Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

Size: px
Start display at page:

Download "Probability- the good parts version. I. Random variables and their distributions; continuous random variables."

Transcription

1 Probability- the good arts version I. Random variables and their distributions; continuous random variables. A random variable (r.v) X is continuous if its distribution is given by a robability density function (df) f(x) that is ositive on an interval. For real numbers a < b, P (a < X < b) = b a f(x)dx. Random variables X and Y are jointly continuous if there s a joint density function f(x, y) such that P (a < X < b, c < Y < d) = b d a c f(x, y)dydx. The marginal density for X is found by integrating out the y and viceversa for Y. X and Y are called indeendent if their joint density is the roduct of their marginals. In this case, it follows that P (a < X < b, c < Y < d) = P (a < X < b)p (c < Y < d). The cumulative distribution function (cdf) of X is the function F, F (x) = P (X x) = x f(t)dt. Given a function g(), the exected value of g(x) = E(g(X)) = g(x)f(x)dx. In articular, the mean of X= E(X)= µ; the variance of X= V (X)= σ 2 = E(X µ) 2 = EX 2 µ 2 ; and the standard deviation σ = σ 2. 1

2 The moment generating function of X is M X (t) = E(e Xt ) = e xt f(x)dx. Proerties of the moment generating function: (1) M (n) X dn (0) = dt M n X (t), evaluated at t=0= EX n. (2) If X 1, X 2,..., X n are indeendent random variables then M X1 +X X n (t) = M X1 (t) M X2 (t) M Xn (t). (3) The m.g.f. secifies the distribution: if M X (t) = M Y (t), then X and Y have the same distribution. (4) M ax+b (t) = e bt M X (at). (1) X N(µ, σ 2 ) The standard class of continuous distributions. density: f(x) = 1 2πσ e (x µ)2 /2σ 2, < x <. mean: E(X) = µ. variance: V (X) = σ 2. mgf: M(t) = e µt+σ2 t 2 /2. If X N(µ, σ 2 ), then (X µ)/σ N(0, 1). If X N(µ X, σx 2 ) and Y N(µ Y, σy 2 ) are indeendent, then ax + by N(aµ X + bµ Y, a 2 σx 2 + b2 σy 2 ). (2) X Chi-Square with n degrees of freedom (X χ 2 (n)) if X Gamma(n/2, 1/2). mean: E(X) = n. variance: V (X) = 2n. mgf: M(t) = ( 1 1 2t )n/2, t < 1/2. 2

3 (3) X Exonential(λ). density: f(x) = λe λx, x 0. mean: E(X) = 1/λ. variance: V (X) = 1/λ 2. mgf: M(t) = ( λ λ t ), t < λ. P (X > x) = e λx, for x > 0. Note: There are 2 common conventions followed for the Exonential(λ): (i) λ is the arameter in the density as above and the mean is 1/λ, and (ii) λ is the mean and the density is f(x) = (1/λ)e x/λ ; the interretation in a articular roblem should be clear from context. (4) X Gamma(α, λ). density: f(x) = λα Γ(α) xα 1 e λx, x 0. mean: E(X) = α/λ. variance: V (X) = α/λ 2. mgf: M(t) = ( λ λ t )α, t < λ. Note : Γ(α) = 0 t α 1 e t dt. Γ(n) = (n 1)! when n is a ositive integer. When X 1, X 2,..., X n Exonential(λ) are indeendent, X 1 + X X n Gamma(n, λ). In articular, Exonential(λ) = Gamma(1, λ). (5) X U[a, b] density: f(x) = 1/(b a) for a < x < b. mean: E(X) = (a + b)/2. variance: V (X) = (b a) 2 /12. mgf: M(t) = ebt e at (b a)t, < t <. 3

4 If [c,d] [a,b], then P (c X d) is Length[c,d]/Length[a,b]. II. Random variables and their distributions; discrete random variables. A discrete rv X takes on a finite or countable number of values. Probabilities are comuted using a frequency function (k) = P (X = k); this is also called a robability density function (df) or robability mass function. P (a < X < b) = k (a,b) (k). Given a function g, the exected value of g(x) = E(g(X)) = k g(k)(k); in articular, the moment generating function of X is M X (t) = E(e Xt ) = k e kt (k). The standard class of discrete distributions. (1) X Bernoulli() frequency function: (1) =, (0) = q = 1. mean: E(X) =. variance: V (X) = q. mgf: M(t) = (q + e t ), < t <. (2) X Binomial(n, ) frequency function: (k) = mean: E(X) = n. variance: V (X) = nq. ( ) n k k q n k, k = 0, 1,..., n. 4

