Models of Causality. Roy Dong. University of California, Berkeley

Size: px
Start display at page:

Download "Models of Causality. Roy Dong. University of California, Berkeley"

Transcription

1 Models of Causality Roy Dong University of California, Berkeley

2 Correlation is not the same as causation. 2

3 Conditioning is not the same as imputing. 3

4 Stylized example Suppose, amongst the population, we have the following simple model: Income: X " User owns eco-friendly fridge: X # Monthly energy consumption: X $ Income Eco-friendly refrigerator? Monthly energy consumption 4

5 Stylized example What would a rebate for free eco-friendly fridges to the population do? Intuitive approach: Take empirical data and learn f: X # X $. Then compare f X # = 1 and f(x # = 0). Note the implicit conditioning! Income Eco-friendly refrigerator? Monthly energy consumption 5

6 Income: Stylized example X " ~Uniform 0,1 User owns eco-friendly fridge: X # X " ~Bernoulli X " Monthly energy consumption: X $ X ", X # ~Normal 1 + 2X " 1 2 X #, σ # Income Eco-friendly refrigerator? Monthly energy consumption 6

7 Stylized example X " ~Uniform 0,1 X # X " ~Bernoulli X " X $ X ", X # ~Normal 1 + 2X " 1 2 X #, σ # Intuitive approach yields: f X # = 1 = 11 6, f X # = 0 = 5 3 Income Effect of X # is " D. Eco-friendly refrigerator? Monthly energy consumption 7

8 Stylized example Causal effects do not go upstream. Giving someone an eco-friendly fridge does not change their income. To look at the causal effects, we impute on the node. Income Eco-friendly refrigerator? Monthly energy consumption 8

9 Stylized example Causal approach yields: Effect of X # is " #. Compare with the intuitive approach: Effect of X # is " D. Income Eco-friendly refrigerator? Monthly energy consumption 9

10 Previous literature Three main paradigms for formalizing causality: Rubin causality Granger causality Pearl s causality 10

11 Rubin causality There is some control variable X 0,1. Example: X = 1 means I am given a new medication. X = 0 means I am given a placebo. There are two distinct random variables Y " and Y I which are the outcome when X = 1 or X = 0. Example: Y " is my blood pressure when I am given my medication. Y I is my blood pressure when I am given a placebo. Fundamental misery of causality: I only observe either Y " or Y I, but not both. [Rubin 1974] [Imbens and Rubin 2015] [Athey and Imbens 2015] [Zhou, Balandat, and Tomlin 2015] 11

12 Rubin causality [Rubin 1974] [Imbens and Rubin 2015] [Athey and Imbens 2015] [Zhou, Balandat, and Tomlin 2015] 12

13 Granger causality Two stationary stochastic processes X and Y. Let: U K denote all the information in the universe available at time t. U X K denote all the information in the universe available at time t except X. σ # (Y U) is the variance of the unbiased, least-squares estimator of Y using U. (Similarly σ # (Y U X).) [Granger 1969] [Brovelli, Ding, Ledberg, Chen, Nakamura, and Bressler 2004] [Gupta and Mazumdar 2014] 13

14 Granger causality U K denote all the information in the universe available at time t. U X K denote all the information in the universe available at time t except X. σ # (Y U) is the variance of the unbiased, least-squares estimator of Y using U. (Similarly σ # (Y U X).) Then X Granger-causes Y if: σ # Y U < σ # Y U X [Granger 1969] [Brovelli, Ding, Ledberg, Chen, Nakamura, and Bressler 2004] [Gupta and Mazumdar 2014] 14

15 Granger causality X Y Time 15

16 Pearl s causality Suppose we have a Bayesian network. We impute a node X N to value x by disconnecting it from all its parents, and setting its value to x. The causal power of X N over X P is determined by how much the distribution of X P changes due to imputation on X N. [Pearl 2000] 16

17 Pearl s causality do(x; i, x) i i X Y [Dong, Mazumdar, Sastry, Optimal Causal Imputation for Control IEEE CDC (in preparation).] 17

18 Previous literature Three main paradigms for formalizing causality: Rubin causality Focused on estimation of the counterfactual. Granger causality Focused on explanatory power. Pearl s causality Focused on imputation. 18

