Notes on Holes. Bryan W. Roberts. November 4, 2009

Size: px
Start display at page:

Download "Notes on Holes. Bryan W. Roberts. November 4, 2009"

Transcription

1 Notes on Holes Bryan W. Roberts November 4, 2009 Abstract These notes are a brief overview of the debate about holes in relativistic spacetimes, in addressing the question: what counts as a physically admissible spacetime in general relativity? 1 Worry About Nothing Determinism in spacetime theories can be easily wrecked by the presence of holes. Example 1. Take the flat spacetime (R 4,η ab ) with a vertical line deleted a hole. Any trajectory that runs into the hole comes to a stop, disappearing from space and time. And, since our best spacetime theories are time-reversible, the reverse trajectory is possible as well: there are trajectories in which an object pops out of the hole and begins its journey through spacetime, as in Figure 1 (Earman 1995, p.66). Thus, holes evidently entail the rampant violation of determinism. Figure 1: A naked singularity disgorges. It would be nice to have a simple characterization of what counts as a holey spacetime. There are a number of motivations for this. One is militant: one might like to excise such dishonerable spacetimes our list of physically possible models. 1

2 If we could describe a simple, self-respecting law of physics that rules out these spacetimes, then perhaps this would provide a better demarcation of what general relativity is perhaps it might even make the world safe for determinism! But there is also a more modest motivation: we would also (quite simply) like a concise characterization of what holey spacetimes are like. Whatever our motivation, characterizing holes is easier said than done. 2 Attempts to Define Holes 2.1 Extendibility: Global and Local Definition 1. Let (M,g ab ) be a spacetime. We say that (M,g ab ) is extendible if there is an isometry µ : M M which takes (M,g ab ) to a proper subset of another spacetime (M,g ab ). Attempt 1. A spacetime has holes if it is extendible. An extendible spacetime is not a good model of the world. Think of it this way: spacetime points should represent all the possible locations that an object can be in space and time. An extendible spacetime fails to describe all possible locations, because we can attach more points to it. So, Attempt 1 seems like a fair first shot at understanding holes. Unfortunately, it is not enough to restore determinism. Example 2. Deutsch-Politzer Spacetime is constructing by identifying two closed intervals of 2D Minkowski spacetime and deleting the endpoints, as shown in Figure 2. This spacetime is inextendible: the deleted endpoints cannot be cannot be Figure 2: Deutsch-Politzer Spacetime inextendible but not locally inextendible. smoothly put back in (Chamblin, Gibbons, and Steif 1994). So, Attempt 1 fails to excise it from the list of physically possible spacetimes. But the existence of such a spacetime gives rise to a certain kind of indeterminism. Suppose we began on a surface to the past of the handle. The data on this surface fails to determine if we are in plain old Minkowski spacetime, or whacky Deutsch-Politzer spacetime. 2

3 But here s a hopeful observation. Although Deutsch-Politzer spacetime is not extendible, it is does have the following strange property. Take a little neighborhood around one of the deleted points. The closure of this region is not compact because it does not contain all its limit points (in particular, the one we deleted). But the region can be extended to regular Minkowski spacetime, in which its closure is compact. This is a strange local property of Deutsch-Politzer spacetime, which Minkowski spacetime seems (on the face of it) to lack. Such considerations led Hawking and Ellis to the following attempt. Definition 2. Let (M,g ab ) be a spacetime. We say that (M,g ab ) is locally extendible if there exists any neighborhood U M with an extension (U,g ab ) of (U,g ab U ), such thatu has compact closure andu does not. Attempt 2. (Hawking and Ellis 1973) A spacetime has holes if it is locally extendible. In a locally extendible spacetime, the closure of some region is not as big as it could be. In other words, we ve failed to describe all the possible limit points of spacetime. Clearly, this attempt is much in the spirit of the previous one. Unfortunately, this definition turns out to be far too strong. As Beem (1980) showed, even Minkowski spacetime is locally extendible. So you can t excise locally extendible spacetimes without excising good ol Minkowski spacetime as well! Example 3. Here is Beem s construction. Consider a curveγ that begins atx 1 = 2, asymptotically approaches the x 1 = 0 axis in Minkowski spacetime, as shown in Figure 3 below (Beem 1980). Let U be a region surrounding that curve that gets thinner as x 2, so that U always stays above the x 2 axis. The mapping Figure 3: Minkowski spacetime is locally extendible. 3

