Moment Generating Functions

Size: px
Start display at page:

Download "Moment Generating Functions"

Transcription

1 MATH 382 Moment Generating Functions Dr. Neal, WKU Definition. Let X be a random variable. The moment generating function (mgf) of X is the function M X : R R given by M X (t ) = E[e X t ], defined for all t for which this expected value is finite. When X is a discrete random variable, then M X (t ) is obtained by M X (t ) = e k t P( X = k ), and when X is a continuous random variable, then M X (t ) is obtained by M X (t ) = e x t f X ( x) dx = e x t f X (x ) dx. We shall derive the mgf s of our standard random variables, derive properties of the mgf function, and then show how to use mgf s to derive the distribution of various sums of independent random variables. The Binomial MGF n n Let X ~ b(n, p). By the binomial expansion theorem, k a k b n k = (a + b) n ; thus, k = 0 M X (t ) = e k t n P( X = k ) = e k t n p k k q n k k = 0 n n = ( pe k t ) k q n k = ( pe t + q) n, for all t. k = 0 A special case is the Bernoulli random variable X ~ b(, p) for which M X (t ) = pe t + q. The Geometric MGF Let X ~ geo( p) with p > 0. Then 0 q < and because x k = x / ( x) for < x <, k = we have M X (t ) = e k t P( X = k ) = e k t q k p = p (qe t ) k k = q k = = p q q et qe t = p et qe t, for qet < ; i. e., for t < ln( / q).

2 The Poisson MGF Let X ~ Poi(λ ). Because xk k = 0 k! = e x for all x, we have M X (t ) = e k t P( X = k ) = e k t λ k e λ k = 0 k! = e λ (λ et ) k k = 0 k! = e λ e λ et = e λ (et ), for all t. The Uniform MGF Let X ~ U[a, b]. Then M X (t ) = e x t b f X (t ) = e x t b a dx = a = ebt e at t( b a), for t 0. b a t ex t b a The Exponential MGF Let X ~ exp(θ ) with θ > 0. We shall assume that θ t < 0 so that the improper integral below will converge. We then have M X (t ) = e x t f X (t ) = e x t θ e x /θ dx 0 = θ 0 e x (t /θ) dx = θ 0 = θ θ θ t ex (θ t )/θ 0 Let X ~ N(µ, σ ). Then f X (x ) = e x (θ t )/θ dx = 0 The Normal MGF θ t = θ t, for t < / θ. σ 2π e (x µ )2 / (2σ 2 ). Now let Y ~ N(µ + σ, σ ) with f Y (x ) = σ 2π e ( x (µ+σ )) 2 / (2σ 2 ) = σ 2π e ( x2 2x(µ+σ )+(µ +σ ) 2 ) /(2σ 2 ) = σ 2π e ( x2 2x(µ+σ ) + µ 2 +2µσ +σ 4 t 2 ) / (2σ 2 ). = σ 2π e ( x2 2x(µ+σ ) + µ 2 ) /(2σ 2 ) e µ t e σ 2 /2.

3 Then because f Y ( x) dx =, we have M X (t ) = e x t f X (t ) = e x t e (x µ )2 / (2σ 2 ) dx σ 2π = e x t ( x2 2 x µ + µ 2 ) /(2σ 2 ) dx = e (x 2 2 x µ 2σ 2 x t + µ 2 ) /(2σ 2 ) dx = e (x 2 2 x (µ +σ )+ µ 2 )/ (2σ 2 ) dx = e µ t e σ 2 /2 e ( x2 2 x (µ +σ ) + µ 2 ) /(2σ 2 ) e µ t e σ 2 /2 dx = e µ t e σ 2 /2 f Y ( x) dx = e µ t e σ 2 /2. Dr. Neal, WKU Thus, M X (t ) = e µ t e σ 2 /2 for all t. A special case is the standard normal distribution Z ~ N(0, ). M Z (t) = e t 2 /2 for all t. We then have Generating Moments Let X be a random variable. The first moment of X is simply the expected value E[ X ]. In general for j, the j th moment of X is E[ X j ], which can be found by E[ X j ] = x j P( X = k) E[ X j ] = x j f X (x )dx for X discrete for X continuous. But the mgf of X also can be used to obtain these moments. When X is discrete, then M X (t ) = e k t P( X = k ), and then the j th derivative of M X (t ) with respect to t is ( j) M X (t) = k j e k t P( X = k ). ( j) Then M X (0) = k j P( X = k) = E[ X j ].

