard deviation) PDF: CDF: 1 x μ σ ( ) 1 f X ( x)= e σ π x x μ F X ( x)=φ σ = dx f X ( x) ( ) (no closed form)

28 The Standard Normal Z N (0,1) μ X N (μ, σ ) σ² X =σ Z +μ X μ Z= σ Φ(z)=F Z ( z)=p(z z)

29 Symmetry of the normal P( X μ x)=p( X μ+ x) and don t forget: P( X > x)=1 P( X x)

30 Symmetry of the normal P(Z z)=p(z z) and don t forget: P(Z > z)=1 P(Z z)

31 Symmetry of the normal Φ( z)=p(z z) and don t forget: P(Z > z)=1 Φ( z)

32 The standard normal table Φ(0.54)=P(Z 0.54)=0.7054

33 With today s technology scipy.stats.norm(mean, std).cdf(x) standard deviation! not variance. you might need math.sqrt here.

34 Break time!

35 Practice with the Gaussian X ~ N(3, 16) μ=3 σ² = 16 σ=4 X > =P Z > =1 P Z =1 Φ( ) =1 (1 Φ( )) 4 3 =Φ( ) P( X >0)=P ( ( ) ) ( )

36 Practice with the Gaussian X ~ N(3, 16) μ=3 σ² = 16 σ=4 P( X 3 > 4)=P ( X < 1)+ P( X >7) X X =P < +P > =P (Z < 1)+ P( Z >1) =Φ( 1)+(1 Φ(1)) =(1 Φ(1))+(1 Φ(1)) ( ) = ( ) ( )

37 Practice with the Gaussian X ~ N(3, 16) μ=3 σ² = 16 σ=4 P( X μ >σ)=p( X <μ σ)+ P( X >μ+σ) X μ μ σ μ X μ μ+σ μ =P σ < +P σ > σ σ ( ) ( =P (Z < 1)+ P( Z >1) =Φ( 1)+(1 Φ(1)) =(1 Φ(1))+(1 Φ(1)) ( ) = )

38 Normal: Fact sheet mean X N (μ, σ ) variance (σ = standard deviation) PDF: CDF: 1 x μ σ ( ) 1 f X ( x)= e σ π x x μ F X ( x)=φ σ = dx f X ( x) ( ) (no closed form) expectation: variance: E[ X ]=μ Var( X )=σ

39 Carl Friedrich Gauss ( ) remarkably influential German mathematician Started doing groundbreaking math as a teenager Didn t invent the normal distribution (but popularized it)

40 Noisy wires Send a voltage of X = or - on a wire. + represents 1, - represents 0. Receive voltage of X + Y on other end, where Y ~ N(0, 1). If X + Y 0.5, then output 1, else 0. P(incorrect output original bit = 1) = P(+Y <0.5)=P (Y < 1.5) =Φ( 1.5) =1 Φ(1.5)

41 Noisy wires Send a voltage of X = or - on a wire. + represents 1, - represents 0. Receive voltage of X + Y on other end, where Y ~ N(0, 1). If X + Y 0.5, then output 1, else 0. P(incorrect output original bit = 0) = P( +Y 0.5)=P(Y.5) =1 P(Y <.5) =1 Φ(.5) 0.006

42 Poisson approximation to binomial large n, small p P( X =k ) Bin (n, p) Poi (λ) k

43 Normal approximation to binomial large n, medium p P( X =k ) Bin (n, p) N (μ, σ ) k

44 Something is strange...

45 Continuity correction X Bin (n, p) Y N (np, np(1 p)) P ( X 55) P (Y >54.5) When approximating a discrete distribution with a continuous distribution, adjust the bounds by 0.5 to account for the missing half-bar.