4 f(x 1,x 2 ) = (x 1,x 2 mod1) from Minkowski spacetime to a cylinder is a locally isometric covering map. This mapping embeds the region U on the cylinder, in such a way that its image f(u) spirals down ever closer to the disc x 1 = 0. The closure of the embeddedf(u) is compact, because it s a subset of0 x 1 2, and closed subsets of compact sets are compact. But closure of the original U is not compact (since it s open toward x 2 = + ). Thus, Minkowski spacetime is locally extendible. 2.2 Hole-Freedom Three years before Beem discovered his counterexample and put local extendibility to shame, Geroch suggested another approach to characterizing holes. Definition 3. Let (M,g ab ) be a spacetime. We say that S M is an achronal set if no two points of S are timelike separated: I + (S) S =. Definition 4. Let S be an achronal surface of a spacetime (M,g ab ). We say that the future domain of dependence of S, written D + (S), is the set of points p M such that every past-inextendible causal curve through p intersects S. Definition 5. Let S be open, achronal surface of a spacetime (M,g ab ). We say that (M,g ab ) is hole free if every isometry φ : S M into another spacetime (M,g ab ) is such thatd+ (φ(s)) = φ(d + (S)). Attempt 3. (Geroch 1977) A spacetime has holes if it is not hole-free. The domain of dependence of a surface describes the locations of certain possible interactions: those which are causal consequences of the initial data on the surface. So, one way to understand a hole-free spacetime is as one in which each space of possible causal interactions is as large as it can be. In this sense, Attempt 3 is in the same spirit as our previous attempts to define holes. Hole-free spacetimes have also been called determinism maximal (Earman 1995, p.98). In particular: if a spacetime is hole free, then every initial data surface fixes a domain of dependence. Example 4. Consider again Deutsch-Politzer spacetime, and let S be an achronal segment that enters the handle, as shown in Figure 4. The domain of dependence of S is indicated by the gray regions. However, this region can be enlarged by isometrically embedding S into Minkowski spacetime via the identity map. Thus, Deutsch-Politzer spacetime is not hole free. So if local extendibility isn t enough to excommunicate Deutsch-Politzer spacetime, one might still hope that the failure of hole-freeness is. Unfortunately, hole-freedom has also has recently been proven too strong: even Minkowski spacetime is not hole-free. Krasnikov showed this in a recent correspondence with Manchak, as an alternative to his example in (Krasnikov 2009) 1. 1 This published result made use of a non-standard definition of D + (S), which (arguably) made the result uninteresting. 4

5 Figure 4: Deutsch-Politzer spacetime is not hole free: the domain of dependence of S can be enlarged by embedding it in Minkowski spacetime. Example 5. Consider any open achronal surface of Minkowski spacetime, and let D + (S) be its domain of dependence. Let φ be an isometric embedding of this surface onto a cylinder. Let us choose φ such that the right-boundary of the embedded surface intersects the left-boundary of the embedded domain of dependence, as shown in Figure 5. Since S is open, a lightlike curve extended backward from a Figure 5: The boundary of the gray region is not in the domain of dependence of the surface S. But it is in the domain of dependence of the embedded surface. boundary point will never intersects. So the points on the boundary of the gray region are not ind + (S). That s not the case for the surface embedded on the cylinder. The black dotted line illustrates how such a lightlike curve will indeed intersect the embedded surface φ(s). Since every past-inextendible causal curve beginning on the right-boundary of the gray area will so intersect φ(s), it follows that this boundary is in the domain of dependence of the embedded surface. So, hole-freedom fails, because we have grown the domain of dependence ofs through an isometric embedding. Nevertheless, it seems one can resist Krasnikov s argument by noticing a strange feature of the embedded surface φ(s): it s not achronal. (Just observe 5

6 that a timelike curve beginning near the lower-left edge of φ(s) can intersect φ(s) again in its future.) So, we can make an obvious and well-motivated repair to the definition of hole-freedom, by requiring that both the initial data surface and the embedded surface be achronal. Unfortunately, there is a counterexample to this definition, too. Example 6. Consider Krasnikov s same embedding but with an open set deleted from the cylindrical spacetime, which goes right up to the boundary of φ(s) but does not include it (see Figure 6 below). Now the embedded surface is achronal. Thus, Minkowski spacetime is not hole-free under the revised definition, either. Figure 6: A slightly modified version of the previous example thwarts the revised definition of hole-freedom as well. The future of hole-freedom is starting to appear pretty tenuous. However, if one is willing to engage in shameless ad-hocery, there are several possible ways to proceed that would avoid the counterexamples. Demand that not just D + (S), but an open neighborhood of the closure of D + (S) be considered in our isometric embedding. Then the second counterexample would be avoided, since the deleted points near the closure of φ(s) prevent us from constructing an isometry. Demand that the closure of S and φ(s) be not just achronal but acausal 2 as well. Since the closure of the embedded surface fails to be acausal, both counterexamples would be avoided. Restrict our attention to the interior IntD + (S), instead of the domain of dependence. Since the interior of the gray region is the same in both Minkowski spacetime and the cylindrical embedding, the counterexample would be avoided. The problem is of course to provide motivation for such restrictions. Whereas we were able to provide some (perhaps) well-motivated reasons for hole-freedom, that justification does not obviously apply here. More interestingly, some of these worries about hole-freedom were anticipated by Manchak and Geroch (Manchak 2009). Manchak constructed a spacetime 2 A set S is acausal if no two points are connected by a causal curve: J + (S) S =. 6