19 Model Given: Directed acyclic graph (DAG) which consists of nodes G and directed edges E G G. Random process X indexed by G which factorizes: P X = Z P X N pa X N N ^ This has many names: X and G are compatible. G represents X. X is Markov relative to G. Interpretation: If there is an edge going from i to j, then we say X N causes [Pearl 2000] X P. 19

20 Learning causal structures Throughout this talk, I will assume this causal structure G, E is given. This is a non-trivial! An active topic of research: Using prior knowledge Econometrics System identification techniques Message passing algorithms Frequency domain analysis of time signals Chao-Liu trees and directed information methods &c 20

21 Definition of imputation By disintegration results in probability theory, if all the random elements X N live in Borel spaces, we can equivalently write: X N = f N pa X N, ξ N where ξ N ~Uniform[0,1] are independent [Pearl 2000] [Kallenberg 2002, Chapter 5] [Dong, Mazumdar, Sastry, Optimal Causal Imputation for Control IEEE CDC (in preparation).] 21

22 Definition of imputation We say a random process Y indexed by G is the imputation of X at i G to a constant x if: At i: Y N = x For all j that is not a descendent of i: Y P = X P For any j that is a descendant of i: Y P = f P pa Y P, ξ P i We write: Y = do X; i, x 22

23 Definition of imputation do(x; i, x) i i X Y 23

24 Definition of imputation We say a random process Y indexed by G is the imputation of X at i G to a constant x if: At i: Y N = x For all j that is not a descendent of i: Y P = X P For any j that is a descendant of i: Y P = f P pa Y P, ξ P i We write: Y = do X; i, x 24

25 Closing remarks In order to close the loop around analytics, we need to move from predictive estimators to causal structures. Estimation of causal structures is half of the problem; control of causal structures is important as well. 25

Causality II: How does causal inference fit into public health and what it is the role of statistics?

Causality II: How does causal inference fit into public health and what it is the role of statistics? Causality II: How does causal inference fit into public health and what it is the role of statistics? Statistics for Psychosocial Research II November 13, 2006 1 Outline Potential Outcomes / Counterfactual

More information

Bayesian Networks and Markov Random Fields

Bayesian Networks and Markov Random Fields Bayesian Networks and Markov Random Fields 1 Bayesian Networks We will use capital letters for random variables and lower case letters for values of those variables. A Bayesian network is a triple V, G,

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS

ANALYTIC COMPARISON. Pearl and Rubin CAUSAL FRAMEWORKS ANALYTIC COMPARISON of Pearl and Rubin CAUSAL FRAMEWORKS Content Page Part I. General Considerations Chapter 1. What is the question? 16 Introduction 16 1. Randomization 17 1.1 An Example of Randomization

More information

Causal Analysis After Haavelmo

Causal Analysis After Haavelmo After Haavelmo University College London UCL Department Seminar September 3, 2013 Economics has forgotten its own past. (Judea Pearl, 2012) Haavemo s Contributions to Causality: Two seminal papers (1943,

More information

Graphical Representation of Causal Effects. November 10, 2016

Graphical Representation of Causal Effects. November 10, 2016 Graphical Representation of Causal Effects November 10, 2016 Lord s Paradox: Observed Data Units: Students; Covariates: Sex, September Weight; Potential Outcomes: June Weight under Treatment and Control;

More information

CS Lecture 3. More Bayesian Networks

CS Lecture 3. More Bayesian Networks CS 6347 Lecture 3 More Bayesian Networks Recap Last time: Complexity challenges Representing distributions Computing probabilities/doing inference Introduction to Bayesian networks Today: D-separation,

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Bayesian Networks Factor Graphs the Case-Factor Algorithm and the Junction Tree Algorithm

Bayesian Networks Factor Graphs the Case-Factor Algorithm and the Junction Tree Algorithm Bayesian Networks Factor Graphs the Case-Factor Algorithm and the Junction Tree Algorithm 1 Bayesian Networks We will use capital letters for random variables and lower case letters for values of those

More information

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data

A Bayesian Perspective on Residential Demand Response Using Smart Meter Data A Bayesian Perspective on Residential Demand Response Using Smart Meter Data Datong-Paul Zhou, Maximilian Balandat, and Claire Tomlin University of California, Berkeley [datong.zhou, balandat, tomlin]@eecs.berkeley.edu