46 Miracle diets 100 people placed on a special diet. Doctor will endorse diet if 65 people have cholesterol levels decrease. What is P(doctor endorses diet has no effect)? X: # people whose cholesterol decreases X ~ Bin(100, 0.5) np = 50 np(1 p) = 50(1 0.5) = 5 Y ~ N(50, 5) Y P (Y >64.5)=P > 5 5 =P(Z >.9)=1 Φ(.9) ( )

47 Stanford admissions Stanford accepts 480 students. Each student independently decides to attend with p = What is P(at least 1750 students attend)? X: # of students who will attend. X ~ Bin(480, 0.68) np = σ² = np(1 p) Y ~ N(1686.4, ) Y P (Y >1749.5)=P > P (Z >.54)=1 Φ(.54) ( image: Victor Gane )

48 Stanford admissions changes

Lecture 10: Normal RV. Lisa Yan July 18, 2018

Lecture 10: Normal RV. Lisa Yan July 18, 2018 Lecture 10: Normal RV Lisa Yan July 18, 2018 Announcements Midterm next Tuesday Practice midterm, solutions out on website SCPD students: fill out Google form by today Covers up to and including Friday

More information

Bernoulli and Binomial

Bernoulli and Binomial Bernoulli and Binomial Will Monroe July 1, 217 image: Antoine Taveneaux with materials by Mehran Sahami and Chris Piech Announcements: Problem Set 2 Due this Wednesday, 7/12, at 12:3pm (before class).

More information

More discrete distributions

More discrete distributions Will Monroe July 14, 217 with materials by Mehran Sahami and Chris Piech More discrete distributions Announcements: Problem Set 3 Posted yesterday on the course website. Due next Wednesday, 7/19, at 12:3pm

More information

Independent random variables

Independent random variables Will Monroe July 4, 017 with materials by Mehran Sahami and Chris Piech Independent random variables Announcements: Midterm Tomorrow! Tuesday, July 5, 7:00-9:00pm Building 30-105 (main quad, Geology Corner)

More information

Conditional distributions

Conditional distributions Conditional distributions Will Monroe July 6, 017 with materials by Mehran Sahami and Chris Piech Independence of discrete random variables Two random variables are independent if knowing the value of

More information

Special distributions

Special distributions Special distributions August 22, 2017 STAT 101 Class 4 Slide 1 Outline of Topics 1 Motivation 2 Bernoulli and binomial 3 Poisson 4 Uniform 5 Exponential 6 Normal STAT 101 Class 4 Slide 2 What distributions

More information

Continuous Variables Chris Piech CS109, Stanford University

Continuous Variables Chris Piech CS109, Stanford University Continuous Variables Chris Piech CS109, Stanford University 1906 Earthquak Magnitude 7.8 Learning Goals 1. Comfort using new discrete random variables 2. Integrate a density function (PDF) to get a probability

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

IC 102: Data Analysis and Interpretation

IC 102: Data Analysis and Interpretation IC 102: Data Analysis and Interpretation Instructor: Guruprasad PJ Dept. Aerospace Engineering Indian Institute of Technology Bombay Powai, Mumbai 400076 Email: pjguru@aero.iitb.ac.in Phone no.: 2576 7142

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

STA 111: Probability & Statistical Inference

STA 111: Probability & Statistical Inference STA 111: Probability & Statistical Inference Lecture Four Expectation and Continuous Random Variables Instructor: Olanrewaju Michael Akande Department of Statistical Science, Duke University Instructor:

More information

continuous random variables

continuous random variables continuous random variables continuous random variables Discrete random variable: takes values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability X is positive integer i with probability

More information

The Random Variable for Probabilities Chris Piech CS109, Stanford University

The Random Variable for Probabilities Chris Piech CS109, Stanford University The Random Variable for Probabilities Chris Piech CS109, Stanford University Assignment Grades 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Frequency Frequency 10 20 30 40 50 60 70 80

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

The Random Variable for Probabilities Chris Piech CS109, Stanford University

The Random Variable for Probabilities Chris Piech CS109, Stanford University The Random Variable for Probabilities Chris Piech CS109, Stanford University Assignment Grades 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 Frequency Frequency 10 20 30 40 50 60 70 80

More information

Math Review Sheet, Fall 2008

Math Review Sheet, Fall 2008 1 Descriptive Statistics Math 3070-5 Review Sheet, Fall 2008 First we need to know about the relationship among Population Samples Objects The distribution of the population can be given in one of the

More information

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014

Lecture 13. Poisson Distribution. Text: A Course in Probability by Weiss 5.5. STAT 225 Introduction to Probability Models February 16, 2014 Lecture 13 Text: A Course in Probability by Weiss 5.5 STAT 225 Introduction to Probability Models February 16, 2014 Whitney Huang Purdue University 13.1 Agenda 1 2 3 13.2 Review So far, we have seen discrete