7 that is globally hyperbolic and conformally Minkowski, but fails to be hole-free. This led him and Geroch to suggest the following definition of hole-freedom. Definition 6. (Manchak) A spacetime(m,g ab ) is hole-free* if, whenever there exists an extension of a globally hyperbolic subsetk with Cauchy surfaces, such that in the extension (i)s remains achronal and (ii)k is a proper subset ofintd(s), it follows that M is such an extension. It s similarly unclear what independent motivation can be given for this modification, except to avoid counterexamples like Manchak s construction. However, we can at least rest assured that hole-free*dom will not suffer the same ignominious fate of local inextendibility and hole-freedom: Manchak was able to prove that every inextendible, globally hyperbolic spacetime is hole-free* (Manchak 2009, Proposition 3). As a consequence, Minkowski spacetime is guaranteed to be hole-free*. On the other hand, it is not hard to see that both Deutsch-Politzer spacetime (Example 2), and Minkowski spacetime with a hole punched out (Example 1) fail to be hole-free*. So the prospectus for hole-free*dom appear to be promising. 3 Conclusion There is a intuitive character to all these holey spacetimes, which is that they aren t as large as they could be in one sense or another. In the first attempt (extendibility), our description of possible points wasn t as large as it could be. In the second (local extendibility), our description of possible limit points wasn t as large as it could be. In the third (hole-freedom), our description of possible interactions wasn t as large as it could be. Unfortunately, none of these attempts suffice: the first was far too weak, and the second and third too strong. The bullet-pointed ad-hoc responses to Krasnikov s counter-example above avoid these problems, but lack motivation. In particular, its hard to see how they capture the intuitive character of holey spacetimes, in that they aren t as large as they could be. Manchak s hole-free*dom may be more promising, although its intuitive character isn t clear either. And until these matters are settled, our ability to fruitfully ostracize spacetimes on the basis of hole-freedom is severely (sadly?) limited. References Beem, John K Minkowski space-time is locally extendible. Communications in Mathematical Physics 72 (3): Chamblin, Andrew, G. W. Gibbons, and Alan R. Steif Kinks and time machines. Physical Review D 50 (4): R2353 R2355. Earman, John Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetime. New York: Oxford University Press. 7

8 Geroch, Robert Predictions in General Relativity. In Foundations of Spacetime Theories, edited by Clark Glymour John Earman and John Stachel, Volume VIII of Minnesota Studies in the Philosophy of Science, University of Minnesota Press. Hawking, S. W., and G. F. R. Ellis The large scale structure of space-time. New York: Cambridge University Press. Krasnikov, S Even the Minkowski space is holed. Physical Review D (Particles, Fields, Gravitation, and Cosmology) 79 (12): Manchak, John Byron Is spacetime hole-free? General Relativity and Gravitation 41 (7):

Is Spacetime Hole-Free?

Is Spacetime Hole-Free? Is Spacetime Hole-Free? John Byron Manchak Abstract Here, we examine hole-freeness a condition sometimes imposed to rule out seemingly artificial spacetimes. We show that under existing definitions (and

More information

Is spacetime hole-free?

Is spacetime hole-free? Gen Relativ Gravit (2009) 41:1639 1643 DOI 10.1007/s10714-008-0734-1 RESEARCH ARTICLE Is spacetime hole-free? John Byron Manchak Received: 24 September 2008 / Accepted: 27 November 2008 / Published online:

More information

Malament-Hogarth Machines

Malament-Hogarth Machines Malament-Hogarth Machines John Byron Manchak May 22, 2017 Abstract We show a clear sense in which general relativity allows for a type of machine which can bring about a spacetime structure suitable for

More information

Malament-Hogarth Machines

Malament-Hogarth Machines Malament-Hogarth Machines John Byron Manchak [Forthcoming in The British Journal for the Philosophy of Science.] Abstract We show a clear sense in which general relativity allows for a type of machine

More information

16. Time Travel 1 1. Closed Timelike Curves and Time Travel

16. Time Travel 1 1. Closed Timelike Curves and Time Travel 16. Time Travel 1 1. Closed Timelike Curves and Time Travel Recall: The Einstein cylinder universe is a solution to the Einstein equations (with cosmological constant) that has closed spacelike curves.

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

On the Possibility of Supertasks in General Relativity

On the Possibility of Supertasks in General Relativity Found Phys (2010) 40: 276 288 DOI 10.1007/s10701-009-9390-x On the Possibility of Supertasks in General Relativity John Byron Manchak Received: 11 September 2009 / Accepted: 1 December 2009 / Published

More information

On Gödel and the Ideality of Time

On Gödel and the Ideality of Time On Gödel and the Ideality of Time John Byron Manchak [Forthcoming in Philosophy of Science.] Abstract Gödel s (1949a) remarks concerning the ideality of time are examined. In the literature, some of these

More information

A Remark About the Geodesic Principle in General Relativity

A Remark About the Geodesic Principle in General Relativity A Remark About the Geodesic Principle in General Relativity Version 3.0 David B. Malament Department of Logic and Philosophy of Science 3151 Social Science Plaza University of California, Irvine Irvine,

More information

Cosmic Censorship. Emily Redelmeier (student number ) May 1, 2003

Cosmic Censorship. Emily Redelmeier (student number ) May 1, 2003 Cosmic Censorship Emily Redelmeier (student number 990740016) May 1, 2003 1 Introduction One of the fundamental differences between the relativistic universe and the Newtonian one is the behaviour of information.