More information

Causal Analysis After Haavelmo

Causal Analysis After Haavelmo After Haavelmo University of Oslo Haavelmo Lecture December 13, 2013 Oslo is the cradle of rigorous causal inference. Two Giants Ragnar Frisch Trygve Haavelmo Haavelmo s Research Program (a) Specify an

More information

Statistical Models for Causal Analysis

Statistical Models for Causal Analysis Statistical Models for Causal Analysis Teppei Yamamoto Keio University Introduction to Causal Inference Spring 2016 Three Modes of Statistical Inference 1. Descriptive Inference: summarizing and exploring

More information

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution NETWORK ANALYSIS Lourens Waldorp PROBABILITY AND GRAPHS The objective is to obtain a correspondence between the intuitive pictures (graphs) of variables of interest and the probability distributions of

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Causality in Econometrics (3)

Causality in Econometrics (3) Graphical Causal Models References Causality in Econometrics (3) Alessio Moneta Max Planck Institute of Economics Jena moneta@econ.mpg.de 26 April 2011 GSBC Lecture Friedrich-Schiller-Universität Jena

More information

OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS. Judea Pearl University of California Los Angeles (www.cs.ucla.

OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS. Judea Pearl University of California Los Angeles (www.cs.ucla. OUTLINE CAUSAL INFERENCE: LOGICAL FOUNDATION AND NEW RESULTS Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea/) Statistical vs. Causal vs. Counterfactual inference: syntax and semantics

More information

Causal Inference & Reasoning with Causal Bayesian Networks

Causal Inference & Reasoning with Causal Bayesian Networks Causal Inference & Reasoning with Causal Bayesian Networks Neyman-Rubin Framework Potential Outcome Framework: for each unit k and each treatment i, there is a potential outcome on an attribute U, U ik,

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition

Summary of the Bayes Net Formalism. David Danks Institute for Human & Machine Cognition Summary of the Bayes Net Formalism David Danks Institute for Human & Machine Cognition Bayesian Networks Two components: 1. Directed Acyclic Graph (DAG) G: There is a node for every variable D: Some nodes

More information

Causal Analysis After Haavelmo: Definitions and a Unified Analysis of Identification of Recursive Causal Models

Causal Analysis After Haavelmo: Definitions and a Unified Analysis of Identification of Recursive Causal Models Causal Inference in the Social Sciences University of Michigan December 12, 2012 This draft, December 15, 2012 James Heckman and Rodrigo Pinto Causal Analysis After Haavelmo, December 15, 2012 1 / 157

More information

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1

Bayesian Graphical Models for Structural Vector AutoregressiveMarch Processes 21, / 1 Bayesian Graphical Models for Structural Vector Autoregressive Processes Daniel Ahelegbey, Monica Billio, and Roberto Cassin (2014) March 21, 2015 Bayesian Graphical Models for Structural Vector AutoregressiveMarch

More information

Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality

Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality Single World Intervention Graphs (SWIGs): A Unification of the Counterfactual and Graphical Approaches to Causality Thomas S. Richardson University of Washington James M. Robins Harvard University Working

More information

On the Causal Structure of the Sensorimotor Loop

On the Causal Structure of the Sensorimotor Loop On the Causal Structure of the Sensorimotor Loop Nihat Ay Keyan Ghazi-Zahedi SFI WORKING PAPER: 2013-10-031 SFI Working Papers contain accounts of scienti5ic work of the author(s) and do not necessarily

More information

CAUSALITY. Models, Reasoning, and Inference 1 CAMBRIDGE UNIVERSITY PRESS. Judea Pearl. University of California, Los Angeles

CAUSALITY. Models, Reasoning, and Inference 1 CAMBRIDGE UNIVERSITY PRESS. Judea Pearl. University of California, Los Angeles CAUSALITY Models, Reasoning, and Inference Judea Pearl University of California, Los Angeles 1 CAMBRIDGE UNIVERSITY PRESS Preface page xiii 1 Introduction to Probabilities, Graphs, and Causal Models 1

More information

Bayesian network modeling. 1

Bayesian network modeling.  1 Bayesian network modeling http://springuniversity.bc3research.org/ 1 Probabilistic vs. deterministic modeling approaches Probabilistic Explanatory power (e.g., r 2 ) Explanation why Based on inductive