4 Similarly, for X continuous, M X (t ) = M X (t ) with respect to t is M X ( j) (t) = M X ( j) (0) = e x t f X ( x) dx. Then the j th derivative of x j e x t f X ( x) dx, and thus x j f X ( x) dx = E[X j ]. Thus, the j th moment of X can be found by computing the j th derivative of M X (t ) and then evaluating it at t = 0. In particular, E[ X ] = M ʹ X (0) E[ X 2 ] = M X ʹ (0) Var( X) = M ʹ X ʹ (0) ( M ʹ X (0)) 2 Example. Let X ~ b(n, p) with M X (t ) = ( pe t + q) n, for all t. Then the first and second derivatives of M X (t ) are M X ʹ (t ) = n( pe t + q) n pe t and M X ʹ (t ) = n(n )( pe t + q) n 2 ( pe t ) 2 + n( pe t + q) n pe t. Thus, E[ X ] = and E[ X 2 ] = M ʹ X (0) = n( p + q) n p = n p M X ʹ (0) = n(n )p 2 + np Thus, Var( X) = n(n ) p 2 + np (np) 2 = np np 2 = np( p) = n pq. Properties of MGF s (i) M X +Y (t ) = M X (t ) M Y (t ) for independent random variables X and Y. (ii) M ax (t) = M X (a t ) for all constants a (iii) M ( X+c ) (t) = e c t M X ( t) for all constants c Proof. (i) Let X and Y be independent random variables. Then M X +Y (t ) = E[e (X+Y)t ] = E[e Xt+Yt ] = E[e Xt e Yt ] = By Indep. E[eXt ] E[e Yt ] = M X (t) M Y (t). (ii) For all constants a, we have M ax (t) = E[e (ax)t ] = E[e X(at ) ] = M X (a t ). (iii) For all constants c, we have M ( X+c ) (t) = E[e (X +c)t ] = E[e Xt e ct ] = e c t E[e Xt ] = e c t M X ( t ).

5 The following result, stated without proof, is perhaps the most important property of mgf s, and can used to determine the distribution of independent sums of known distributions. Theorem. The moment generating function completely determines the distribution of a random variable. That is, if two random variables have the same mgf, then they have the same distribution. Example 2. Let X ~ N(µ, σ ) and let Y = X µ. We have seen previously that Y is now σ a N(0, ) distribution. We can prove this fact by using the properties of mgf's and the preceding theorem. The mgf of X is M X (t ) = e µ t e σ 2 /2. Thus the mgf of Y = σ X µ σ is given by M Y (t ) = M σ X µ (t ) = e ( µ /σ)t M σ σ X (t) = e ( µ /σ)t M X (t / σ ) = e ( µ /σ)t e µ t/σ e σ2 (t 2 /σ 2 )/2 = e t 2 /2. which is the mgf of the N(0, ) distribution. Thus, Y itself must be N(0, ) because it has the same mgf as N(0, ). Example 3. (Sum of Independent Binomial Distributions) Let X ~ b(n, p) and Y ~ b(m, p), with X and Y being independent. Derive the distribution of X + Y. Solution. We know M X (t ) = ( pe t + q) n and M Y (t ) = ( pe t + q) m for all t. Then by independence, the mgf of X + Y is M X +Y (t ) = M X (t ) M Y (t ) = ( pe t + q) n ( pe t + q) m = ( pe t + q) n+m, which is the mgf of a b(n + m, p) distribution. Thus, X + Y ~ b(n + m, p) because it has the same mgf as b(n + m, p). Note: For both X and Y, the probability of success on any attempt is p. X counts the number of successes in n independent attempts, and Y counts the number of successes in m further independent attempts. So X + Y counts the total number of successes in n + m independent attempts; hence, X + Y ~ b(n + m, p).

