Foundations of Particle Physics: CERN, LHC, ATLAS

Size: px
Start display at page:

Download "Foundations of Particle Physics: CERN, LHC, ATLAS"

Transcription

1 Foundations of Particle Physics: CERN, LHC, ATLAS Richard Teuscher Institute of Particle Physics University of Toronto (1) Physics Motivation (2) CERN (3) LHC (4) ATLAS (5) Movie 1

2 Recap: The Standard Model (SM) 2

3 Questions Do the fundamental forces of nature unify? What is the origin of mass? What is dark matter made of? Einstein / World Year of Physics 3

4 Steps to Unification Famous example (1864) J.C. Maxwell: Theoretical unification of electricity and magnetism (electromagnetism) Glashow, Salam, and Weinberg: Theoretical unification of electromagnetic and weak nuclear interactions (electroweak). (Nobel Prize in Physics 1979) Rubbia (spokesperson UA1 experiment) + van der Meer (accelerator physicist): Discovery of the W and Z bosons at CERN (Nobel Prize in Physics 1984). 4

5 Nobel Prize 2004 Wilczek, Politzer, Gross: Theoretical discovery of asymptotic freedom in the theory of the strong interaction strong nuclear force decreases at higher energies. Strong coupling constant α 3 (Q) α 3 is the gauge coupling in in QCD (Quantum Chromo Dynamics = theory of strong force) Also known as α s = alpha strong 5

6 Q1: Do these Forces Unify? 1 / α 1 1/ α 1 1/ α 2 1/ α 3 Standard Model World Average (GeV) Physics at electroweak scale 10 2 GeV well-understood. 1 / α 2 α 1 = Electromagnetic coupling α 2 = Weak coupling 1/ α 3 α 3 = Strong coupling SUSY World Average Can we extrapolate the gauge couplings of the Standard Model to the Planck scale GeV? No unification. If Supersymmetry is added, the forces unify at about GeV. A hint that we re on the right track? GeV) (more on gravity later) 6

7 Q2: What Gives Particles Mass? The Higgs Mechanism To understand the Higgs mechanism, imagine that a room full of physicists chattering quietly is like space filled with the Higgs field a well-known scientist walks in, creating a disturbance as he moves across the room and attracting a cluster of admirers with each step this increases his resistance to movement, in other words, he acquires mass, just like a particle moving through the Higgs field... 7

8 Q2 : What Gives Particles Mass? The missing piece of the SM is the Higgs (H) Spin-0 particle forming a scalar field everywhere in the universe Example of a scalar field (temperature) Coupling of the Higgs field to a particle generates its mass n.b. p/n mass from gluon fields, quark motion Breaks electroweak symmetry: W,Z massive Higgs properties predicted except its own exact mass We know it must lie in the range 114 GeV < M H < 1.2 TeV Previous direct searches at CERN Precision electroweak data (CERN, Fermilab) Higgs 8

9 Q3: What is Dark Matter? Planets, stars, H/He, Matter-Energy Budget of Universe make up ~5% of the universe. Heavy Elements 0.03% Evidence for dark matter: galaxy rotation Neutrinos 0.3% Observed Dark Energy 75% Stars 0.5% H He 4% Dark Matter 25% Cold Dark Matter Candidate: SUSY Neutralino χ Another hint for SUSY? Expected 9

10 2. CERN Founded in 1954, CERN (European Council for Nuclear Research) in Geneva, Switzerland is now the largest particle physics laboratory in the world. 10

11 WWW was invented at CERN The World Wide Web was invented in 1989 by researchers at CERN. It began as a way of sharing Information amongst physicists The first Web site. Inventor Tim Berners- Lee meets UN Secretary General in Geneva, October, 2003 CERN also mentioned in Dan Brown s book Angels and Demons. To see what s false / true: 11

12 CERN Users

13 Age Distribution of CERN Users Age Distribution of CERN Users All Countries Age May

14 1984 Nobel Prize at CERN Discovery of W boson p p _ W + debris W e +ν Neutrino signal is missing energy pp Z Z + debris e + + e - 14