More information

Closed Timelike Curves

Closed Timelike Curves Closed Timelike Curves Bryan W. Roberts December 5, 2008 1 Introduction In this paper, we explore the possibility that closed timelike curves might be allowed by the laws of physics. A closed timelike

More information

Speed limits in general relativity

Speed limits in general relativity Class. Quantum Grav. 16 (1999) 543 549. Printed in the UK PII: S0264-9381(99)97448-8 Speed limits in general relativity Robert J Low Mathematics Division, School of Mathematical and Information Sciences,

More information

arxiv:gr-qc/ v5 14 Sep 2006

arxiv:gr-qc/ v5 14 Sep 2006 Topology and Closed Timelike Curves II: Causal structure Hunter Monroe International Monetary Fund, Washington, DC 20431 (Dated: September 25, 2018) Abstract Because no closed timelike curve (CTC) on a

More information

The cosmic censorship conjectures in classical general relativity

The cosmic censorship conjectures in classical general relativity The cosmic censorship conjectures in classical general relativity Mihalis Dafermos University of Cambridge and Princeton University Gravity and black holes Stephen Hawking 75th Birthday conference DAMTP,

More information

one tries, the metric must always contain singularities. The point of this note is to give a simple proof of this fact in the case that n is even. Thi

one tries, the metric must always contain singularities. The point of this note is to give a simple proof of this fact in the case that n is even. Thi Kinks and Time Machines Andrew Chamblin, G.W. Gibbons, Alan R. Steif Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, England. We show that it is not possible

More information

Singularities and Causal Structure in General Relativity

Singularities and Causal Structure in General Relativity Singularities and Causal Structure in General Relativity Alexander Chen February 16, 2011 1 What are Singularities? Among the many profound predictions of Einstein s general relativity, the prediction

More information

Topological censorship is not proven

Topological censorship is not proven Topological censorship is not proven arxiv:1007.4167v4 [gr-qc] 20 Aug 2011 S. Krasnikov The Central Astronomical Observatory at Pulkovo, St. Petersburg, Russia Abstract I show that there is a significant

More information

An Overview of Mathematical General Relativity

An Overview of Mathematical General Relativity An Overview of Mathematical General Relativity José Natário (Instituto Superior Técnico) Geometria em Lisboa, 8 March 2005 Outline Lorentzian manifolds Einstein s equation The Schwarzschild solution Initial

More information

arxiv:gr-qc/ v1 8 Nov 2000

arxiv:gr-qc/ v1 8 Nov 2000 New properties of Cauchy and event horizons Robert J. Budzyński Department of Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland arxiv:gr-qc/0011033v1 8 Nov 2000 Witold Kondracki Andrzej Królak

More information

arxiv:gr-qc/ v1 24 Feb 2004

arxiv:gr-qc/ v1 24 Feb 2004 A poor man s positive energy theorem arxiv:gr-qc/0402106v1 24 Feb 2004 Piotr T. Chruściel Département de Mathématiques Faculté des Sciences Parc de Grandmont F37200 Tours, France Gregory J. Galloway Department

More information

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY

THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY THE INITIAL VALUE FORMULATION OF GENERAL RELATIVITY SAM KAUFMAN Abstract. The (Cauchy) initial value formulation of General Relativity is developed, and the maximal vacuum Cauchy development theorem is

More information

arxiv:gr-qc/ v1 17 Mar 2005

arxiv:gr-qc/ v1 17 Mar 2005 A new time-machine model with compact vacuum core Amos Ori Department of Physics, Technion Israel Institute of Technology, Haifa, 32000, Israel (May 17, 2006) arxiv:gr-qc/0503077 v1 17 Mar 2005 Abstract

More information

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition

Lecture notes 1. Standard physics vs. new physics. 1.1 The final state boundary condition Lecture notes 1 Standard physics vs. new physics The black hole information paradox has challenged our fundamental beliefs about spacetime and quantum theory. Which belief will have to change to resolve

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations

12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations 12. Relativistic Cosmology I. Simple Solutions to the Einstein Equations 1. Minkowski space Initial assumptions:! no matter (T µν = 0)! no gravitation (R σ µνρ = 0; i.e., zero curvature) Not realistic!

More information

Causal Structure of General Relativistic Spacetimes

Causal Structure of General Relativistic Spacetimes Causal Structure of General Relativistic Spacetimes A general relativistic spacetime is a pair M; g ab where M is a di erentiable manifold and g ab is a Lorentz signature metric (+ + +::: ) de ned on all

More information

Cosmic Censorship Conjecture and Topological Censorship

Cosmic Censorship Conjecture and Topological Censorship Cosmic Censorship Conjecture and Topological Censorship 21 settembre 2009 Cosmic Censorship Conjecture 40 years ago in the Rivista Nuovo Cimento Sir Roger Penrose posed one of most important unsolved problems

More information

Flat Geometry. Spherical Geometry

Flat Geometry. Spherical Geometry The Geometry of the Universe What does the constant k in the Friedmann equation really mean? In this lecture we will follow Chapter 4 of Liddle to show that it has close connections with the geometry of

