SOME ISSUES ON INERTIA PROPULSION MECHANISMS USING TWO CONTRA-ROTATING MASSES

Size: px
Start display at page:

Download "SOME ISSUES ON INERTIA PROPULSION MECHANISMS USING TWO CONTRA-ROTATING MASSES"

Transcription

1 Преподавание ТММ УДК 61.1 С. G. PROVATIDIS SOE ISSUES ON INERTIA PROPULSION ECHANISS USING TWO CONTRA-ROTATING ASSES 1. INTRODUCTION Among several physial priniples ha are poenially appliable o produe spaial moion, inerial fores possess an imporan posiion. This paper performs he mahemaial analysis of he earlies paens ha use onra-roaing masses moving along wo irumferenes on a verial plane. In addiion, he analysis is followed by many ommens and lemmas ha may be useful in he fuure researh on his ehnial field. A repor published by NASA in Deember 6, whih refers o researh wihin he years 1996-, has onluded ha alhough i is possible o ahieve he emporal lif of an obje hrough several mehanial means, he oal impulse beomes zero and, finally, he graviy fores all he obje bak o he earh [1]. In he wesern lieraure, he firs relevan paen is probably due o Norman L. Dean [], whih has been alled Dean s drive (hp://en.wikipedia.org/wiki/dean_drive). However, a areful survey reveals ha Russian sieniss had earlier sared and sysemaially ondued relevan researh [3-7], whih remains sill alive by ohers [8]. The onep is o uilize onra-roaing eenri masses for ahieving propulsion. However, when he masses roae along he irumferene of a irle on a verial plane, when hey move along he upper semi-irumferene a a onsan angular angle, he impulse is posiive, while when hey move along he lower par i has he same absolue value bu he opposie sign. Therefore, he ne impulse equals o zero hus no lifing fore is aniipaed. This paper onribues on hree opis as follows. Firs, i performs a sudy where i is assumed ha he eleri moors produe a variable angular veloiy desribed by wo losed-form mahemaial expressions. Seond, he mos general ase of a variable radius is also invesigaed. Third, he possibiliy of ahieving a monoonially upward ne impulse is disussed. Despie hese novel feaures and he useful onlusions derived, whih are appliable o several praial fields suh as shor-ime anigraviy oys, he problem of inerial propulsion is sill open.. THEORETICAL ASPECTS.1. Problem definiion 1 Le us onsider an obje (body B) of mass on whih wo onra-roaing rigid rods (No.1 and No.), of he same radius r, are ariulaed (a he poins C 1 and C, respeively) as shown in Figure 1; he rods bring a heir ends onenraed masses, of equal size m. The wo aforemenioned eenri masses are driven by eleri moors and roae a onsan or variable angular veloiies of equal and opposie magniude, i.e. ω ω ω. Obviously, he mass of he eleri moors is inluded ino he body B. The iniial posiion of he rods are denoed by respeively, for whih i is assumed ha ; herefore, for a laer ime insane, i holds 1 ha. Wihou loss of generaliy, we assume ha he ariulaion of he rigid 1 rods is hosen a he level of he enroid G of he mass, where also he axis origin is onsidered. For he sake of briefness, he problem is simplified as follows: 1. The shape of he obje B appears no variaion along he x- and y-axis.. The wo masses m have he same z-oordinae. 3. The moors are fixed o he obje and heir shafs are parallel o he y-axis. 4. The mass of he rods and he relevan momens of ineria are negleed. 1 and, 34 hp://mm.spbsu.ru

2 Some issues on ineria propulsion mehanisms 5. A he iniial ime insane, =, he obje is suddenly lef o fall. 6. The effe of he air is negleed. Due o he abovemenioned assumpions, he omponens of he enrifugal fores along he x-axis are perfely anelled, and any possible moion of he obje will be in he z-direion only. In oher words, no roaion of he obje B will our, hus is verial posiion an be wrien in he simple form: z, z. (1) The deerminaion of he abovemenioned funion z, and pariularly he ondiions for whih he aliude ould be inreased or remain onsan, is he aim of his work. I was found ha he opimum ondiion o ahieve a lif is o leave he obje fall when is rods are a he horizonal posiion wih he endeny of he rods o roae in he upward direion. oreover, we also invesigae he possibiliy of using a ime-varying angular veloiy or/and a ime-varying radius. Figure 1: The seup of he obje on whih wo onra-roaing masses (No.1 and No.) are aahed: (a) he iniial posiion and (b) he arbirary posiion of he obje.. Equaions of moion Due o he assumpion of massless rods, in his paper he Cenre of ass Theorem will be applied. In he general ase, in order o desribe roaing moion he Lagrange equaion had o be used, as was done in [4,5] (hese papers also used advaned mahemaial analysis). Le f f ˆ e sand for he reaion fore, whih he ground imposes o he obje, wih e ˆ z z denoing he uni veor of he z-axis. Aording o he Newon s Seond Law, i holds m m r f g. () where m is he oal mass, g ge ˆ z is he aeleraion of graviy veor, and r is he aeleraion of he ener of mass (C) of he sysem of whih he ordinae is given as Теория Механизмов и Машин Том 8. 35