15 2. The LHC 15

16 The Large Hadron Collider (LHC) Questions about unification, dark matter, and the Higgs should be answered by probing physics at the TeV scale To probe physics at ~ 1 TeV in p-p collisions, need: E(quark) > 1 TeV E(proton) > 6 TeV LHC p-p collider: 7 TeV x 7 TeV High luminosity: Design luminosity of L=10 34 cm -2 s -1 Physics Rate = L x nb. σ ~ 1/s -> 2*s requires factor 10 in L Design 100 fb -1 / year per experiment Luminosity cm -2 s -1 Luminosity [cm -2.s -1 ] 1.E+35 1.E+34 1.E+33 1.E+32 1.E+31 1.E+30 ISR LEP2 LEP1 HERA SppS 7 x TeVatron LHC 100 x Center-of-mass energy [GeV] s Energy (GeV) 16

17 LHC First collisions 2007 pp collider 14 TeV 100 fb -1 / y / experiment 25 ns bunch spacing ~ billion collisions / s 9T Supercond. magnets 26.7 km ring Energy (2 LHC beams) = 11 GJ = 7% of energy stored in an aircraft carrier at 30 knots 17

18 Alice Heavy-ion programme Atlas General-purpose detector 4LHC Experiments CMS General-purpose detector LHCb Dedicated b-physics 18

19 19

20 LHC Status: First superconducting dipole magnet lowered March 7, 2005 ~1000 of 1232 dipoles delivered to CERN 20

21 LHC Schedule LHCC Review March 05 Jan-Mar. 2007: cooldown. All 8 LHC Sectors July 07: LHC commissioning finished Ready for beam. Initial L = 6 x 1031 cm-2 s-1 to ~ 1032 cm-2 s-1 ~1% of Lmax for the LHC, as in SppS and TeVatron early runs Then 3 month shutdown? Then ~7 months L = 2 x 1033 cm-2 s-1 End 2008: 1 to 10 fb-1 per experiment

22 3. LHC Physics 22

23 Production Rates for LHC at L = cm -2 s -1 (10% design Luminosity) Process Events/s Events / year (10 fb 1 ) W eν Z ee SM Higgs SUSY Exotics tt bb QCD jets (p T > 200 GeV) H (m =130 GeV) g ~ g ~ (m = 1 TeV) Black holes m > 3 TeV (M D =3 TeV, n=4) Wealth of physics: LHC is a b-factory, top factory, W/Z factory, Higgs factory, SUSY factory, 23

24 The Price: Pileup Total event rate: R = L x σ inelastic (pp) cm 2 s 1 x 70 mb 700 MHz ~ 25 inelastic minimum bias low-p T events produced on average in each bunch crossing of 25 ns pile-up e.g. Golden Higgs channel: H ZZ 4µ Reconstructed tracks p T >25 GeV 24

25 SM Higgs Production at LHC 4 processes: gg fusion tt fusion W,Z Bremsstrahlung WW,ZZ Vector-Boson Fusion 25

26 Search Channel Depends on M H bb W W ZZ 26

27 Intermediate Mass Higgs 130 < M H < 500 GeV + H ZZ l l l l ( l = e, µ ) 4 high p T leptons golden channel Narrow mass peak, small background + Entries/ 0.25GeV Corrections: BREM+eISO+Presampler mzz Entries χ / ndf / 14 Prob Constant ± Mean 130 ± Sigma ± H->ZZ->4e Entries/0.5 GeV 600 H->ZZ->µµµµ 400 σ = 1.4 GeV σ=1.4 GeV ZZ Invariant Mass (GeV) m ZZ (GeV) m ZZ (GeV) m µµµµ (GeV) 27

28 Strategy for Higgs Discovery Signal significance Signal Significance 5σ ATLAS 30 fb -1 LEP excluded L dt = 30 fb -1 (no K-factors) ATLAS H γ γ tth (H bb) H ZZ (*) 4 l H WW (*) lνlν qqh qq WW (*) qqh qq ττ Total significance LHC can probe full range of allowed Higgs masses. 5σ observation possible in first year at L = 2x m H (GeV) m H (GeV) Eur.Phys.J. C32S2 (2004)

29 Extensions to SM: Supersymmetry Recall: symmetry between fermions and bosons Q boson> = fermion> Q fermion> = boson> All SM particles have SUSY partners differing by spin ½ e.g. quark <> squark Deeper than just doubling # of particles SUSY is maximal extension of Poincaré group: 4D spacetime translations 3D rotations Lorentz group Local SUSY implies gravity (msugra) Spin 1 2 Spin 0 q q~ Spin1/ Spin 0 : g, Spin : g~, 1 2 l, ν ~ l, ~ ν W ~ χ ± ± 1,2 Two Higgs Doublets : h : :,, 0 H ±, H 0 γ, Z, H ~ 0 χ, A 0, H ± 0 1, H 1,2,3,4 0 2 Corrections from SUSY particles cancel divergences to Higgs mass 29