More information

Asymptotic Behavior of Marginally Trapped Tubes

Asymptotic Behavior of Marginally Trapped Tubes Asymptotic Behavior of Marginally Trapped Tubes Catherine Williams January 29, 2009 Preliminaries general relativity General relativity says that spacetime is described by a Lorentzian 4-manifold (M, g)

More information

General Relativity in AdS

General Relativity in AdS General Relativity in AdS Akihiro Ishibashi 3 July 2013 KIAS-YITP joint workshop 1-5 July 2013, Kyoto Based on work 2012 w/ Kengo Maeda w/ Norihiro Iizuka, Kengo Maeda - work in progress Plan 1. Classical

More information

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions Economics 24 Fall 211 Problem Set 2 Suggested Solutions 1. Determine whether the following sets are open, closed, both or neither under the topology induced by the usual metric. (Hint: think about limit

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

PHILOSOPHY OF PHYSICS (Spring 2002) 1 Substantivalism vs. relationism. Lecture 17: Substantivalism vs. relationism

PHILOSOPHY OF PHYSICS (Spring 2002) 1 Substantivalism vs. relationism. Lecture 17: Substantivalism vs. relationism 17.1 432018 PHILOSOPHY OF PHYSICS (Spring 2002) Lecture 17: Substantivalism vs. relationism Preliminary reading: Sklar, pp. 69-82. We will now try to assess the impact of Relativity Theory on the debate

More information

Stanford Encyclopedia of Philosophy

Stanford Encyclopedia of Philosophy pdf version of the entry Time Machines http://plato.stanford.edu/archives/win2010/entries/time-machine/ from the Winter 2010 Edition of the Stanford Encyclopedia of Philosophy Edward N. Zalta Uri Nodelman

More information

Languages, regular languages, finite automata

Languages, regular languages, finite automata Notes on Computer Theory Last updated: January, 2018 Languages, regular languages, finite automata Content largely taken from Richards [1] and Sipser [2] 1 Languages An alphabet is a finite set of characters,

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

Exotica or the failure of the strong cosmic censorship in four dimensions

Exotica or the failure of the strong cosmic censorship in four dimensions Exotica or the failure of the strong cosmic censorship in four dimensions Budapest University of Technology and Economics Department of Geometry HUNGARY Stará Lesná, Slovakia, 20 August 2015 The meaning

More information

Def. 1. A time travel spacetime is a solution to Einstein's equations that admits closed timelike curves (CTCs).

Def. 1. A time travel spacetime is a solution to Einstein's equations that admits closed timelike curves (CTCs). 17. Time Travel 2 Def. 1. A time travel spacetime is a solution to Einstein's equations that admits closed timelike curves (CTCs). Def. 2. A time machine spacetime is a time travel spacetime in which the

More information

SYMPLECTIC CAPACITY AND CONVEXITY

SYMPLECTIC CAPACITY AND CONVEXITY SYMPLECTIC CAPACITY AND CONVEXITY MICHAEL BAILEY 1. Symplectic Capacities Gromov s nonsqueezing theorem shows that the radii of balls and cylinders are stored somehow as a symplectic invariant. In particular,

More information

3. LIMITS AND CONTINUITY

3. LIMITS AND CONTINUITY 3. LIMITS AND CONTINUITY Algebra reveals much about many functions. However, there are places where the algebra breaks down thanks to division by zero. We have sometimes stated that there is division by

More information

A Brief Introduction to Mathematical Relativity

A Brief Introduction to Mathematical Relativity A Brief Introduction to Mathematical Relativity Arick Shao Imperial College London Arick Shao (Imperial College London) Mathematical Relativity 1 / 31 Special Relativity Postulates and Definitions Einstein

More information

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY

OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY OLIVIA MILOJ March 27, 2006 ON THE PENROSE INEQUALITY Abstract Penrose presented back in 1973 an argument that any part of the spacetime which contains black holes with event horizons of area A has total

More information

Uniqueness of de Sitter Space

Uniqueness of de Sitter Space Uniqueness of de Sitter Space arxiv:gr-qc/0703131v1 27 Mar 2007 Gregory J. Galloway Department of Mathematics University of Miami, Coral Gables, FL 33124, U.S.A. Didier A. Solis Facultad de Matemáticas

More information

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY

CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY CSE355 SUMMER 2018 LECTURES TURING MACHINES AND (UN)DECIDABILITY RYAN DOUGHERTY If we want to talk about a program running on a real computer, consider the following: when a program reads an instruction,

More information

Notes on Lorentzian causality

Notes on Lorentzian causality Notes on Lorentzian causality ESI-EMS-IAMP Summer School on Mathematical Relativity Gregory J. Galloway Department of Mathematics University of Miami August 4, 2014 Contents 1 Lorentzian manifolds 2 2

More information

The big bang's 'beginning of time' and the singular FLRW cosmological models. Mario Bacelar Valente

The big bang's 'beginning of time' and the singular FLRW cosmological models. Mario Bacelar Valente The big bang's 'beginning of time' and the singular FLRW cosmological models Mario Bacelar Valente Abstract In this work it will be addressed the issue of singularities in space-time as described by Einstein's