More information

The Binomial distribution. Probability theory 2. Example. The Binomial distribution

The Binomial distribution. Probability theory 2. Example. The Binomial distribution Probability theory Tron Anders Moger September th 7 The Binomial distribution Bernoulli distribution: One experiment X i with two possible outcomes, probability of success P. If the experiment is repeated

More information

Binomial in the Limit

Binomial in the Limit Lisa Yan CS 09 Lecture Notes #8 July 3, 208 The Poisson Distribution and other Discrete Distributions Based on a chapter by Chris Piech Binomial in the Limit Recall the example of sending a bit string

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

Slides 8: Statistical Models in Simulation

Slides 8: Statistical Models in Simulation Slides 8: Statistical Models in Simulation Purpose and Overview The world the model-builder sees is probabilistic rather than deterministic: Some statistical model might well describe the variations. An

More information

Lecture 18: Central Limit Theorem. Lisa Yan August 6, 2018

Lecture 18: Central Limit Theorem. Lisa Yan August 6, 2018 Lecture 18: Central Limit Theorem Lisa Yan August 6, 2018 Announcements PS5 due today Pain poll PS6 out today Due next Monday 8/13 (1:30pm) (will not be accepted after Wed 8/15) Programming part: Java,

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p).

Special Discrete RV s. Then X = the number of successes is a binomial RV. X ~ Bin(n,p). Sect 3.4: Binomial RV Special Discrete RV s 1. Assumptions and definition i. Experiment consists of n repeated trials ii. iii. iv. There are only two possible outcomes on each trial: success (S) or failure

More information

Lecture 08: Poisson and More. Lisa Yan July 13, 2018

Lecture 08: Poisson and More. Lisa Yan July 13, 2018 Lecture 08: Poisson and More Lisa Yan July 13, 2018 Announcements PS1: Grades out later today Solutions out after class today PS2 due today PS3 out today (due next Friday 7/20) 2 Midterm announcement Tuesday,

More information

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University

Poisson Chris Piech CS109, Stanford University. Piech, CS106A, Stanford University Poisson Chris Piech CS109, Stanford University Piech, CS106A, Stanford University Probability for Extreme Weather? Piech, CS106A, Stanford University Four Prototypical Trajectories Review Binomial Random

More information

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable.

Continuous Random Variables. What continuous random variables are and how to use them. I can give a definition of a continuous random variable. Continuous Random Variables Today we are learning... What continuous random variables are and how to use them. I will know if I have been successful if... I can give a definition of a continuous random

More information

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Chris Piech CS109 CS109 Final Exam. Fall Quarter Dec 14 th, 2017

Chris Piech CS109 CS109 Final Exam. Fall Quarter Dec 14 th, 2017 Chris Piech CS109 CS109 Final Exam Fall Quarter Dec 14 th, 2017 This is a closed calculator/computer exam. You are, however, allowed to use notes in the exam. The last page of the exam is a Standard Normal

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

Gamma and Normal Distribuions

Gamma and Normal Distribuions Gamma and Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

Brief Review of Probability

Brief Review of Probability Maura Department of Economics and Finance Università Tor Vergata Outline 1 Distribution Functions Quantiles and Modes of a Distribution 2 Example 3 Example 4 Distributions Outline Distribution Functions

More information

The remains of the course

The remains of the course Math 10A November 30, 2017 This is the end This is the last week of classes. This is the last class. You may see Kate taking a few photos during this class. When we re through talking, we can line up on

More information

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. A Probability Primer A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes. Are you holding all the cards?? Random Events A random event, E,

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Common ontinuous random variables

Common ontinuous random variables Common ontinuous random variables CE 311S Earlier, we saw a number of distribution families Binomial Negative binomial Hypergeometric Poisson These were useful because they represented common situations:

More information

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom

Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, Jeremy Orloff and Jonathan Bloom Expectation, Variance and Standard Deviation for Continuous Random Variables Class 6, 8.5 Jeremy Orloff and Jonathan Bloom Learning Goals. Be able to compute and interpret expectation, variance, and standard