More information

Bounding the Probability of Causation in Mediation Analysis

Bounding the Probability of Causation in Mediation Analysis arxiv:1411.2636v1 [math.st] 10 Nov 2014 Bounding the Probability of Causation in Mediation Analysis A. P. Dawid R. Murtas M. Musio February 16, 2018 Abstract Given empirical evidence for the dependence

More information

The decision theoretic approach to causal inference OR Rethinking the paradigms of causal modelling

The decision theoretic approach to causal inference OR Rethinking the paradigms of causal modelling The decision theoretic approach to causal inference OR Rethinking the paradigms of causal modelling A.P.Dawid 1 and S.Geneletti 2 1 University of Cambridge, Statistical Laboratory 2 Imperial College Department

More information

Causal Models with Hidden Variables

Causal Models with Hidden Variables Causal Models with Hidden Variables Robin J. Evans www.stats.ox.ac.uk/ evans Department of Statistics, University of Oxford Quantum Networks, Oxford August 2017 1 / 44 Correlation does not imply causation

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models 10-708, Spring 2017 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Jayanth Koushik, Hiroaki Hayashi, Christian Perez Topic: Directed GMs 1 Types

More information

Carnegie Mellon Pittsburgh, Pennsylvania 15213

Carnegie Mellon Pittsburgh, Pennsylvania 15213 A Tutorial On Causal Inference Peter Spirtes August 4, 2009 Technical Report No. CMU-PHIL-183 Philosophy Methodology Logic Carnegie Mellon Pittsburgh, Pennsylvania 15213 1. Introduction A Tutorial On Causal

More information

Counterfactual Reasoning in Algorithmic Fairness

Counterfactual Reasoning in Algorithmic Fairness Counterfactual Reasoning in Algorithmic Fairness Ricardo Silva University College London and The Alan Turing Institute Joint work with Matt Kusner (Warwick/Turing), Chris Russell (Sussex/Turing), and Joshua

More information

From Causality, Second edition, Contents

From Causality, Second edition, Contents From Causality, Second edition, 2009. Preface to the First Edition Preface to the Second Edition page xv xix 1 Introduction to Probabilities, Graphs, and Causal Models 1 1.1 Introduction to Probability

More information

Causal Models. Macartan Humphreys. September 4, Abstract Notes for G8412. Some background on DAGs and questions on an argument.

Causal Models. Macartan Humphreys. September 4, Abstract Notes for G8412. Some background on DAGs and questions on an argument. Causal Models Macartan Humphreys September 4, 2018 Abstract Notes for G8412. Some background on DAGs and questions on an argument. 1 A note on DAGs DAGs directed acyclic graphs are diagrams used to represent

More information

Causal analysis after Haavelmo. 8th/last Lecture - Hedibert Lopes

Causal analysis after Haavelmo. 8th/last Lecture - Hedibert Lopes Causal analysis after Haavelmo 8th/last Lecture - Hedibert Lopes Insper - Institute of Education and Research December 1st, 2015 Hedibert Lopes (Insper) Heckman & Pinto (2014) December 1st, 2015 1 / 39

More information

Single World Intervention Graphs (SWIGs):

Single World Intervention Graphs (SWIGs): Single World Intervention Graphs (SWIGs): Unifying the Counterfactual and Graphical Approaches to Causality Thomas Richardson Department of Statistics University of Washington Joint work with James Robins

More information

Causality. Pedro A. Ortega. 18th February Computational & Biological Learning Lab University of Cambridge

Causality. Pedro A. Ortega. 18th February Computational & Biological Learning Lab University of Cambridge Causality Pedro A. Ortega Computational & Biological Learning Lab University of Cambridge 18th February 2010 Why is causality important? The future of machine learning is to control (the world). Examples

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Causal Directed Acyclic Graphs

Causal Directed Acyclic Graphs Causal Directed Acyclic Graphs Kosuke Imai Harvard University STAT186/GOV2002 CAUSAL INFERENCE Fall 2018 Kosuke Imai (Harvard) Causal DAGs Stat186/Gov2002 Fall 2018 1 / 15 Elements of DAGs (Pearl. 2000.