More information

Measurement Independence, Parameter Independence and Non-locality

Measurement Independence, Parameter Independence and Non-locality Measurement Independence, Parameter Independence and Non-locality Iñaki San Pedro Department of Logic and Philosophy of Science University of the Basque Country, UPV/EHU inaki.sanpedro@ehu.es Abstract

More information

Counterfactuals and comparative similarity

Counterfactuals and comparative similarity Counterfactuals and comparative similarity Jeremy Goodman Draft of February 23, 2015 Abstract An analysis of counterfactuals in terms of the comparative similarity of possible worlds is widely attributed

More information

arxiv: v2 [gr-qc] 25 Apr 2016

arxiv: v2 [gr-qc] 25 Apr 2016 The C 0 -inextendibility of the Schwarzschild spacetime and the spacelike diameter in Lorentzian geometry Jan Sbierski April 26, 2016 arxiv:1507.00601v2 [gr-qc] 25 Apr 2016 Abstract The maximal analytic

More information

14. Black Holes 2 1. Conformal Diagrams of Black Holes

14. Black Holes 2 1. Conformal Diagrams of Black Holes 14. Black Holes 2 1. Conformal Diagrams of Black Holes from t = of outside observer's clock to t = of outside observer's clock time always up light signals always at 45 time time What is the causal structure

More information

Convergence in shape of Steiner symmetrized line segments. Arthur Korneychuk

Convergence in shape of Steiner symmetrized line segments. Arthur Korneychuk Convergence in shape of Steiner symmetrized line segments by Arthur Korneychuk A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Mathematics

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM

ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM ALEXANDER KUPERS Abstract. These are notes on space-filling curves, looking at a few examples and proving the Hahn-Mazurkiewicz theorem. This theorem

More information

Relativistic simultaneity and causality

Relativistic simultaneity and causality Relativistic simultaneity and causality V. J. Bolós 1,, V. Liern 2, J. Olivert 3 1 Dpto. Matemática Aplicada, Facultad de Matemáticas, Universidad de Valencia. C/ Dr. Moliner 50. 46100, Burjassot Valencia),

More information

Linear Programming Redux

Linear Programming Redux Linear Programming Redux Jim Bremer May 12, 2008 The purpose of these notes is to review the basics of linear programming and the simplex method in a clear, concise, and comprehensive way. The book contains

More information

The singular nature of space-time

The singular nature of space-time The singular nature of space-time March 13, 2006 Abstract We consider to what extent the fundamental question of space-time singularities is relevant for the philosophical debate about the nature of space-time.

More information

Spacetime Geometry. Beijing International Mathematics Research Center 2007 Summer School

Spacetime Geometry. Beijing International Mathematics Research Center 2007 Summer School Spacetime Geometry Beijing International Mathematics Research Center 2007 Summer School Gregory J. Galloway Department of Mathematics University of Miami October 29, 2007 1 Contents 1 Pseudo-Riemannian

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

Causal Sets: Overview and Status

Causal Sets: Overview and Status University of Mississippi QGA3 Conference, 25 Aug 2006 The Central Conjecture Causal Sets A causal set is a partially ordered set, meaning that x, y, z x y, y z x z x y, y x x = y which is locally finite,

More information

arxiv:gr-qc/ v1 6 Jul 2004

arxiv:gr-qc/ v1 6 Jul 2004 Spacetime and Euclidean Geometry 1 Dieter Brill and Ted Jacobson, University of Maryland, College Park, MD 20742-4111 Institut d Astrophysique de Paris, 98bis bvd. Arago, 75014 Paris, France arxiv:gr-qc/0407022v1

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information

A Note on the Existence of Ratifiable Acts

A Note on the Existence of Ratifiable Acts A Note on the Existence of Ratifiable Acts Joseph Y. Halpern Cornell University Computer Science Department Ithaca, NY 14853 halpern@cs.cornell.edu http://www.cs.cornell.edu/home/halpern August 15, 2018

More information

Excluding Black Hole Firewalls with Extreme Cosmic Censorship

Excluding Black Hole Firewalls with Extreme Cosmic Censorship Excluding Black Hole Firewalls with Extreme Cosmic Censorship arxiv:1306.0562 Don N. Page University of Alberta February 14, 2014 Introduction A goal of theoretical cosmology is to find a quantum state

More information

Sequence convergence, the weak T-axioms, and first countability

Sequence convergence, the weak T-axioms, and first countability Sequence convergence, the weak T-axioms, and first countability 1 Motivation Up to now we have been mentioning the notion of sequence convergence without actually defining it. So in this section we will

More information

The harmonic map flow

The harmonic map flow Chapter 2 The harmonic map flow 2.1 Definition of the flow The harmonic map flow was introduced by Eells-Sampson in 1964; their work could be considered the start of the field of geometric flows. The flow

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

Topological properties

Topological properties CHAPTER 4 Topological properties 1. Connectedness Definitions and examples Basic properties Connected components Connected versus path connected, again 2. Compactness Definition and first examples Topological

More information

Lecture 13: Dynamic Programming Part 2 10:00 AM, Feb 23, 2018

Lecture 13: Dynamic Programming Part 2 10:00 AM, Feb 23, 2018 CS18 Integrated Introduction to Computer Science Fisler, Nelson Lecture 13: Dynamic Programming Part 2 10:00 AM, Feb 23, 2018 Contents 1 Holidays 1 1.1 Halloween..........................................