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

15-388/688 - Practical Data Science: Basic probability. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Basic probability. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Basic probability J. Zico Kolter Carnegie Mellon University Spring 2018 1 Announcements Logistics of next few lectures Final project released, proposals/groups due

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Chapter 4: Continuous Probability Distributions

Chapter 4: Continuous Probability Distributions Chapter 4: Continuous Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 57 Continuous Random Variable A continuous random

More information

Normal approximation to Binomial

Normal approximation to Binomial Normal approximation to Binomial 24.10.2007 GE02: day 3 part 3 Yurii Aulchenko Erasmus MC Rotterdam Binomial distribution at different n and p 0.3 N=10 0.2 N=25 0.1 N=100 P=0.5 0.2 0.1 0.1 0 0 0 k k k

More information

Lecture 2: Discrete Probability Distributions

Lecture 2: Discrete Probability Distributions Lecture 2: Discrete Probability Distributions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 1st, 2011 Rasmussen (CUED) Lecture

More information

Debugging Intuition. How to calculate the probability of at least k successes in n trials?

Debugging Intuition. How to calculate the probability of at least k successes in n trials? How to calculate the probability of at least k successes in n trials? X is number of successes in n trials each with probability p # ways to choose slots for success Correct: Debugging Intuition P (X k)

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables

CSE 312, 2017 Winter, W.L. Ruzzo. 7. continuous random variables CSE 312, 2017 Winter, W.L. Ruzzo 7. continuous random variables The new bit continuous random variables Discrete random variable: values in a finite or countable set, e.g. X {1,2,..., 6} with equal probability

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Experimental Design and Statistics - AGA47A

Experimental Design and Statistics - AGA47A Experimental Design and Statistics - AGA47A Czech University of Life Sciences in Prague Department of Genetics and Breeding Fall/Winter 2014/2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30

More information

Stat 100a, Introduction to Probability.

Stat 100a, Introduction to Probability. Stat 100a, Introduction to Probability. Outline for the day: 1. Geometric random variables. 2. Negative binomial random variables. 3. Moment generating functions. 4. Poisson random variables. 5. Continuous

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 3 October 29, 2012 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline Reminder: Probability density function Cumulative

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Fundamental Tools - Probability Theory II

Fundamental Tools - Probability Theory II Fundamental Tools - Probability Theory II MSc Financial Mathematics The University of Warwick September 29, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory II 1 / 22 Measurable random

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

STAT509: Continuous Random Variable

STAT509: Continuous Random Variable University of South Carolina September 23, 2014 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

More information

1 Bernoulli Distribution: Single Coin Flip

1 Bernoulli Distribution: Single Coin Flip STAT 350 - An Introduction to Statistics Named Discrete Distributions Jeremy Troisi Bernoulli Distribution: Single Coin Flip trial of an experiment that yields either a success or failure. X Bern(p),X

More information

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution

BMIR Lecture Series on Probability and Statistics Fall, 2015 Uniform Distribution Lecture #5 BMIR Lecture Series on Probability and Statistics Fall, 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University s 5.1 Definition ( ) A continuous random

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny September 27 Patrick Breheny University of Iowa Biostatistical Methods I (BIOS 5710) 1 / 31 Kerrich s experiment Introduction 10,000 coin flips Expectation and

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Moment Generating Functions

Moment Generating Functions MATH 382 Moment Generating Functions Dr. Neal, WKU Definition. Let X be a random variable. The moment generating function (mgf) of X is the function M X : R R given by M X (t ) = E[e X t ], defined for

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

2 Random Variable Generation

2 Random Variable Generation 2 Random Variable Generation Most Monte Carlo computations require, as a starting point, a sequence of i.i.d. random variables with given marginal distribution. We describe here some of the basic methods

More information

ESS011 Mathematical statistics and signal processing

ESS011 Mathematical statistics and signal processing ESS011 Mathematical statistics and signal processing Lecture 9: Gaussian distribution, transformation formula for continuous random variables, and the joint distribution Tuomas A. Rajala Chalmers TU April

More information

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables

STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences. Random Variables STAT/SOC/CSSS 221 Statistical Concepts and Methods for the Social Sciences Random Variables Christopher Adolph Department of Political Science and Center for Statistics and the Social Sciences University