More information

Causal Analysis After Haavelmo James Heckman Rodrigo Pinto

Causal Analysis After Haavelmo James Heckman Rodrigo Pinto James Heckman Rodrigo Pinto The University of Chicago September 9, 2013 James Heckman is the Henry Schultz Distinguished Service Professor of Economics and Public Policy at the University of Chicago; Professor

More information

What Causality Is (stats for mathematicians)

What Causality Is (stats for mathematicians) What Causality Is (stats for mathematicians) Andrew Critch UC Berkeley August 31, 2011 Introduction Foreword: The value of examples With any hard question, it helps to start with simple, concrete versions

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

CompSci Understanding Data: Theory and Applications

CompSci Understanding Data: Theory and Applications CompSci 590.6 Understanding Data: Theory and Applications Lecture 17 Causality in Statistics Instructor: Sudeepa Roy Email: sudeepa@cs.duke.edu Fall 2015 1 Today s Reading Rubin Journal of the American

More information

COMP538: Introduction to Bayesian Networks

COMP538: Introduction to Bayesian Networks COMP538: Introduction to Bayesian Networks Lecture 9: Optimal Structure Learning Nevin L. Zhang lzhang@cse.ust.hk Department of Computer Science and Engineering Hong Kong University of Science and Technology

More information

Outline. Spring It Introduction Representation. Markov Random Field. Conclusion. Conditional Independence Inference: Variable elimination

Outline. Spring It Introduction Representation. Markov Random Field. Conclusion. Conditional Independence Inference: Variable elimination Probabilistic Graphical Models COMP 790-90 Seminar Spring 2011 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL Outline It Introduction ti Representation Bayesian network Conditional Independence Inference:

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Recovering Probability Distributions from Missing Data

Recovering Probability Distributions from Missing Data Proceedings of Machine Learning Research 77:574 589, 2017 ACML 2017 Recovering Probability Distributions from Missing Data Jin Tian Iowa State University jtian@iastate.edu Editors: Yung-Kyun Noh and Min-Ling

More information

2 : Directed GMs: Bayesian Networks

2 : Directed GMs: Bayesian Networks 10-708: Probabilistic Graphical Models, Spring 2015 2 : Directed GMs: Bayesian Networks Lecturer: Eric P. Xing Scribes: Yi Cheng, Cong Lu 1 Notation Here the notations used in this course are defined:

More information

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004 A Brief Introduction to Graphical Models Presenter: Yijuan Lu November 12,2004 References Introduction to Graphical Models, Kevin Murphy, Technical Report, May 2001 Learning in Graphical Models, Michael

More information

A Distinction between Causal Effects in Structural and Rubin Causal Models

A Distinction between Causal Effects in Structural and Rubin Causal Models A istinction between Causal Effects in Structural and Rubin Causal Models ionissi Aliprantis April 28, 2017 Abstract: Unspecified mediators play different roles in the outcome equations of Structural Causal

More information

Introduction to Probabilistic Graphical Models

Introduction to Probabilistic Graphical Models Introduction to Probabilistic Graphical Models Kyu-Baek Hwang and Byoung-Tak Zhang Biointelligence Lab School of Computer Science and Engineering Seoul National University Seoul 151-742 Korea E-mail: kbhwang@bi.snu.ac.kr

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Learning Semi-Markovian Causal Models using Experiments

Learning Semi-Markovian Causal Models using Experiments Learning Semi-Markovian Causal Models using Experiments Stijn Meganck 1, Sam Maes 2, Philippe Leray 2 and Bernard Manderick 1 1 CoMo Vrije Universiteit Brussel Brussels, Belgium 2 LITIS INSA Rouen St.

More information

Detecting marginal and conditional independencies between events and learning their causal structure.

Detecting marginal and conditional independencies between events and learning their causal structure. Detecting marginal and conditional independencies between events and learning their causal structure. Jan Lemeire 1,4, Stijn Meganck 1,3, Albrecht Zimmermann 2, and Thomas Dhollander 3 1 ETRO Department,

More information

Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies

Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies Causal Inference Lecture Notes: Causal Inference with Repeated Measures in Observational Studies Kosuke Imai Department of Politics Princeton University November 13, 2013 So far, we have essentially assumed

More information

OUTLINE THE MATHEMATICS OF CAUSAL INFERENCE IN STATISTICS. Judea Pearl University of California Los Angeles (www.cs.ucla.