5 mgf: M(t) = (q + e t ) n, < t <. If X is the number of successes in n indeendent Bernoulli trials, then X Binomial(n, ). (3) X Geometric(). There are two definitions for the Geometric() distribution. (I) X is the number of failures required to see the first success in a sequence of Bernoulli trials and (II) X is the number of trials required to see the first success in a sequence of Bernoulli trials. If X and Y reresent have these resective distributions, then Y = X + 1. We give results searately for the two definitions. Case I. frequency function: (k) = q k, k = 0, 1,..., where q = 1. mean: E(X) = q/. variance: V (X) = q/ 2. mgf: M(t) = Case II. 1 qe t, < t < ln(1/q). frequency function: (k) = q k 1, k = 1, 2,..., where q = 1. mean: E(X) = 1/. variance: V (X) = q/ 2. mgf: M(t) = et 1 qe, < t < ln(1/q). t (4) X Negative Binomial(r, ). Again, there are two definitions for the Negative Binomial(r, ) distribution. (I) X is the number of failures before the rth success in a sequence of Bernoulli trials and (II) Y is the number of trials required to see the rth success in a sequence of Bernoulli trials. If X and Y have these resective distributions, then Y = X + r. We give results searately for the two definitions. Case I. 5

6 q = 1. frequency function: X (k) = ( ) k + r 1 r 1 r q k, k = 0, 1,..., where mean: E(X) = rq/. variance: V (X) = rq/ 2. mgf: M(t) = ( 1 qe ) r, < t < ln(1/q). t Case II. frequency function: Y (k) = q = 1. ( ) k 1 r 1 r q k r, k = r, r + 1,..., where mean: E(X) = r/. variance: V (X) = rq/ 2. mgf: M(t) = ( et 1 qe t ) r, < t < ln(1/q). (5) X Poisson(λ) frequency function: (k) = e λ λ k k!, k = 0, 1,.... mean: E(X) = λ. variance: V (X) = λ. mgf: M(t) = e λ(et 1), < t <. III. General Proerties. E(X) E(aX + by ) = ae(x) + be(y ) for any random variables X and Y. E(XY ) = E(X)E(Y ) if X and Y are indeendent. V (X) and Cov(X, Y ) 6

7 V (X) = E[(X µ) 2 ] = E(X 2 ) µ 2. V (ax + b) = a 2 V (X). V (X + Y ) = V (X) + V (Y ) + 2Cov(X, Y ) for any random variables X and Y. V (X + Y ) = V (X) + V (Y ) if X and Y are indeendent. Cov(X, Y ) = E[(X µ X )(Y µ Y )] = E(XY ) E(X)E(Y ). Cov(X, Y ) = 0 if X and Y are indeendent. Cov[X, X) = V (X). Cov(aX, by ) = abcov(x, Y ). Cov(X +Y, U +V ) = Cov(X, U)+Cov(X, V )+Cov(Y, U)+Cov(Y, V ). Samling If {X i } are n indeendent, identically distributed random variables with E(X i ) = µ and V (X i ) = σ 2 and X = 1 n n i=1 X i is the samle mean, then: E( X) = µ and V ( X) = σ 2 /n. Central limit theorem If {X i } are n indeendent, identically distributed random variables with E(X i ) = µ and V (X i ) = σ 2, then n i=1 X i aroximately N(nµ, nσ 2 ) as n. X aroximately N(µ, σ 2 /n) as n. Joint and conditional distributions If X and Y have joint df f X,Y (x, y), then f X (x) = f X,Y (x, y)dy or all y f X,Y (x, y); f Y (y) = f X,Y (x, y)dx or all x f X,Y (x, y); f X Y =y (x) = f X,Y (x, y)/f Y (y); 7

8 f Y X=x (y) = f X,Y (x, y)/f X (x); f X,Y (x, y) = f X (x)f Y (y) if and only if X and Y are indeendent. X max, X min If {X i } are n indeendent, identically distributed random variables with df f X (x), then f Xmax (x) = nf X (x)[f X (x)] n 1 f Xmin (x) = nf X (x)[1 F X (x)] n 1 8