6 Example 4. (Sum of Independent Normal Distributions) Let X ~ N(µ,σ ) and Y ~ N(µ 2,σ 2 ), with X and Y being independent. Derive the distribution of X + Y. Solution. We know M X (t ) = e µ t e σ 2 /2 and MY (t ) = e µ e σ 2 2 /2 for all t. Then by independence, the mgf of X + Y is M X +Y (t ) = M X (t ) M Y (t ) = e µ t e σ 2 /2 e µ e σ 2 2 /2 = e (µ +µ 2 )t e (σ 2 +σ 2 2 )t 2 /2, which is the mgf of a Normal distribution having mean µ = µ + µ 2 and variance σ 2 = σ 2 + σ2 2. Because the mgf completely determines the distribution, we must have X + Y ~ N(µ, σ ) = N µ + µ 2, σ 2 + σ2 2 ( ). Distribution of the Sample Mean of Independent Sample Measurements from a N(µ, σ ) Distribution Let x = x x n be the sample mean where x n i ~ N (µ,σ ) is the i th independent sample of a Normally distributed measurement. Then each x i has the same mgf given by M i (t) = e µ t e σ 2 /2. By independence, the mgf of the sum S = x x n is the product of the mgf's: M S (t ) = e µ t e σ 2 /2 n = e nµ t e nσ 2 /2. Then the mgf of x is M x (t) = M n S(t ) = M S (t / n) = enµ t/n e nσ 2 (t/n) 2 /2 = e µ t e (σ 2 /n) t 2 /2, which is the mgf of a Normal distribution having mean µ and variance σ 2 / n. Because the mgf completely determines the distribution, we must have x ~ N µ, σ. n Note: When sampling with a normally distributed measurement, the sample mean x is still normally distributed regardless of the sample size. And we have the following: µ x = µ The average of all possible sample means from samples of size n equals the original average µ. σ x = σ n The standard deviation of all possible sample means from samples of size n is a fraction of the original standard deviation σ. Important Statistical Consequence: As the sample size n increases, then σ x decreases to 0. Thus with large sample sizes, the values of x have very small deviation and therefore the possible values of x are consistently close to their average µ. Thus, with a large sample size, virtually any sample mean x will be a decent approximation of µ.

7 Exercises. Use the moment generating function to derive the mean and variance of X ~ exp(θ ). 2. Let X ~ Poi(λ ) and Y ~ Poi (β ), with X and Y being independent. Derive the distribution of X + Y. 3. The negative binomial distribution X ~ nb(r, p) is the sum of r independent geometric distributions: X = X + X X r, where each X i ~ geo( p). (a) Use the mgf's of the X i to derive the mgf of X ~ nb(r, p). (b) Use the mgf to derive the expected value of X ~ nb(r, p).

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3)

STAT/MATH 395 A - PROBABILITY II UW Winter Quarter Moment functions. x r p X (x) (1) E[X r ] = x r f X (x) dx (2) (x E[X]) r p X (x) (3) STAT/MATH 395 A - PROBABILITY II UW Winter Quarter 07 Néhémy Lim Moment functions Moments of a random variable Definition.. Let X be a rrv on probability space (Ω, A, P). For a given r N, E[X r ], if it

More information

Review for the previous lecture

Review for the previous lecture Lecture 1 and 13 on BST 631: Statistical Theory I Kui Zhang, 09/8/006 Review for the previous lecture Definition: Several discrete distributions, including discrete uniform, hypergeometric, Bernoulli,

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2017 1 See last slide for copyright information. 1 / 40 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Limiting Distributions

Limiting Distributions Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the

More information

Limiting Distributions

Limiting Distributions We introduce the mode of convergence for a sequence of random variables, and discuss the convergence in probability and in distribution. The concept of convergence leads us to the two fundamental results