30 Strategy for SUSY Discovery at LHC SUSY search channels: Large E T miss ; Large jet multiplicity; Large E T sum. Background estimation crucial Estimations from data. pp gg ~ ~ cascade Missing E T 5σ ATLAS decay jets (R-Parity conserving) 30

31 Signal of a SUSY Discovery Powerful background rejection using effective mass : M eff = E miss T + 4 i= 1 p T (jet i ) (GeV) dσ/dm eff (mb) M SUSY (GeV) msugra : 5 parameters M eff (TeV) Peak position correlated to M SUSY Area ~ SUSY cross-section M eff (GeV) M eff (GeV) Effective mass tracks SUSY scale Constrained MSSM with 15 parameters 31

32 SUSY at LHC ATLAS 5σ discovery curves Large cross-sections for squark and gluino production at LHC With L= 10 33, mass reach: M ~ 1.3 TeV in 1 week M ~ 1.8 TeV in 1 month M 1 / 2 (GeV) M ~ TeV (ultimate 300 fb -1 ) Main limitation not statistics but understanding the detectors SUSY may be the first discovery beyond the SM at the LHC M 0 (GeV) 32 M 0, M 1/2 mass of SUSY particles at GUT scale.

33 Many other physics searches Excited quarks: q* qγγ, up to ~ 6 TeV Leptoquarks: X l + q, up to ~ 1.5 TeV Compositeness: dijets up to 40 TeV Lepton flavour violation: τ µγ up to 10-6 to 10-7 Monopoles, 4 th generation fermions, extra dimensions 33

34 One Possibility: Extra Dimensions Graviton Bulk Graviton The weakness of gravity compared to the SM forces could be explained by extra dimensions beyond 4D, inspired by string theory. Gravity leaks into the extra dimensions and appears to be weaker. A gravity (string) scale of M S ~ 1 TeV is then possible. A solution to the hierarchy problem! M Planck2 ~ M S n+2 R n n, R = number and size of extra dimensions 4 D Standard Model n x-dim If Ms ~ 1 TeV: n = 1 -> R = m (excluded by macroscopic gravity) n = 2 -> R = 0.7 mm (limit of small-scale gravity expts) Extra dimensions compact over R < mm R 34

35 Black Hole Production at LHC If R < mm M s ~ TeV Spectacular signature 35

36 4. The ATLAS Experiment 36

37 Basic Detector Components Tracking chamber Electromagnetic calorimeter Hadronic calorimeter Muon chambers photons e± muons π±, p neutrons Interior Exterior Hadros = Greek for strong 37

38 ATLAS (A Toroidal LHC ApparatuS) 2 T Solenoid Hadronic Tile calorimeter Muon spectrometer Toroid magnets p 7 TeV p 7 TeV 22 m Inner Detectors Electromagnetic barrel calorimeter 46 m Total mass ~ 7000 tonnes Forward calorimeter Endcap calorimeter 38

39 Scale of ATLAS 92 m ATLAS assembled 92 m below ground at CERN 39

40 ATLAS Calorimetry LAr EM Barrel LAr EM Endcap (EMEC) Extended Barrel Barrel Extended Barrel LAr Hadronic Endcap (HEC) LAr forward Calorimeter (FCAL) Hadronic Tile Calorimeter (TileCal): - Physics: Jets + Missing E T - Scintillating tiles orthogonal to particle trajectories - Iron plates (82%) + Scintillating Tiles (18%) - 3 Longitudinal samples: λ TileCal Front-End Electronics 40

41 Operation of the TileCal: Measure light produced by charged particles in plastic scintillator. PMT WLS fiber Front End Electronics 7λ Φ Particles Plastic scintillator inside steel absorber structure 2 fibres / scintillator. Bundle fibres to form cells of 0.1 x 0.1 (η,φ) 2 PMT sper cell PMT s 41

42 Scintillating tiles production Granulated polysterene Pressing of tiles Mixing components tiles ; 80 tons Done by injection molding (2min/tile) 3 mm thick tiles in 11 sizes Polystyrene + PTP (1.5 %) + POPOP (0.4 %). Peak of light emission at 420 nm. Tiles finished 42