LIST OF FORMULAS FOR STK1100 AND STK1110

LIST OF FORMULAS FOR STK1100 AND STK1110 LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function

More information

Chapter 7: Special Distributions

Chapter 7: Special Distributions This chater first resents some imortant distributions, and then develos the largesamle distribution theory which is crucial in estimation and statistical inference Discrete distributions The Bernoulli

More information

1 Review of Probability and Distributions

1 Review of Probability and Distributions Random variables. A numerically valued function X of an outcome ω from a sample space Ω X : Ω R : ω X(ω) is called a random variable (r.v.), and usually determined by an experiment. We conventionally denote

More information

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R In probabilistic models, a random variable is a variable whose possible values are numerical outcomes of a random phenomenon. As a function or a map, it maps from an element (or an outcome) of a sample

More information

BASICS OF PROBABILITY

BASICS OF PROBABILITY October 10, 2018 BASICS OF PROBABILITY Randomness, sample space and probability Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be predicted with certainty,

More information

3. Probability and Statistics

3. Probability and Statistics FE661 - Statistical Methods for Financial Engineering 3. Probability and Statistics Jitkomut Songsiri definitions, probability measures conditional expectations correlation and covariance some important

More information

Probability and Distributions

Probability and Distributions Probability and Distributions What is a statistical model? A statistical model is a set of assumptions by which the hypothetical population distribution of data is inferred. It is typically postulated

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Review of Probability Theory II

Review of Probability Theory II Review of Probability Theory II January 9-3, 008 Exectation If the samle sace Ω = {ω, ω,...} is countable and g is a real-valued function, then we define the exected value or the exectation of a function

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Exam P Review Sheet. for a > 0. ln(a) i=0 ari = a. (1 r) 2. (Note that the A i s form a partition)

Exam P Review Sheet. for a > 0. ln(a) i=0 ari = a. (1 r) 2. (Note that the A i s form a partition) Exam P Review Sheet log b (b x ) = x log b (y k ) = k log b (y) log b (y) = ln(y) ln(b) log b (yz) = log b (y) + log b (z) log b (y/z) = log b (y) log b (z) ln(e x ) = x e ln(y) = y for y > 0. d dx ax

More information

Actuarial Science Exam 1/P

Actuarial Science Exam 1/P Actuarial Science Exam /P Ville A. Satopää December 5, 2009 Contents Review of Algebra and Calculus 2 2 Basic Probability Concepts 3 3 Conditional Probability and Independence 4 4 Combinatorial Principles,

More information

Probability Theory and Statistics. Peter Jochumzen

Probability Theory and Statistics. Peter Jochumzen Probability Theory and Statistics Peter Jochumzen April 18, 2016 Contents 1 Probability Theory And Statistics 3 1.1 Experiment, Outcome and Event................................ 3 1.2 Probability............................................

More information

STT 441 Final Exam Fall 2013

STT 441 Final Exam Fall 2013 STT 441 Final Exam Fall 2013 (12:45-2:45pm, Thursday, Dec. 12, 2013) NAME: ID: 1. No textbooks or class notes are allowed in this exam. 2. Be sure to show all of your work to receive credit. Credits are

More information

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline.

Random Variables. Cumulative Distribution Function (CDF) Amappingthattransformstheeventstotherealline. Random Variables Amappingthattransformstheeventstotherealline. Example 1. Toss a fair coin. Define a random variable X where X is 1 if head appears and X is if tail appears. P (X =)=1/2 P (X =1)=1/2 Example

More information

Lecture 19: Properties of Expectation

Lecture 19: Properties of Expectation Lecture 19: Properties of Expectation Dan Sloughter Furman University Mathematics 37 February 11, 4 19.1 The unconscious statistician, revisited The following is a generalization of the law of the unconscious

More information

ECON Fundamentals of Probability

ECON Fundamentals of Probability ECON 351 - Fundamentals of Probability Maggie Jones 1 / 32 Random Variables A random variable is one that takes on numerical values, i.e. numerical summary of a random outcome e.g., prices, total GDP,

More information

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B

Statistics STAT:5100 (22S:193), Fall Sample Final Exam B Statistics STAT:5 (22S:93), Fall 25 Sample Final Exam B Please write your answers in the exam books provided.. Let X, Y, and Y 2 be independent random variables with X N(µ X, σ 2 X ) and Y i N(µ Y, σ 2