More information

Probability Distributions Columns (a) through (d)

Probability Distributions Columns (a) through (d) Discrete Probability Distributions Columns (a) through (d) Probability Mass Distribution Description Notes Notation or Density Function --------------------(PMF or PDF)-------------------- (a) (b) (c)

More information

The Multivariate Normal Distribution 1

The Multivariate Normal Distribution 1 The Multivariate Normal Distribution 1 STA 302 Fall 2014 1 See last slide for copyright information. 1 / 37 Overview 1 Moment-generating Functions 2 Definition 3 Properties 4 χ 2 and t distributions 2

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

PROBABILITY THEORY LECTURE 3

PROBABILITY THEORY LECTURE 3 PROBABILITY THEORY LECTURE 3 Per Sidén Division of Statistics Dept. of Computer and Information Science Linköping University PER SIDÉN (STATISTICS, LIU) PROBABILITY THEORY - L3 1 / 15 OVERVIEW LECTURE

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2

APPM/MATH 4/5520 Solutions to Exam I Review Problems. f X 1,X 2. 2e x 1 x 2. = x 2 APPM/MATH 4/5520 Solutions to Exam I Review Problems. (a) f X (x ) f X,X 2 (x,x 2 )dx 2 x 2e x x 2 dx 2 2e 2x x was below x 2, but when marginalizing out x 2, we ran it over all values from 0 to and so

More information

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) =

E[X n ]= dn dt n M X(t). ). What is the mgf? Solution. Found this the other day in the Kernel matching exercise: 1 M X (t) = Chapter 7 Generating functions Definition 7.. Let X be a random variable. The moment generating function is given by M X (t) =E[e tx ], provided that the expectation exists for t in some neighborhood of

More information

3 Modeling Process Quality

3 Modeling Process Quality 3 Modeling Process Quality 3.1 Introduction Section 3.1 contains basic numerical and graphical methods. familiar with these methods. It is assumed the student is Goal: Review several discrete and continuous

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

The Geometric Random Walk: More Applications to Gambling

The Geometric Random Walk: More Applications to Gambling MATH 540 The Geometric Random Walk: More Applications to Gambling Dr. Neal, Spring 2008 We now shall study properties of a random walk process with only upward or downward steps that is stopped after the

More information

Things to remember when learning probability distributions:

Things to remember when learning probability distributions: SPECIAL DISTRIBUTIONS Some distributions are special because they are useful They include: Poisson, exponential, Normal (Gaussian), Gamma, geometric, negative binomial, Binomial and hypergeometric distributions

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Chapter 6 : Moment Functions Néhémy Lim 1 1 Department of Statistics, University of Washington, USA Winter Quarter 2016 of Common Distributions Outline 1 2 3 of Common Distributions

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Lecture 6: Special probability distributions. Summarizing probability distributions. Let X be a random variable with probability distribution

Lecture 6: Special probability distributions. Summarizing probability distributions. Let X be a random variable with probability distribution Econ 514: Probability and Statistics Lecture 6: Special probability distributions Summarizing probability distributions Let X be a random variable with probability distribution P X. We consider two types

More information

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ).

Uses of Asymptotic Distributions: In order to get distribution theory, we need to norm the random variable; we usually look at n 1=2 ( X n ). 1 Economics 620, Lecture 8a: Asymptotics II Uses of Asymptotic Distributions: Suppose X n! 0 in probability. (What can be said about the distribution of X n?) In order to get distribution theory, we need

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

4 Moment generating functions

4 Moment generating functions 4 Moment generating functions Moment generating functions (mgf) are a very powerful computational tool. They make certain computations much shorter. However, they are only a computational tool. The mgf

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

MATH2715: Statistical Methods

MATH2715: Statistical Methods MATH2715: Statistical Methods Exercises V (based on lectures 9-10, work week 6, hand in lecture Mon 7 Nov) ALL questions count towards the continuous assessment for this module. Q1. If X gamma(α,λ), write

More information

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM

February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM February 26, 2017 COMPLETENESS AND THE LEHMANN-SCHEFFE THEOREM Abstract. The Rao-Blacwell theorem told us how to improve an estimator. We will discuss conditions on when the Rao-Blacwellization of an estimator

More information

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3).

Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). Example 1. Assume that X follows the normal distribution N(2, 2 2 ). Estimate the probabilities: (a) P (X 3); (b) P (X 1); (c) P (1 X 3). First of all, we note that µ = 2 and σ = 2. (a) Since X 3 is equivalent

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

Probability and Statistics

Probability and Statistics Probability and Statistics 1 Contents some stochastic processes Stationary Stochastic Processes 2 4. Some Stochastic Processes 4.1 Bernoulli process 4.2 Binomial process 4.3 Sine wave process 4.4 Random-telegraph

More information

STAT 3610: Review of Probability Distributions

STAT 3610: Review of Probability Distributions STAT 3610: Review of Probability Distributions Mark Carpenter Professor of Statistics Department of Mathematics and Statistics August 25, 2015 Support of a Random Variable Definition The support of a random

More information

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables. Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density

More information

Balls & Bins. Balls into Bins. Revisit Birthday Paradox. Load. SCONE Lab. Put m balls into n bins uniformly at random

Balls & Bins. Balls into Bins. Revisit Birthday Paradox. Load. SCONE Lab. Put m balls into n bins uniformly at random Balls & Bins Put m balls into n bins uniformly at random Seoul National University 1 2 3 n Balls into Bins Name: Chong kwon Kim Same (or similar) problems Birthday paradox Hash table Coupon collection

More information

1.6 Families of Distributions

1.6 Families of Distributions Your text 1.6. FAMILIES OF DISTRIBUTIONS 15 F(x) 0.20 1.0 0.15 0.8 0.6 Density 0.10 cdf 0.4 0.05 0.2 0.00 a b c 0.0 x Figure 1.1: N(4.5, 2) Distribution Function and Cumulative Distribution Function for

More information

Sampling Random Variables

Sampling Random Variables Sampling Random Variables Introduction Sampling a random variable X means generating a domain value x X in such a way that the probability of generating x is in accordance with p(x) (respectively, f(x)),

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

The Geometric Distribution

The Geometric Distribution MATH 382 The Geometric Distribution Dr. Neal, WKU Suppose we have a fixed probability p of having a success on any single attempt, where p > 0. We continue to make independent attempts until we succeed.

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

Chapter 8.8.1: A factorization theorem

Chapter 8.8.1: A factorization theorem LECTURE 14 Chapter 8.8.1: A factorization theorem The characterization of a sufficient statistic in terms of the conditional distribution of the data given the statistic can be difficult to work with.

More information

Lecture 4: Sampling, Tail Inequalities

Lecture 4: Sampling, Tail Inequalities Lecture 4: Sampling, Tail Inequalities Variance and Covariance Moment and Deviation Concentration and Tail Inequalities Sampling and Estimation c Hung Q. Ngo (SUNY at Buffalo) CSE 694 A Fun Course 1 /

More information

Chapter 5. Means and Variances

Chapter 5. Means and Variances 1 Chapter 5 Means and Variances Our discussion of probability has taken us from a simple classical view of counting successes relative to total outcomes and has brought us to the idea of a probability

More information

Lecture 5: Moment generating functions

Lecture 5: Moment generating functions Lecture 5: Moment generating functions Definition 2.3.6. The moment generating function (mgf) of a random variable X is { x e tx f M X (t) = E(e tx X (x) if X has a pmf ) = etx f X (x)dx if X has a pdf

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

Department of Mathematics

Department of Mathematics Department of Mathematics Ma 3/103 KC Border Introduction to Probability and Statistics Winter 2017 Lecture 8: Expectation in Action Relevant textboo passages: Pitman [6]: Chapters 3 and 5; Section 6.4