43 TileCal Mechanics and Optics Mechanics Laminated steel Epoxy glue + press submodule Assembled Module Optics 43 Insert tiles in module Insert profiles with fibres Fibre routing

44 One TileCal Barrel Module ~ 20 Tonnes 44

45 TileCal PMT Amplifier Card plugged into anode of each PMT cards on detector Analogue + digital components Performs shaping of PMT signal Signal then digitized by 10-bit ADC s on detector Bigain output high gain (0-10 GeV) low gain ( GeV) Effective dynamic range of 16 bits Also performs calibration functions Example of calibration pulse ADC Counts Digitized Samples (25 ns bins) 45

46 5. ATLAS Commissioning and Physics 46

47 TileCal Commissioning in ATLAS Pit Record calibration data from detector, measure noise levels, debug electronics Calibration Pulses OK Photo from Sept OK: uninstrumented channels Noise Test OK RMS (ADC counts) Channel 47

48 Fall 2004: Lowering EM Barrel A-Frames = final LAr supports Alignment Tooling (during insertion) Completion of Tile Cal 48

49 December 2004 TileCal + Liquid Argon EM barrel assembly in ATLAS pit completed. 49

50 Next Step: Commissioning ATLAS with Cosmic-Ray Muons ~ 5 million cosmic muons enter the ATLAS cavern in 15 minutes 50

51 First Cosmic Ray Data Not a simulation! June 21: first cosmic ray data from ATLAS pit Barrel hadronic Tile Calorimeter (TileCal) custom trigger on back-toback cosmic rays no external scintillators Test full chain from frontend electronics to offline software. See Nature Article 14 July

52 The Road to ATLAS Physics 1: Testbeam (past years 2004) 2: Installation, Cosmic Ray Commissioning (Now) 3: Single beam 4: First LHC collisions 5: First Physics

53 Video about CERN 53

54 Constructing ATLAS Episode I 54

55 Links CERN Particle Data Book 55

Triggering. Example: Suppose you d like to take an exceptional photograph of the CN-tower.

Triggering. Example: Suppose you d like to take an exceptional photograph of the CN-tower. Triggering Example: Suppose you d like to take an exceptional photograph of the CN-tower. Poor strategy: Take pictures continuously until your film is used up or camera memory is full Better strategy:

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

Recent Results on New Phenomena and Higgs Searches at DZERO

Recent Results on New Phenomena and Higgs Searches at DZERO Recent Results on New Phenomena and Higgs Searches at DZERO Neeti Parashar Louisiana Tech University Ruston, Louisiana U.S.A. 1 Outline Motivation for DØ Run II Detector at Fermilab The Fermilab Tevatron

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Electroweak Physics at the LHC Introductory Lecture

Electroweak Physics at the LHC Introductory Lecture Electroweak Physics at the LHC Introductory Lecture Stefan Dittmaier MPI München Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC Introductory Lecture 1 1 The

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

2 ATLAS operations and data taking

2 ATLAS operations and data taking The ATLAS experiment: status report and recent results Ludovico Pontecorvo INFN - Roma and CERN on behalf of the ATLAS Collaboration 1 Introduction The ATLAS experiment was designed to explore a broad

More information

Discovery of the W and Z 0 Bosons

Discovery of the W and Z 0 Bosons Discovery of the W and Z 0 Bosons Status of the Standard Model ~1980 Planning the Search for W ± and Z 0 SppS, UA1 and UA2 The analyses and the observed events First measurements of W ± and Z 0 masses

More information

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group

The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning Ph. Schwemling on behalf of the ATLAS LAr Group Introduction Construction, Integration and Commissioning on the Surface Installation

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

First physics with the ATLAS and CMS experiments. Niels van Eldik on behalf of the ATLAS and CMS collaborations

First physics with the ATLAS and CMS experiments. Niels van Eldik on behalf of the ATLAS and CMS collaborations First physics with the ATLAS and CMS experiments Niels van Eldik on behalf of the ATLAS and CMS collaborations Content Status of the LHC and the ATLAS and CMS experiments Event production rates First physics

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN LNF WONP-NURT La Habana 5 february 2013 CERN North Jura ATLAS Sketch of LHC North Ring 26,6 Km long and 3,8 m of diameter, made of 8 arches connected by 8