OUTLINE THE MATHEMATICS OF CAUSAL INFERENCE IN STATISTICS. Judea Pearl University of California Los Angeles (www.cs.ucla. THE MATHEMATICS OF CAUSAL INFERENCE IN STATISTICS Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea) OUTLINE Modeling: Statistical vs. Causal Causal Models and Identifiability to

More information

CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES. Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea)

CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES. Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea) CAUSAL INFERENCE IN THE EMPIRICAL SCIENCES Judea Pearl University of California Los Angeles (www.cs.ucla.edu/~judea) OUTLINE Inference: Statistical vs. Causal distinctions and mental barriers Formal semantics

More information

Math 6330: Statistical Consulting Class 5

Math 6330: Statistical Consulting Class 5 Math 6330: Statistical Consulting Class 5 Tony Cox tcoxdenver@aol.com University of Colorado at Denver Course web site: http://cox-associates.com/6330/ What is a predictive model? The probability that

More information

Lecture 5: Bayesian Network

Lecture 5: Bayesian Network Lecture 5: Bayesian Network Topics of this lecture What is a Bayesian network? A simple example Formal definition of BN A slightly difficult example Learning of BN An example of learning Important topics

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 11/25/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Advances in Cyclic Structural Causal Models

Advances in Cyclic Structural Causal Models Advances in Cyclic Structural Causal Models Joris Mooij j.m.mooij@uva.nl June 1st, 2018 Joris Mooij (UvA) Rotterdam 2018 2018-06-01 1 / 41 Part I Introduction to Causality Joris Mooij (UvA) Rotterdam 2018

More information

Conditional probabilities and graphical models

Conditional probabilities and graphical models Conditional probabilities and graphical models Thomas Mailund Bioinformatics Research Centre (BiRC), Aarhus University Probability theory allows us to describe uncertainty in the processes we model within

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 4 Learning Bayesian Networks CS/CNS/EE 155 Andreas Krause Announcements Another TA: Hongchao Zhou Please fill out the questionnaire about recitations Homework 1 out.

More information

The International Journal of Biostatistics

The International Journal of Biostatistics The International Journal of Biostatistics Volume 7, Issue 1 2011 Article 16 A Complete Graphical Criterion for the Adjustment Formula in Mediation Analysis Ilya Shpitser, Harvard University Tyler J. VanderWeele,

More information

Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features

Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Respecting Markov Equivalence in Computing Posterior Probabilities of Causal Graphical Features Eun Yong Kang Department

More information

Causal Effect Evaluation and Causal Network Learning

Causal Effect Evaluation and Causal Network Learning and Peking University, China June 25, 2014 and Outline 1 Yule-Simpson paradox Causal effects Surrogate and surrogate paradox 2 and Outline Yule-Simpson paradox Causal effects Surrogate and surrogate paradox

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics

Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics Visualizing VAR s: Regularization and Network Tools for High-Dimensional Financial Econometrics Francis X. Diebold University of Pennsylvania March 7, 2015 1 / 32 DGP: N-Variable VAR(p), t = 1,..., T Φ(L)x

More information

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014

1 : Introduction. 1 Course Overview. 2 Notation. 3 Representing Multivariate Distributions : Probabilistic Graphical Models , Spring 2014 10-708: Probabilistic Graphical Models 10-708, Spring 2014 1 : Introduction Lecturer: Eric P. Xing Scribes: Daniel Silva and Calvin McCarter 1 Course Overview In this lecture we introduce the concept of

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Technical Track Session I:

Technical Track Session I: Impact Evaluation Technical Track Session I: Click to edit Master title style Causal Inference Damien de Walque Amman, Jordan March 8-12, 2009 Click to edit Master subtitle style Human Development Human

More information

Markov properties for directed graphs

Markov properties for directed graphs Graphical Models, Lecture 7, Michaelmas Term 2009 November 2, 2009 Definitions Structural relations among Markov properties Factorization G = (V, E) simple undirected graph; σ Say σ satisfies (P) the pairwise

More information

A Decision Theoretic Approach to Causality

A Decision Theoretic Approach to Causality A Decision Theoretic Approach to Causality Vanessa Didelez School of Mathematics University of Bristol (based on joint work with Philip Dawid) Bordeaux, June 2011 Based on: Dawid & Didelez (2010). Identifying

More information

Causal Bayesian networks. Peter Antal

Causal Bayesian networks. Peter Antal Causal Bayesian networks Peter Antal antal@mit.bme.hu A.I. 4/8/2015 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations with

More information

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data?