More information

Chapter 4 : Expectation and Moments

Chapter 4 : Expectation and Moments ECE5: Analysis of Random Signals Fall 06 Chapter 4 : Expectation and Moments Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu Expected Value of a Random Variable Definition. The expected or average

More information

Chapter 4. Chapter 4 sections

Chapter 4. Chapter 4 sections Chapter 4 sections 4.1 Expectation 4.2 Properties of Expectations 4.3 Variance 4.4 Moments 4.5 The Mean and the Median 4.6 Covariance and Correlation 4.7 Conditional Expectation SKIP: 4.8 Utility Expectation

More information

Formulas for probability theory and linear models SF2941

Formulas for probability theory and linear models SF2941 Formulas for probability theory and linear models SF2941 These pages + Appendix 2 of Gut) are permitted as assistance at the exam. 11 maj 2008 Selected formulae of probability Bivariate probability Transforms

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

1 Probability theory. 2 Random variables and probability theory.

1 Probability theory. 2 Random variables and probability theory. Probability theory Here we summarize some of the probability theory we need. If this is totally unfamiliar to you, you should look at one of the sources given in the readings. In essence, for the major

More information

ECON 5350 Class Notes Review of Probability and Distribution Theory

ECON 5350 Class Notes Review of Probability and Distribution Theory ECON 535 Class Notes Review of Probability and Distribution Theory 1 Random Variables Definition. Let c represent an element of the sample space C of a random eperiment, c C. A random variable is a one-to-one

More information

ECON 4130 Supplementary Exercises 1-4

ECON 4130 Supplementary Exercises 1-4 HG Set. 0 ECON 430 Sulementary Exercises - 4 Exercise Quantiles (ercentiles). Let X be a continuous random variable (rv.) with df f( x ) and cdf F( x ). For 0< < we define -th quantile (or 00-th ercentile),

More information

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015

Review 1: STAT Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics. August 25, 2015 Review : STAT 36 Mark Carpenter, Ph.D. Professor of Statistics Department of Mathematics and Statistics August 25, 25 Support of a Random Variable The support of a random variable, which is usually denoted

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416)

SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) SUMMARY OF PROBABILITY CONCEPTS SO FAR (SUPPLEMENT FOR MA416) D. ARAPURA This is a summary of the essential material covered so far. The final will be cumulative. I ve also included some review problems

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems

MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems MA/ST 810 Mathematical-Statistical Modeling and Analysis of Complex Systems Review of Basic Probability The fundamentals, random variables, probability distributions Probability mass/density functions

More information

7 Random samples and sampling distributions

7 Random samples and sampling distributions 7 Random samples and sampling distributions 7.1 Introduction - random samples We will use the term experiment in a very general way to refer to some process, procedure or natural phenomena that produces

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Elements of Probability Theory

Elements of Probability Theory Short Guides to Microeconometrics Fall 2016 Kurt Schmidheiny Unversität Basel Elements of Probability Theory Contents 1 Random Variables and Distributions 2 1.1 Univariate Random Variables and Distributions......

More information

Sampling Distributions

Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of random sample. For example,

More information

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs

BMIR Lecture Series on Probability and Statistics Fall 2015 Discrete RVs Lecture #7 BMIR Lecture Series on Probability and Statistics Fall 2015 Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University 7.1 Function of Single Variable Theorem

More information

Continuous Random Variables

Continuous Random Variables Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability. Often, there is interest in random variables

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Random Variables. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 13 Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay August 8, 2013 2 / 13 Random Variable Definition A real-valued

More information

Chapter 5. Chapter 5 sections

Chapter 5. Chapter 5 sections 1 / 43 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

1 Review of Probability

1 Review of Probability 1 Review of Probability Random variables are denoted by X, Y, Z, etc. The cumulative distribution function (c.d.f.) of a random variable X is denoted by F (x) = P (X x), < x

More information

1 Presessional Probability

1 Presessional Probability 1 Presessional Probability Probability theory is essential for the development of mathematical models in finance, because of the randomness nature of price fluctuations in the markets. This presessional

More information

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2

Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 You can t see this text! Introduction to Computational Finance and Financial Econometrics Probability Review - Part 2 Eric Zivot Spring 2015 Eric Zivot (Copyright 2015) Probability Review - Part 2 1 /