More information

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014

I. Antoniadis CERN. IAS CERN Novice Workshop, NTU, 7 Feb 2014 I. Antoniadis CERN IAS CERN Novice Workshop, NTU, 7 Feb 2014 1 2 3 the Large Hadron Collider (LHC) Largest scientific instrument ever built, 27km of circumference >10 000 people involved in its design

More information

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns Compact Muon Solenoid o Results and Plans Stephan Linn - Florida International Univ. on behalf of the CMS Collaboration 1 Large Hadron Collider Diameter 8.5 km Beam energy: 7 TeV Luminosity: 10 34 Protons/bunch:

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

The ATLAS detector at the Large Hadron Collider: to boldly look where no one has looked before

The ATLAS detector at the Large Hadron Collider: to boldly look where no one has looked before The ATLAS detector at the Large adron Collider: to boldly look where no one has looked before UBC 14 July 2006 Michel Lefebvre Physics and Astronomy University of Victoria The ATLAS detector at the Large

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Higgs cross-sections

Higgs cross-sections Ph.D. Detailed Research Project Search for a Standard Model Higgs boson in the H ZZ ( ) 4l decay channel at the ATLAS Experiment at Cern Ph.D. Candidate: Giacomo Artoni Supervisor: Prof. Carlo Dionisi,

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

ATLAS-CONF October 15, 2010

ATLAS-CONF October 15, 2010 ATLAS-CONF-2010-096 October 15, 2010 Data-driven background estimation for the H τ + τ τ h search at 7 TeV with the ATLAS detector Ian Howley 7 December 2010 1 Motivation One of the primary LHC physics

More information

Searches for Exotica with CMS

Searches for Exotica with CMS Searches for Exotica with CMS Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore 17 th May 2017 Introduction to Searches Searches for Outline New

More information

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011

Z boson studies at the ATLAS experiment at CERN. Giacomo Artoni Ph.D Thesis Project June 6, 2011 Z boson studies at the ATLAS experiment at CERN Giacomo Artoni Ph.D Thesis Project June 6, 2011 Outline Introduction to the LHC and ATLAS ((Very) Brief) Z boson history Measurement of σ Backgrounds Acceptances

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2 Prepared for submission to JINST Calorimetry for the High Energy Frontier -6 October 17 Lyon (France) Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run Leonor Cerda Alberich,

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Analyzing CMS events

Analyzing CMS events Quarknet University of Rochester, March 23, 2012 Analyzing CMS events Questions in Particle Physics Introducing the Standard Model The Large Hadron Collider The CMS detector W and Z bosons: decays ispy

More information

Discovery potential for SUGRA/SUSY at CMS

Discovery potential for SUGRA/SUSY at CMS Discovery potential for SUGRA/SUSY at CMS Stefano Villa, Université de Lausanne, April 14, 2003 (Based on talk given at SUGRA20, Boston, March 17-21, 2003) Many thanks to: Massimiliano Chiorboli, Filip

More information

R-hadrons and Highly Ionising Particles: Searches and Prospects

R-hadrons and Highly Ionising Particles: Searches and Prospects R-hadrons and Highly Ionising Particles: Searches and Prospects David Milstead Stockholm University The need for new particles Why they could be heavy and stable How can we identify them in current and

More information

ATLAS Hadronic Calorimeters 101

ATLAS Hadronic Calorimeters 101 ATLAS Hadronic Calorimeters 101 Hadronic showers ATLAS Hadronic Calorimeters Tile Calorimeter Hadronic Endcap Calorimeter Forward Calorimeter Noise and Dead Material First ATLAS Physics Meeting of the

More information

The ATLAS Experiment at the LHC

The ATLAS Experiment at the LHC The ATLAS Experiment at the LHC -status and expectations for physics - ATLAS Status and Commissioning Expected first physics with ATLAS Prospects for 1, 10 and 30 fb -1 - Top - Higgs Bosons - New Physics

More information

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002

The Collider Detector at Fermilab. Amitabh Lath Rutgers University July 25, 2002 The Collider Detector at Fermilab Amitabh Lath Rutgers University July 25, 2002 What is Fermilab? A user facility with the Tevatron: 4 mile ring with superconducting magnets. Collides protons with antiprotons.