More information

ECO227: Term Test 2 (Solutions and Marking Procedure)

ECO227: Term Test 2 (Solutions and Marking Procedure) ECO7: Term Test (Solutions and Marking Procedure) January 6, 9 Question 1 Random variables X and have the joint pdf f X, (x, y) e x y, x > and y > Determine whether or not X and are independent. [1 marks]

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

Lecture 19: Properties of Expectation

Lecture 19: Properties of Expectation Lecture 19: Properties of Expectation Dan Sloughter Furman University Mathematics 37 February 11, 4 19.1 The unconscious statistician, revisited The following is a generalization of the law of the unconscious

More information

Geometric Skew-Normal Distribution

Geometric Skew-Normal Distribution Debasis Kundu Arun Kumar Chair Professor Department of Mathematics & Statistics Indian Institute of Technology Kanpur Part of this work is going to appear in Sankhya, Ser. B. April 11, 2014 Outline 1 Motivation

More information

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment:

Moments. Raw moment: February 25, 2014 Normalized / Standardized moment: Moments Lecture 10: Central Limit Theorem and CDFs Sta230 / Mth 230 Colin Rundel Raw moment: Central moment: µ n = EX n ) µ n = E[X µ) 2 ] February 25, 2014 Normalized / Standardized moment: µ n σ n Sta230

More information

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable Distributions of Functions of Random Variables 5.1 Functions of One Random Variable 5.2 Transformations of Two Random Variables 5.3 Several Random Variables 5.4 The Moment-Generating Function Technique

More information

8 Laws of large numbers

8 Laws of large numbers 8 Laws of large numbers 8.1 Introduction We first start with the idea of standardizing a random variable. Let X be a random variable with mean µ and variance σ 2. Then Z = (X µ)/σ will be a random variable

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x!

n px p x (1 p) n x. p x n(n 1)... (n x + 1) x! Lectures 3-4 jacques@ucsd.edu 7. Classical discrete distributions D. The Poisson Distribution. If a coin with heads probability p is flipped independently n times, then the number of heads is Bin(n, p)

More information

Expectation, variance and moments

Expectation, variance and moments Expectation, variance and moments John Appleby Contents Expectation and variance Examples 3 Moments and the moment generating function 4 4 Examples of moment generating functions 5 5 Concluding remarks

More information

Week 2. Review of Probability, Random Variables and Univariate Distributions

Week 2. Review of Probability, Random Variables and Univariate Distributions Week 2 Review of Probability, Random Variables and Univariate Distributions Probability Probability Probability Motivation What use is Probability Theory? Probability models Basis for statistical inference

More information

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 2 Differentiation & Integration; Multiplication of Power Series. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 2 Differentiation & Integration; Multiplication of Power Series 1 Theorem 1 If a n x n converges absolutely for x < R, then a n f x n converges absolutely for any continuous function

More information

Binomial and Poisson Probability Distributions

Binomial and Poisson Probability Distributions Binomial and Poisson Probability Distributions Esra Akdeniz March 3, 2016 Bernoulli Random Variable Any random variable whose only possible values are 0 or 1 is called a Bernoulli random variable. What

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 20, 2012 Introduction Introduction The world of the model-builder

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

MAS113 Introduction to Probability and Statistics

MAS113 Introduction to Probability and Statistics MAS113 Introduction to Probability and Statistics School of Mathematics and Statistics, University of Sheffield 2018 19 Identically distributed Suppose we have n random variables X 1, X 2,..., X n. Identically

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Five Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Five Notes Spring 2011 1 / 37 Outline 1

More information

Lecture 5: Moment Generating Functions

Lecture 5: Moment Generating Functions Lecture 5: Moment Generating Functions IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge February 28th, 2018 Rasmussen (CUED) Lecture 5: Moment

More information

discrete random variable: probability mass function continuous random variable: probability density function

discrete random variable: probability mass function continuous random variable: probability density function CHAPTER 1 DISTRIBUTION THEORY 1 Basic Concepts Random Variables discrete random variable: probability mass function continuous random variable: probability density function CHAPTER 1 DISTRIBUTION THEORY

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 6 Distributions of Functions of Random Variables 2 6.1 Transformation of Discrete r.v.s............. 3 6.2 Method of Distribution Functions............. 6 6.3 Method of Transformations................