More information

1.6 Families of Distributions

1.6 Families of Distributions Your text 1.6. FAMILIES OF DISTRIBUTIONS 15 F(x) 0.20 1.0 0.15 0.8 0.6 Density 0.10 cdf 0.4 0.05 0.2 0.00 a b c 0.0 x Figure 1.1: N(4.5, 2) Distribution Function and Cumulative Distribution Function for

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

2 (Statistics) Random variables

2 (Statistics) Random variables 2 (Statistics) Random variables References: DeGroot and Schervish, chapters 3, 4 and 5; Stirzaker, chapters 4, 5 and 6 We will now study the main tools use for modeling experiments with unknown outcomes

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 17-27 Review Scott Sheffield MIT 1 Outline Continuous random variables Problems motivated by coin tossing Random variable properties 2 Outline Continuous random variables Problems

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 14: Continuous random variables Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin www.cs.cmu.edu/

More information

Continuous Distributions

Continuous Distributions A normal distribution and other density functions involving exponential forms play the most important role in probability and statistics. They are related in a certain way, as summarized in a diagram later

More information

MAS113 Introduction to Probability and Statistics. Proofs of theorems

MAS113 Introduction to Probability and Statistics. Proofs of theorems MAS113 Introduction to Probability and Statistics Proofs of theorems Theorem 1 De Morgan s Laws) See MAS110 Theorem 2 M1 By definition, B and A \ B are disjoint, and their union is A So, because m is a

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

SOLUTION FOR HOMEWORK 12, STAT 4351

SOLUTION FOR HOMEWORK 12, STAT 4351 SOLUTION FOR HOMEWORK 2, STAT 435 Welcome to your 2th homework. It looks like this is the last one! As usual, try to find mistakes and get extra points! Now let us look at your problems.. Problem 7.22.

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities

PCMI Introduction to Random Matrix Theory Handout # REVIEW OF PROBABILITY THEORY. Chapter 1 - Events and Their Probabilities PCMI 207 - Introduction to Random Matrix Theory Handout #2 06.27.207 REVIEW OF PROBABILITY THEORY Chapter - Events and Their Probabilities.. Events as Sets Definition (σ-field). A collection F of subsets

More information

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2

matrix-free Elements of Probability Theory 1 Random Variables and Distributions Contents Elements of Probability Theory 2 Short Guides to Microeconometrics Fall 2018 Kurt Schmidheiny Unversität Basel Elements of Probability Theory 2 1 Random Variables and Distributions Contents Elements of Probability Theory matrix-free 1

More information

STAT 430/510: Lecture 16

STAT 430/510: Lecture 16 STAT 430/510: Lecture 16 James Piette June 24, 2010 Updates HW4 is up on my website. It is due next Mon. (June 28th). Starting today back at section 6.7 and will begin Ch. 7. Joint Distribution of Functions

More information

PROBABILITY AND STATISTICAL INFERENCE

PROBABILITY AND STATISTICAL INFERENCE PROBABILITY AND STATISTICAL INFERENCE Probability vs. Statistics Standard Viewpoint: Probability postulates a probability model and uses this to predict the behavior of observed data. Statistics uses observed

More information

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions Chapter. Discrete Distributions Objectives ˆ Basic Concepts & Epectations ˆ Binomial, Poisson, Geometric, Negative Binomial, and Hypergeometric Distributions ˆ Introduction to the Maimum Likelihood Estimation

More information

Advanced Econometrics II (Part 1)

Advanced Econometrics II (Part 1) Advanced Econometrics II (Part 1) Dr. Mehdi Hosseinkouchack Goethe University Frankfurt Summer 2016 osseinkouchack (Goethe University Frankfurt) Review Slides Summer 2016 1 / 22 Distribution For simlicity,

More information

Continuous Random Variables and Continuous Distributions

Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Continuous Random Variables and Continuous Distributions Expectation & Variance of Continuous Random Variables ( 5.2) The Uniform Random Variable

More information

Lecture 2: Review of Probability

Lecture 2: Review of Probability Lecture 2: Review of Probability Zheng Tian Contents 1 Random Variables and Probability Distributions 2 1.1 Defining probabilities and random variables..................... 2 1.2 Probability distributions................................