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 Risultati dell esperimento ATLAS dopo il run 1 di LHC C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013 1 LHC physics Standard Model is a gauge theory based on the following

More information

A first trip to the world of particle physics

A first trip to the world of particle physics A first trip to the world of particle physics Itinerary Massimo Passera Padova - 13/03/2013 1 Massimo Passera Padova - 13/03/2013 2 The 4 fundamental interactions! Electromagnetic! Weak! Strong! Gravitational

More information

The Why, What, and How? of the Higgs Boson

The Why, What, and How? of the Higgs Boson Modern Physics The Why, What, and How? of the Higgs Boson Sean Yeager University of Portland 10 April 2015 Outline Review of the Standard Model Review of Symmetries Symmetries in the Standard Model The

More information

Observation of a New Particle with a Mass of 125 GeV

Observation of a New Particle with a Mass of 125 GeV Observation of a New Particle with a Mass of 125 GeV CMS Experiment, CERN 4 July 2012 Summary In a joint seminar today at CERN and the ICHEP 2012 conference[1] in Melbourne, researchers of the Compact

More information

Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC

Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC Electroweak studies for the LHC Mojtaba Mohammadi Najafabadi School of Particles and Accelerators, IPM Aban 22- IPM Workshop on Electroweak and Higgs at the LHC 1 Why accelerator? We live in a cold and

More information

ATLAS Tile Calorimeter Calibration and Monitoring Systems

ATLAS Tile Calorimeter Calibration and Monitoring Systems ATLAS Calibration and Monitoring Systems June 19 th -23 rd, 217 Arely Cortes-Gonzalez (CERN) On behalf of the ATLAS Collaboration ATLAS Detector Trigger Hardware based L1 ~1kHz Software based HLT ~1kHz

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

Higgs Boson in Lepton Decay Modes at the CMS Experiment

Higgs Boson in Lepton Decay Modes at the CMS Experiment Higgs Boson in Lepton Decay Modes at the Experiment Somnath Choudhury 1 for the collaboration 1 DESY - Hamburg, Germany DOI: http://dx.doi.org/1.34/desy-proc-14-4/1 The results on the standard model Higgs

More information

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination

Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination Study of supersymmetric tau final states with Atlas at LHC: discovery prospects and endpoint determination University of Bonn Outlook: supersymmetry: overview and signal LHC and ATLAS invariant mass distribution

More information

HIGGS Bosons at the LHC

HIGGS Bosons at the LHC ATLAS HIGGS Bosons at the LHC Standard Model Higgs Boson - Search for a light Higgs at the LHC - Vector boson fusion - Comparison to the Tevatron potential Measurement of Higgs boson parameters The MSSM

More information

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Impact on Model Discrimination Junichi TANAKA ICEPP, Univ. of TOKYO On behalf of the ATLAS Collaboration 12th June, 2006 SUSY06@UCIrvine

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Split SUSY and the LHC

Split SUSY and the LHC Split SUSY and the LHC Pietro Slavich LAPTH Annecy IFAE 2006, Pavia, April 19-21 Why Split Supersymmetry SUSY with light (scalar and fermionic) superpartners provides a technical solution to the electroweak

More information

Searches for Beyond SM Physics with ATLAS and CMS

Searches for Beyond SM Physics with ATLAS and CMS Searches for Beyond SM Physics with ATLAS and CMS (University of Liverpool) on behalf of the ATLAS and CMS collaborations 1 Why beyond SM? In 2012 the Standard Model of Particle Physics (SM) particle content

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 LHC Results in 2010-11 Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011 1 LHC results after a year of successful data taking Majid Hashemi IPM, 18th May 2011 http://cms.web.cern.ch/cms/timeline/index.html

More information

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012 @ HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012 Many thanks to several colleagues, in particular: M. Klute and J. Varela Outline Where we stand

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Particles and Universe: Particle detectors

Particles and Universe: Particle detectors Particles and Universe: Particle detectors Maria Krawczyk, Aleksander Filip Żarnecki March 31, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 5 March 31, 2015 1 / 46 Lecture 5 1 Introduction 2 Ionization

More information

First some Introductory Stuff => On The Web.