More information

Lecture 5. The Lorentz Transformation

Lecture 5. The Lorentz Transformation Lecture 5 The Lorentz Transformation We have learned so far about how rates of time vary in different IRFs in motion with respect to each other and also how lengths appear shorter when in motion. What

More information

Robert Budic, James Isenberg**, Lee Lindblom, and Philip B. Yasskin

Robert Budic, James Isenberg**, Lee Lindblom, and Philip B. Yasskin Commun math Phys 61, 87 95 (1978) Communications in Mathematical Physics by Springer-Verlag 1978 On the Determination of Cauchy Surfaces from Intrinsic Properties* Robert Budic, James Isenberg**, Lee Lindblom,

More information

1 The Local-to-Global Lemma

1 The Local-to-Global Lemma Point-Set Topology Connectedness: Lecture 2 1 The Local-to-Global Lemma In the world of advanced mathematics, we are often interested in comparing the local properties of a space to its global properties.

More information

COSMOLOGICAL TIME VERSUS CMC TIME IN SPACETIMES OF CONSTANT CURVATURE

COSMOLOGICAL TIME VERSUS CMC TIME IN SPACETIMES OF CONSTANT CURVATURE COSMOLOGICAL TIME VERSUS CMC TIME IN SPACETIMES OF CONSTANT CURVATURE LARS ANDERSSON, THIERRY BARBOT, FRANÇOIS BÉGUIN, AND ABDELGHANI ZEGHIB Abstract. In this paper, we investigate the existence of foliations

More information

Preliminary draft only: please check for final version

Preliminary draft only: please check for final version ARE211, Fall2012 ANALYSIS6: TUE, SEP 11, 2012 PRINTED: AUGUST 22, 2012 (LEC# 6) Contents 1. Analysis (cont) 1 1.9. Continuous Functions 1 1.9.1. Weierstrass (extreme value) theorem 3 1.10. An inverse image

More information

HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes

HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes HSSP Philosophy of Quantum Mechanics 08/07/11 Lecture Notes Outline: 1. Homework 4 (discuss reading assignment) 2. The Measurement Problem 3. GRW theory Handouts: None Homework: Yes Vocabulary/Equations:

More information

For Ramin. From Jonathan December 9, 2014

For Ramin. From Jonathan December 9, 2014 For Ramin From Jonathan December 9, 2014 1 Foundations. 1.0 Overview. Traditionally, knot diagrams are employed as a device which converts a topological object into a combinatorial one. One begins with

More information

Causal Precedence Formalism by E. Woolgar Dept. of Mathematics, University of Saskatchewan, Saskatoon SK Canada S7N 0W0

Causal Precedence Formalism by E. Woolgar Dept. of Mathematics, University of Saskatchewan, Saskatoon SK Canada S7N 0W0 Causal Precedence Formalism by E. Woolgar Dept. of Mathematics, University of Saskatchewan, Saskatoon SK Canada S7N 0W0 Abstract In this talk, I describe recent work in collaboration with R.D. Sorkin.

More information

6 Cosets & Factor Groups

6 Cosets & Factor Groups 6 Cosets & Factor Groups The course becomes markedly more abstract at this point. Our primary goal is to break apart a group into subsets such that the set of subsets inherits a natural group structure.

More information

Calculating Accurate Waveforms for LIGO and LISA Data Analysis

Calculating Accurate Waveforms for LIGO and LISA Data Analysis Calculating Accurate Waveforms for LIGO and LISA Data Analysis Lee Lindblom Theoretical Astrophysics, Caltech HEPL-KIPAC Seminar, Stanford 17 November 2009 Results from the Caltech/Cornell Numerical Relativity

More information

Limit curve theorems in Lorentzian geometry

Limit curve theorems in Lorentzian geometry Limit curve theorems in Lorentzian geometry E. Minguzzi arxiv:0712.3942v2 [gr-qc] 4 Sep 2008 Abstract The subject of limit curve theorems in Lorentzian geometry is reviewed. A general limit curve theorem

More information

On the interplay between Lorentzian Causality and Finsler metrics of Randers type

On the interplay between Lorentzian Causality and Finsler metrics of Randers type On the interplay between Lorentzian Causality and Finsler metrics of Randers type Erasmo Caponio, Miguel Angel Javaloyes and Miguel Sánchez Universidad de Granada Spanish Relativity Meeting ERE2009 Bilbao,

More information

6.2 Quantum Gravity and the Quantization of Time 193

6.2 Quantum Gravity and the Quantization of Time 193 6.2 Quantum Gravity and the Quantization of Time 193 (points), assumed to possess statistical weights according to Ψ 2. In contrast to Bohm s time-dependent theory, this is no longer an initial condition