When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Panel Data? Kosuke Imai Department of Politics Center for Statistics and Machine Learning Princeton University Joint

More information

arxiv: v1 [stat.ml] 15 Nov 2016

arxiv: v1 [stat.ml] 15 Nov 2016 Recoverability of Joint Distribution from Missing Data arxiv:1611.04709v1 [stat.ml] 15 Nov 2016 Jin Tian Department of Computer Science Iowa State University Ames, IA 50014 jtian@iastate.edu Abstract A

More information

Bayesian networks as causal models. Peter Antal

Bayesian networks as causal models. Peter Antal Bayesian networks as causal models Peter Antal antal@mit.bme.hu A.I. 3/20/2018 1 Can we represent exactly (in)dependencies by a BN? From a causal model? Suff.&nec.? Can we interpret edges as causal relations

More information

Bayesian Networks to design optimal experiments. Davide De March

Bayesian Networks to design optimal experiments. Davide De March Bayesian Networks to design optimal experiments Davide De March davidedemarch@gmail.com 1 Outline evolutionary experimental design in high-dimensional space and costly experimentation the microwell mixture

More information

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2

TDT70: Uncertainty in Artificial Intelligence. Chapter 1 and 2 TDT70: Uncertainty in Artificial Intelligence Chapter 1 and 2 Fundamentals of probability theory The sample space is the set of possible outcomes of an experiment. A subset of a sample space is called

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Combining multiple observational data sources to estimate causal eects

Combining multiple observational data sources to estimate causal eects Department of Statistics, North Carolina State University Combining multiple observational data sources to estimate causal eects Shu Yang* syang24@ncsuedu Joint work with Peng Ding UC Berkeley May 23,

More information

Directed and Undirected Graphical Models

Directed and Undirected Graphical Models Directed and Undirected Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Last Lecture Refresher Lecture Plan Directed

More information

ECO Class 6 Nonparametric Econometrics

ECO Class 6 Nonparametric Econometrics ECO 523 - Class 6 Nonparametric Econometrics Carolina Caetano Contents 1 Nonparametric instrumental variable regression 1 2 Nonparametric Estimation of Average Treatment Effects 3 2.1 Asymptotic results................................

More information

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues

Motivation. Bayesian Networks in Epistemology and Philosophy of Science Lecture. Overview. Organizational Issues Bayesian Networks in Epistemology and Philosophy of Science Lecture 1: Bayesian Networks Center for Logic and Philosophy of Science Tilburg University, The Netherlands Formal Epistemology Course Northern

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs

Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Proceedings of Machine Learning Research vol 73:21-32, 2017 AMBN 2017 Causal Effect Identification in Alternative Acyclic Directed Mixed Graphs Jose M. Peña Linköping University Linköping (Sweden) jose.m.pena@liu.se

More information

Bayesian belief networks. Inference.

Bayesian belief networks. Inference. Lecture 13 Bayesian belief networks. Inference. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Midterm exam Monday, March 17, 2003 In class Closed book Material covered by Wednesday, March 12 Last

More information

Bayesian Network Structure Learning using Factorized NML Universal Models

Bayesian Network Structure Learning using Factorized NML Universal Models Bayesian Network Structure Learning using Factorized NML Universal Models Teemu Roos, Tomi Silander, Petri Kontkanen, and Petri Myllymäki Complex Systems Computation Group, Helsinki Institute for Information

More information

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th

CMPT Machine Learning. Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th CMPT 882 - Machine Learning Bayesian Learning Lecture Scribe for Week 4 Jan 30th & Feb 4th Stephen Fagan sfagan@sfu.ca Overview: Introduction - Who was Bayes? - Bayesian Statistics Versus Classical Statistics

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Local Characterizations of Causal Bayesian Networks

Local Characterizations of Causal Bayesian Networks In M. Croitoru, S. Rudolph, N. Wilson, J. Howse, and O. Corby (Eds.), GKR 2011, LNAI 7205, Berlin Heidelberg: Springer-Verlag, pp. 1-17, 2012. TECHNICAL REPORT R-384 May 2011 Local Characterizations of

More information

Uncertainty and Disagreement in Equilibrium Models

Uncertainty and Disagreement in Equilibrium Models Uncertainty and Disagreement in Equilibrium Models Nabil I. Al-Najjar & Northwestern University Eran Shmaya Tel Aviv University RUD, Warwick, June 2014 Forthcoming: Journal of Political Economy Motivation

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information