More information

CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY

CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY CHAPTER 1 DISTRIBUTION THEORY 2 Basic Concepts CHAPTER 1 DISTRIBUTION THEORY 3 Random Variables (R.V.) discrete random variable: probability

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

6. Bernoulli Trials and the Poisson Process

6. Bernoulli Trials and the Poisson Process 1 of 5 7/16/2009 7:09 AM Virtual Laboratories > 14. The Poisson Process > 1 2 3 4 5 6 7 6. Bernoulli Trials and the Poisson Process Basic Comparison In some sense, the Poisson process is a continuous time

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

PAS04 - Important discrete and continuous distributions

PAS04 - Important discrete and continuous distributions PAS04 - Important discrete and continuous distributions Jan Březina Technical University of Liberec 30. října 2014 Bernoulli trials Experiment with two possible outcomes: yes/no questions throwing coin

More information

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa

Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa Dennis Bricker Dept of Mechanical & Industrial Engineering The University of Iowa dennis-bricker@uiowa.edu Probability Theory Results page 1 D.Bricker, U. of Iowa, 2002 Probability of simultaneous occurrence

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger) 8 HENRIK HULT Lecture 2 3. Some common distributions in classical and Bayesian statistics 3.1. Conjugate prior distributions. In the Bayesian setting it is important to compute posterior distributions.

More information

Properties of Random Variables

Properties of Random Variables Properties of Random Variables 1 Definitions A discrete random variable is defined by a probability distribution that lists each possible outcome and the probability of obtaining that outcome If the random

More information

Discrete Distributions

Discrete Distributions A simplest example of random experiment is a coin-tossing, formally called Bernoulli trial. It happens to be the case that many useful distributions are built upon this simplest form of experiment, whose

More information

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8.

Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Suppose that you have three coins. Coin A is fair, coin B shows heads with probability 0.6 and coin C shows heads with probability 0.8. Coin A is flipped until a head appears, then coin B is flipped until

More information

Probability Distributions

Probability Distributions Lecture : Background in Probability Theory Probability Distributions The probability mass function (pmf) or probability density functions (pdf), mean, µ, variance, σ 2, and moment generating function (mgf)

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 4 Statistical Models in Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model

More information

Relationship between probability set function and random variable - 2 -

Relationship between probability set function and random variable - 2 - 2.0 Random Variables A rat is selected at random from a cage and its sex is determined. The set of possible outcomes is female and male. Thus outcome space is S = {female, male} = {F, M}. If we let X be

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Fundamental Tools - Probability Theory IV

Fundamental Tools - Probability Theory IV Fundamental Tools - Probability Theory IV MSc Financial Mathematics The University of Warwick October 1, 2015 MSc Financial Mathematics Fundamental Tools - Probability Theory IV 1 / 14 Model-independent

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

i=1 k i=1 g i (Y )] = k

i=1 k i=1 g i (Y )] = k Math 483 EXAM 2 covers 2.4, 2.5, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.8, 3.9, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.9, 5.1, 5.2, and 5.3. The exam is on Thursday, Oct. 13. You are allowed THREE SHEETS OF NOTES and

More information

Math 341: Probability Eighteenth Lecture (11/12/09)

Math 341: Probability Eighteenth Lecture (11/12/09) Math 341: Probability Eighteenth Lecture (11/12/09) Steven J Miller Williams College Steven.J.Miller@williams.edu http://www.williams.edu/go/math/sjmiller/ public html/341/ Bronfman Science Center Williams

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Mathematics 47: Lecture 9 Dan Sloughter Furman University March 16, 2006 Dan Sloughter (Furman University) Sampling Distributions March 16, 2006 1 / 10 Definition We call the probability

More information