More information

AN EXPLICIT FAMILY OF EXOTIC CASSON HANDLES

AN EXPLICIT FAMILY OF EXOTIC CASSON HANDLES proceedings of the american mathematical society Volume 123, Number 4, April 1995 AN EXPLICIT FAMILY OF EXOTIC CASSON HANDLES 2ARKO BIZACA (Communicated by Ronald Stern) Abstract. This paper contains a

More information

Differential Forms. Introduction

Differential Forms. Introduction ifferential Forms A 305 Kurt Bryan Aesthetic pleasure needs no justification, because a life without such pleasure is one not worth living. ana Gioia, Can Poetry atter? Introduction We ve hit the big three

More information

CHAPTER 1: Functions

CHAPTER 1: Functions CHAPTER 1: Functions 1.1: Functions 1.2: Graphs of Functions 1.3: Basic Graphs and Symmetry 1.4: Transformations 1.5: Piecewise-Defined Functions; Limits and Continuity in Calculus 1.6: Combining Functions

More information

Nets and filters (are better than sequences)

Nets and filters (are better than sequences) Nets and filters (are better than sequences) Contents 1 Motivation 2 2 More implications we wish would reverse 2 3 Nets 4 4 Subnets 6 5 Filters 9 6 The connection between nets and filters 12 7 The payoff

More information

PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL

PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL THOMAS HOFWEBER PROOF-THEORETIC REDUCTION AS A PHILOSOPHER S TOOL 1. PROOF-THEORETIC REDUCTION AND HILBERT S PROGRAM Hilbert s program in the philosophy of mathematics comes in two parts. One part is a

More information

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Lecture - 4 Postulates Part 1 (Refer Slide Time: 00:59) So, I

More information

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway

UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY. Piotr T. Chruściel & Gregory J. Galloway UNIQUENESS OF STATIC BLACK-HOLES WITHOUT ANALYTICITY by Piotr T. Chruściel & Gregory J. Galloway Abstract. We show that the hypothesis of analyticity in the uniqueness theory of vacuum, or electrovacuum,

More information

arxiv:gr-qc/ v1 15 Dec 2005

arxiv:gr-qc/ v1 15 Dec 2005 arxiv:gr-qc/0512095v1 15 Dec 2005 Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions Antonio N. Bernal and Miguel Sánchez August 28, 2018 Dpto. de Geometría y Topología,

More information

arxiv: v1 [gr-qc] 3 Nov 2013

arxiv: v1 [gr-qc] 3 Nov 2013 Spacetime Singularities Pankaj S. Joshi 1, 1 Tata Institute of Fundamental Research, Homi Bhabha road, Colaba, Mumbai 400005, India arxiv:1311.0449v1 [gr-qc] 3 Nov 2013 We present here an overview of our

More information

Lecture 3: Sizes of Infinity

Lecture 3: Sizes of Infinity Math/CS 20: Intro. to Math Professor: Padraic Bartlett Lecture 3: Sizes of Infinity Week 2 UCSB 204 Sizes of Infinity On one hand, we know that the real numbers contain more elements than the rational

More information

1. Characterization and uniqueness of products

1. Characterization and uniqueness of products (March 16, 2014) Example of characterization by mapping properties: the product topology Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes

More information

arxiv:gr-qc/ v1 23 Jun 1998

arxiv:gr-qc/ v1 23 Jun 1998 Superluminal travel requires negative energies Ken D. Olum Institute of Cosmology Department of Physics and Astronomy Tufts University Medford, MA 02155 (June 1998) arxiv:gr-qc/9806091v1 23 Jun 1998 Abstract

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

CHAPTER 5. The Topology of R. 1. Open and Closed Sets

CHAPTER 5. The Topology of R. 1. Open and Closed Sets CHAPTER 5 The Topology of R 1. Open and Closed Sets DEFINITION 5.1. A set G Ω R is open if for every x 2 G there is an " > 0 such that (x ", x + ") Ω G. A set F Ω R is closed if F c is open. The idea is

More information

Uniqueness of de Sitter space

Uniqueness of de Sitter space IOP PUBLISHING Class. Quantum Grav. 24 (2007) 3125 3138 CLASSICAL AND QUANTUM GRAVITY doi:10.1088/0264-9381/24/11/021 Uniqueness of de Sitter space Gregory J Galloway 1 and Didier A Solis 2 1 Department

More information

The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry

The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry The Cosmic Censorship Conjectures in General Relativity or Cosmic Censorship for the Massless Scalar Field with Spherical Symmetry 1 This page intentionally left blank. 2 Abstract This essay describes

More information

Contents. Index... 15

Contents. Index... 15 Contents Filter Bases and Nets................................................................................ 5 Filter Bases and Ultrafilters: A Brief Overview.........................................................

More information

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ.

Convexity in R n. The following lemma will be needed in a while. Lemma 1 Let x E, u R n. If τ I(x, u), τ 0, define. f(x + τu) f(x). τ. Convexity in R n Let E be a convex subset of R n. A function f : E (, ] is convex iff f(tx + (1 t)y) (1 t)f(x) + tf(y) x, y E, t [0, 1]. A similar definition holds in any vector space. A topology is needed

More information