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Lecture notes for Part A Probability

Lecture notes for Part A Probability Lecture notes for Part A Probability Notes written by James Martin, updated by Matthias Winkel Oxford, Michaelmas Term 017 winkel@stats.ox.ac.uk Version of 5 September 017 1 Review: probability spaces,

More information

Stat 5101 Notes: Brand Name Distributions

Stat 5101 Notes: Brand Name Distributions Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution DiscreteUniform(n). Discrete. Rationale Equally likely outcomes. The interval 1, 2,..., n of

More information

Statistics 1B. Statistics 1B 1 (1 1)

Statistics 1B. Statistics 1B 1 (1 1) 0. Statistics 1B Statistics 1B 1 (1 1) 0. Lecture 1. Introduction and probability review Lecture 1. Introduction and probability review 2 (1 1) 1. Introduction and probability review 1.1. What is Statistics?

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

Continuous random variables

Continuous random variables Continuous random variables Can take on an uncountably infinite number of values Any value within an interval over which the variable is definied has some probability of occuring This is different from

More information

The mean, variance and covariance. (Chs 3.4.1, 3.4.2)

The mean, variance and covariance. (Chs 3.4.1, 3.4.2) 4 The mean, variance and covariance (Chs 3.4.1, 3.4.2) Mean (Expected Value) of X Consider a university having 15,000 students and let X equal the number of courses for which a randomly selected student

More information

Continuous Distributions

Continuous Distributions Chapter 3 Continuous Distributions 3.1 Continuous-Type Data In Chapter 2, we discuss random variables whose space S contains a countable number of outcomes (i.e. of discrete type). In Chapter 3, we study

More information

More on Distribution Function

More on Distribution Function More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function F X. Theorem: Let X be any random variable, with cumulative distribution

More information

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables.

Probability. Paul Schrimpf. January 23, UBC Economics 326. Probability. Paul Schrimpf. Definitions. Properties. Random variables. Probability UBC Economics 326 January 23, 2018 1 2 3 Wooldridge (2013) appendix B Stock and Watson (2009) chapter 2 Linton (2017) chapters 1-5 Abbring (2001) sections 2.1-2.3 Diez, Barr, and Cetinkaya-Rundel

More information

18.440: Lecture 28 Lectures Review

18.440: Lecture 28 Lectures Review 18.440: Lecture 28 Lectures 18-27 Review Scott Sheffield MIT Outline Outline It s the coins, stupid Much of what we have done in this course can be motivated by the i.i.d. sequence X i where each X i is

More information

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017

Probability Notes. Compiled by Paul J. Hurtado. Last Compiled: September 6, 2017 Probability Notes Compiled by Paul J. Hurtado Last Compiled: September 6, 2017 About These Notes These are course notes from a Probability course taught using An Introduction to Mathematical Statistics

More information

STAT Chapter 5 Continuous Distributions

STAT Chapter 5 Continuous Distributions STAT 270 - Chapter 5 Continuous Distributions June 27, 2012 Shirin Golchi () STAT270 June 27, 2012 1 / 59 Continuous rv s Definition: X is a continuous rv if it takes values in an interval, i.e., range

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

Final Exam # 3. Sta 230: Probability. December 16, 2012

Final Exam # 3. Sta 230: Probability. December 16, 2012 Final Exam # 3 Sta 230: Probability December 16, 2012 This is a closed-book exam so do not refer to your notes, the text, or any other books (please put them on the floor). You may use the extra sheets

More information

CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY

CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY CHAPTER 1 DISTRIBUTION THEORY 1 CHAPTER 1: DISTRIBUTION THEORY CHAPTER 1 DISTRIBUTION THEORY 2 Basic Concepts CHAPTER 1 DISTRIBUTION THEORY 3 Random Variables (R.V.) discrete random variable: probability

More information

01 Probability Theory and Statistics Review

01 Probability Theory and Statistics Review NAVARCH/EECS 568, ROB 530 - Winter 2018 01 Probability Theory and Statistics Review Maani Ghaffari January 08, 2018 Last Time: Bayes Filters Given: Stream of observations z 1:t and action data u 1:t Sensor/measurement

More information

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 3: Probability Models and Distributions (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics,

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

4. CONTINUOUS RANDOM VARIABLES

4. CONTINUOUS RANDOM VARIABLES IA Probability Lent Term 4 CONTINUOUS RANDOM VARIABLES 4 Introduction Up to now we have restricted consideration to sample spaces Ω which are finite, or countable; we will now relax that assumption We