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

STAT 430/510: Lecture 10

STAT 430/510: Lecture 10 STAT 430/510: Lecture 10 James Piette June 9, 2010 Updates HW2 is due today! Pick up your HW1 s up in stat dept. There is a box located right when you enter that is labeled "Stat 430 HW1". It ll be out

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /13/2016 1/33 BIO5312 Biostatistics Lecture 03: Discrete and Continuous Probability Distributions Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 9/13/2016 1/33 Introduction In this lecture,

More information

Analysis of Engineering and Scientific Data. Semester

Analysis of Engineering and Scientific Data. Semester Analysis of Engineering and Scientific Data Semester 1 2019 Sabrina Streipert s.streipert@uq.edu.au Example: Draw a random number from the interval of real numbers [1, 3]. Let X represent the number. Each

More information

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution

ACM 116: Lecture 2. Agenda. Independence. Bayes rule. Discrete random variables Bernoulli distribution Binomial distribution 1 ACM 116: Lecture 2 Agenda Independence Bayes rule Discrete random variables Bernoulli distribution Binomial distribution Continuous Random variables The Normal distribution Expected value of a random

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Guidelines for Solving Probability Problems

Guidelines for Solving Probability Problems Guidelines for Solving Probability Problems CS 1538: Introduction to Simulation 1 Steps for Problem Solving Suggested steps for approaching a problem: 1. Identify the distribution What distribution does

More information

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019

Lecture 10: Probability distributions TUESDAY, FEBRUARY 19, 2019 Lecture 10: Probability distributions DANIEL WELLER TUESDAY, FEBRUARY 19, 2019 Agenda What is probability? (again) Describing probabilities (distributions) Understanding probabilities (expectation) Partial

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R Random Variables Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R As such, a random variable summarizes the outcome of an experiment

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4. (*. Let independent variables X,..., X n have U(0, distribution. Show that for every x (0,, we have P ( X ( < x and P ( X (n > x as n. Ex. 4.2 (**. By using induction or otherwise,

More information

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12

Ching-Han Hsu, BMES, National Tsing Hua University c 2015 by Ching-Han Hsu, Ph.D., BMIR Lab. = a + b 2. b a. x a b a = 12 Lecture 5 Continuous Random Variables BMIR Lecture Series in Probability and Statistics Ching-Han Hsu, BMES, National Tsing Hua University c 215 by Ching-Han Hsu, Ph.D., BMIR Lab 5.1 1 Uniform Distribution

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

Intro to probability concepts

Intro to probability concepts October 31, 2017 Serge Lang lecture This year s Serge Lang Undergraduate Lecture will be given by Keith Devlin of our main athletic rival. The title is When the precision of mathematics meets the messiness

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

Intro to Probability Instructor: Alexandre Bouchard

Intro to Probability Instructor: Alexandre Bouchard www.stat.ubc.ca/~bouchard/courses/stat302-sp2017-18/ Intro to Probability Instructor: Alexandre Bouchard Info on midterm CALCULATOR: only NON-programmable, NON-scientific, NON-graphing (and of course,

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Review for the previous lecture Theorems and Examples: How to obtain the pmf (pdf) of U = g ( X Y 1 ) and V = g ( X Y) Chapter 4 Multiple Random Variables Chapter 43 Bivariate Transformations Continuous

More information

Exam 3, Math Fall 2016 October 19, 2016

Exam 3, Math Fall 2016 October 19, 2016 Exam 3, Math 500- Fall 06 October 9, 06 This is a 50-minute exam. You may use your textbook, as well as a calculator, but your work must be completely yours. The exam is made of 5 questions in 5 pages,

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

Problem Set #5. Due: 1pm on Friday, Nov 16th

Problem Set #5. Due: 1pm on Friday, Nov 16th 1 Chris Piech CS 109 Problem Set #5 Due: 1pm on Friday, Nov 16th Problem Set #5 Nov 7 th, 2018 With problems by Mehran Sahami and Chris Piech For each problem, briefly explain/justify how you obtained

More information

Applied Statistics I

Applied Statistics I Applied Statistics I (IMT224β/AMT224β) Department of Mathematics University of Ruhuna A.W.L. Pubudu Thilan Department of Mathematics University of Ruhuna Applied Statistics I(IMT224β/AMT224β) 1/158 Chapter

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information