First some Introductory Stuff => On The Web. First some Introductory Stuff => On The Web http://hep.physics.utoronto.ca/~orr/wwwroot/phy357/phy357s.htm PHY357 = What is the Universe Made Of? Is the Universe Made of These? Proton = (u u d) held

More information

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay i.e. what do we know about the Higgs Marco Grassi The Discovery of a New Boson Evidence of a new boson with 5

More information

Modern experiments - ATLAS

Modern experiments - ATLAS Modern experiments - ATLAS, paula.eerola [at] hep.lu.se,, 046-222 7695 Outline Introduction why new experiments? The next generation of experiments: ATLAS at the Large Hadron Collider Physics basics luminosity,

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

Future prospects for the measurement of direct photons at the LHC

Future prospects for the measurement of direct photons at the LHC Future prospects for the measurement of direct photons at the LHC David Joffe on behalf of the and CMS Collaborations Southern Methodist University Department of Physics, 75275 Dallas, Texas, USA DOI:

More information

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory Future of LHC Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory PiTP, July 2013 1 LHC Run 1: 2009-2012 25 fb -1 of 7+8 TeV pp data Higgs boson found! Looks like SM

More information

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration Higgs couplings and mass measurements with ATLAS CERN On behalf of the ATLAS Collaboration July observation: qualitative picture A single state observed around ~125 GeV Qualitatively all observations consistent

More information

Highlights from the LHC Run1

Highlights from the LHC Run1 Highlights from the LHC Run1 Conseil Scientifique de l'irfu, 15/1/2015 Machine and detector performance Tests of the Standard Model Searches beyond the SM 1 The LHC Run 1 2010 2011 2012 Int. Lum. s 40

More information

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams Tamar Zakareishvili (HEPI TSU, Georgia) 8 th Georgian-German School and Workshop in Basic Science (GGSWBS) Tbilisi, Georgia, August

More information

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis

ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis ATLAS New Small Wheel Phase I Upgrade: Detector and Electronics Performance Analysis Dominique Trischuk, Alain Bellerive and George Iakovidis IPP CERN Summer Student Supervisor August 216 Abstract The

More information

FIRST SCHOOL ON LHC PHYSICS

FIRST SCHOOL ON LHC PHYSICS FIRST SCHOOL ON LHC PHYSICS National Centre for Physics Quaid i Azam University Campus Islamabad PHYSICS@LHC Hafeez Hoorani 10/23/2009 1 Physics@LHC 1. Searches for Higgs Boson 2. New Physics or Physics

More information

Physics at the LHC: from Standard Model to new discoveries

Physics at the LHC: from Standard Model to new discoveries Physics at the LHC: from Standard Model to new discoveries Kirill Melnikov University of Hawaii May 2006 Sendai, June 2006 Physics at the LHC: from Standard Model to new discoveries p. 1/22 Outline Standard

More information

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas) The Higgs Boson as a Probe of New Physics Ian Lewis University of Kansas 1 July 4, 2012 ATLAS and CMS announce discovery of a new particle. Consistent with long sought-after Higgs boson. "We have reached

More information

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva LHC Detectors and their Physics Potential Nick Ellis PH Department, CERN, Geneva 1 Part 1 Introduction to the LHC Detector Requirements & Design Concepts 2 What is the Large Hadron Collider? Circular proton-proton

More information

String Theory in the LHC Era

String Theory in the LHC Era String Theory in the LHC Era J Marsano (marsano@uchicago.edu) 1 String Theory in the LHC Era 1. Electromagnetism and Special Relativity 2. The Quantum World 3. Why do we need the Higgs? 4. The Standard

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

The ATLAS Detector at the LHC

The ATLAS Detector at the LHC The ATLAS Detector at the LHC Results from the New Energy Frontier Cristina Oropeza Barrera Experimental Particle Physics University of Glasgow Somewhere near the Swiss Alps... A Toroidal LHC ApparatuS

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013

Top Physics at CMS. Intae Yu. Sungkyunkwan University (SKKU), Korea Yonsei University, Sep 12 th, 2013 Top Physics at CMS Intae Yu Sungkyunkwan University (SKKU), Korea Seminar @ Yonsei University, Sep 12 th, 2013 Outline Overview of CMS Operation Korea CMS Group Doing Top Physics at LHC Top Production

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

arxiv: v1 [hep-ex] 8 Nov 2010

arxiv: v1 [hep-ex] 8 Nov 2010 Searches for Physics Beyond the Standard Model at CMS Sung-Won Lee, on behalf of the CMS Collaboration Texas Tech University, Lubbock, TX 799, USA Recent results on searches for physics beyond the Standard

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

Particle detection 1

Particle detection 1 Particle detection 1 Recall Particle detectors Detectors usually specialize in: Tracking: measuring positions / trajectories / momenta of charged particles, e.g.: Silicon detectors Drift chambers Calorimetry:

More information

Experimental verification of the Salaam-Weinberg model. Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar

Experimental verification of the Salaam-Weinberg model. Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar Experimental verification of the Salaam-Weinberg model Pásztor Attila, Eötvös University Experimental Particle Physics Student Seminar Contents Theoretical considerations Discovery of W and Z bosons (and

More information

SUSY Searches at CMS in the Fully Hadronic Channel

SUSY Searches at CMS in the Fully Hadronic Channel SUSY Searches at CMS in the Fully Hadronic Channel Project B2 - Supersymmetry at the Large Hadron Collider Christian Autermann, Sergei Bobrovskyi, Ulla Gebbert, Kolja Kaschube, Friederike Nowak, Benedikt

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Detecting. Particles

Detecting. Particles Detecting Experimental Elementary Particle Physics Group at the University of Arizona + Searching for Quark Compositeness at the LHC Particles Michael Shupe Department of Physics M. Shupe - ATLAS Collaboration

More information

Searches for New Physics in Photonic Final States at the LHC with CMS

Searches for New Physics in Photonic Final States at the LHC with CMS Searches for New Physics in Photonic Final States at the LHC with CMS APS April Meeting Denver CO, May 03, 2009 Andy Yen California Inst. of Technology CMS Collaboration 1 The CMS Detector CMS is general

More information

LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann. DESY summer student lectures 25 July 2011

LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann. DESY summer student lectures 25 July 2011 LHC experiment. Summer student lectures, DESY Zeuthen 2011 Elin Bergeaas Kuutmann 1 Some recent news... Presented at the EPS conference, Friday 22 July Is this a discovery of the Higgs boson? If not, what

More information

Testing the Standard Model and Search for New Physics with CMS at LHC

Testing the Standard Model and Search for New Physics with CMS at LHC Dezső Horváth: Search for New Physics with CMS FFK2017, Warsaw, Poland p. 1 Testing the Standard Model and Search for New Physics with CMS at LHC FFK-2017: International Conference on Precision Physics

More information

The Standard Model, Supersymmetry and ZooFinder at CDF. Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006

The Standard Model, Supersymmetry and ZooFinder at CDF. Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006 The Standard Model, Supersymmetry and ZooFinder at CDF Matthew C. Cervantes Department of Physics Texas A&M University Master defense: 7/21/2006 1 Outline The Standard Model of Particle Physics Supersymmetry

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

SUSY Phenomenology & Experimental searches

SUSY Phenomenology & Experimental searches SUSY Phenomenology & Experimental searches Alex Tapper Slides available at: http://www.hep.ph.ic.ac.uk/tapper/lecture.html Reminder Supersymmetry is a theory which postulates a new symmetry between fermions

More information

Search for a Standard Model Higgs boson in the H ZZ ( ) * decay channel with the ATLAS Experiment at CERN

Search for a Standard Model Higgs boson in the H ZZ ( ) * decay channel with the ATLAS Experiment at CERN Search for a Standard Model Higgs boson in the H ZZ ( ) * 4l decay channel with the ATLAS Experiment at CERN Giacomo Artoni Seminario Finale Dottorato XXV Ciclo 5// Thesis Advisor: Prof. Carlo Dionisi

More information

VBF SM Higgs boson searches with ATLAS

VBF SM Higgs boson searches with ATLAS VBF SM Higgs boson searches with Stefania Xella (for the collaboration) Niels Bohr Institute, Copenhagen University, Denmark E-mail: xella@nbi.dk The observation of a Standard Model Higgs boson produced

More information

WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India

WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India WHY LHC? D. P. ROY Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai, India Contents Basic Constituents of Matter and their Interactions : Matter Fermions and Gauge

More information

Particle Physics at the Energy Frontier. Kevin Stenson University of Colorado Boulder October 23, 2006

Particle Physics at the Energy Frontier. Kevin Stenson University of Colorado Boulder October 23, 2006 Particle Physics at the Energy Frontier Kevin Stenson University of Colorado Boulder October 23, 2006 What we know (we think) 3 families of spin ½ quarks & leptons make up matter 3 types of interactions

More information

The ATLAS muon and tau triggers

The ATLAS muon and tau triggers Journal of Physics: Conference Series OPEN ACCESS The ATLAS muon and tau triggers To cite this article: L Dell'Asta and the Atlas Collaboration 2014 J. Phys.: Conf. Ser. 523 012018 View the article online

More information