More information

MATH : EXAM 2 INFO/LOGISTICS/ADVICE

MATH : EXAM 2 INFO/LOGISTICS/ADVICE MATH 3342-004: EXAM 2 INFO/LOGISTICS/ADVICE INFO: WHEN: Friday (03/11) at 10:00am DURATION: 50 mins PROBLEM COUNT: Appropriate for a 50-min exam BONUS COUNT: At least one TOPICS CANDIDATE FOR THE EXAM:

More information

Class 8 Review Problems solutions, 18.05, Spring 2014

Class 8 Review Problems solutions, 18.05, Spring 2014 Class 8 Review Problems solutions, 8.5, Spring 4 Counting and Probability. (a) Create an arrangement in stages and count the number of possibilities at each stage: ( ) Stage : Choose three of the slots

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

Sampling Distributions

Sampling Distributions Sampling Distributions In statistics, a random sample is a collection of independent and identically distributed (iid) random variables, and a sampling distribution is the distribution of a function of

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Stat4 Probability and Statistics II (F6 Exponential, Poisson and Gamma Suppose on average every /λ hours, a Stochastic train arrives at the Random station. Further we assume the waiting time between two

More information

Discrete Distributions

Discrete Distributions Chapter 2 Discrete Distributions 2.1 Random Variables of the Discrete Type An outcome space S is difficult to study if the elements of S are not numbers. However, we can associate each element/outcome

More information

discrete random variable: probability mass function continuous random variable: probability density function

discrete random variable: probability mass function continuous random variable: probability density function CHAPTER 1 DISTRIBUTION THEORY 1 Basic Concepts Random Variables discrete random variable: probability mass function continuous random variable: probability density function CHAPTER 1 DISTRIBUTION THEORY

More information

Exercises and Answers to Chapter 1

Exercises and Answers to Chapter 1 Exercises and Answers to Chapter The continuous type of random variable X has the following density function: a x, if < x < a, f (x), otherwise. Answer the following questions. () Find a. () Obtain mean

More information

15 Discrete Distributions

15 Discrete Distributions Lecture Note 6 Special Distributions (Discrete and Continuous) MIT 4.30 Spring 006 Herman Bennett 5 Discrete Distributions We have already seen the binomial distribution and the uniform distribution. 5.

More information

Lecture 5: Expectation

Lecture 5: Expectation Lecture 5: Expectation 1. Expectations for random variables 1.1 Expectations for simple random variables 1.2 Expectations for bounded random variables 1.3 Expectations for general random variables 1.4

More information

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B)

REVIEW OF MAIN CONCEPTS AND FORMULAS A B = Ā B. Pr(A B C) = Pr(A) Pr(A B C) =Pr(A) Pr(B A) Pr(C A B) REVIEW OF MAIN CONCEPTS AND FORMULAS Boolean algebra of events (subsets of a sample space) DeMorgan s formula: A B = Ā B A B = Ā B The notion of conditional probability, and of mutual independence of two

More information

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R

Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R Random Variables Definition: A random variable X is a real valued function that maps a sample space S into the space of real numbers R. X : S R As such, a random variable summarizes the outcome of an experiment

More information

Northwestern University Department of Electrical Engineering and Computer Science

Northwestern University Department of Electrical Engineering and Computer Science Northwestern University Department of Electrical Engineering and Computer Science EECS 454: Modeling and Analysis of Communication Networks Spring 2008 Probability Review As discussed in Lecture 1, probability

More information

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc.

ECE302 Exam 2 Version A April 21, You must show ALL of your work for full credit. Please leave fractions as fractions, but simplify them, etc. ECE32 Exam 2 Version A April 21, 214 1 Name: Solution Score: /1 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers

More information

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA5530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA5530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (R.V.) X: A function on sample space X: S R Cumulative distribution function

More information

x i p X (x i ) if X is discrete provided that the relevant sum or integral is absolutely convergent, i.e., i

x i p X (x i ) if X is discrete provided that the relevant sum or integral is absolutely convergent, i.e., i Chapter 5 Expectation 5. Introduction Def The expectation (mean), E[X] or µ X, of a random variable X is defined by: x i p X (x i ) if X is discrete E[X] µ X i xf(x)dx if X is continuous provided that

More information