3 Преподавание ТММ z mz z m m. (3) In Eq(3), z, zm and z are he ordinaes of he enroid of mass, he masses m and he overall enroid, respeively. The relaionship beween z and z m (mass No.1) is: z z rsin. (4) m Eliminaing he ordinae z m beween Eq(3) and Eq(4), one reeives: m z z rsin. (5) m In he general ase of a variable radius verial aeleraion is given by r r, and aking he seond emporal derivaive, he mz m z mrsin. (6) Sine he erm m z represens he sum of he exernal fores, whih onsis of only he graviaional ones, m g, Eq(6) beomes sin m z m r m g. (7) Considering ha he insananeous angular veloiy is defined as d. (9) d he equaion of moion of he free obje B, an ordinary differenial equaion (ODE), is wrien in one of he following equivalen forms: m z r g f g. sin m f (1a) Provided he involved derivaives are oninuous (smooh variaion), he firs ime inegraion of Eq(1a) leads o: m z v g r r r r m sin os sin os while he seond inegraion leads o:. (1b) 36 hp://mm.spbsu.ru

4 Some issues on ineria propulsion mehanisms z 1 m z v g r sin r sin r sin r os m. (1) I is remarkable ha he aliude 1 z inludes he graviaional erm z v g responsible for he free fall, a small ompound erm sin sin m m r r, as well as anoher linear erm r sin r os. When he obje sars from he res ondiion ( z, v ), and he laer oeffiien of is posiive, he aliude iniially inreases unil he square erm 1g dominaes..3. Pariular ase of onsan radius.3.1. General In he ase of a onsan radius, r r, he equaions of moion obain one of he following forms: z z z sin g, os g, sin os g. (11a) (11b) (11) where and and erms are relaed o he enrifugal and he angenial omponens, respeively, Then, he general soluion beomes: mr m. (1) 1 os sinsin z z v g os os. z v g, (13).3.. Analyial soluion fulfilling he moion equaion, o fulfill he equaion of moion In he pariular ase ha we demand he angular veloiy, (Eq(11a)), he general soluion of his ordinary differenial equaion is given in he form 1 g sin, 1 (14) Теория Механизмов и Машин Том 8. 37

5 Преподавание ТММ Assuming iniial ondiions and ( ), respeively, hus Eq(14) beomes, i implies ha sin and 1 os g sin 1 os sin, (15) oreover, in erms of he ime, he angular veloiy is found as g os, 1 os sin g (16).3.3. Exponenial angular veloiy Alernaively, we hoose ha e 1, (17) whene e, (18) where is a onsan, while and are he iniial angular veloiy and he iniial angular (polar) posiion of he rods, respeively. Obviously, he relaionship beween ime and polar angle is. (19) 1 ln 1 Also, he emporal derivaive of he angular veloiy beomes:. () e 3. NET IPULSE 3.1. Definiion of Impulse Using he foring funion f of Eq(1a), i is realled ha he quaniy (1) I f d 38 hp://mm.spbsu.ru

6 Some issues on ineria propulsion mehanisms,. Based on his definiion, apar from he graviaional erm is alled impulse and represens he hange in momenum of he obje during he ime inerval v g, he addiionally produed (propulsive) veloiy will be given as z sin sin propulsive I d r d r m m m m. () 3.. Theorems and Lemmas Based on he above definiions and findings, i is now possible o inrodue some elemenary heorems and lemmas o assis he researher saving his/her effors from useless furher sudies. In he lak of available spae, he ex has been ompressed as muh as possible. Lemma-1: In ase of onsan angular veloiy and radius, he impulse of he enrifugal fores is zero. Lemma-: Under he ondiions of Lemma-1, despie he fa ha he impulse is zero, i is possible o obain a signifianly high aliude. In fa, he laer is due o he iniial ondiions and leads o a erm of he firs degree in ime, i.e. r sin r os in Eq(1). Unforunaely, afer a erain ime insane he seond degree graviaional erm 1g dominaes and he obje reurns o he ground. Theorem-1: When he roaing mass follows a permanen orbi and obains he same veloiy a he same posiion, afer a period of ime T, he ne impulse beomes zero ( I ). ne In fa, for an arbirary ime insane, he orresponding impulse is I m m r r m m sin d sin. (3) while for a omplee irumferene ( ), i holds ha d I ne T m m m m T r sin d rsin. (4) Aording o he above assumpions i holds: r T r and sin T sin sin, r sin r sin, and herefore I. ne Lemma-3: The variaion of he radius r does no lead o a ne impulse. Theorem-: In ase of a onsan radius r, he hange of veloiy of he obje depends on he hange of he angular veloiy. In fa, he laer beomes: os os z v g d v g free fall erm free fall erm. (5) Therefore, he variaion of he obje s veloiy beween a erain posiion ref along he irumferene drawn by he rigid rods and he same posiion afer a ime inerval will be: Теория Механизмов и Машин Том 8. 39

7 Преподавание ТММ g os z, (6a) ref ref while for an enire period of ime will be given as z k gt os, k 1,,, ref ref ref k wih k kt ref ref (6b) Lemma-4: In ase of a onsan radius r, he ne impulse for a omplee round of he rigid rods (measured from he iniial posiion ) is I os. ne Lemma-5: In ase of a onsan radius r and a repeaed angular veloiy (i.e. ), i is onluded ha a he end of every subsequen round, he obje will obain he veloiy i would have when i would be freely lef o fall. Lemma-6: In ase of a onsan radius r, he obje veloiy may inrease when he angular veloiy hanges. 4. NUERICAL RESULTS We onsider an obje of mass = 5kg, on whih wo roaing masses (m = 1kg eah) are aahed a a disane r=.1m. In all ases, he iniial angular veloiy is aken equal o s 3 rpm. Typial graphs of he obje s veloiy z and he orresponding are illusraed in Figure and Figure 3, respeively. Finally, he verial displaemen of he obje for he firs four rounds of he rigid rods is shown in Figure 4. Veloiy (m/s) LADA = Exponenial Veloiy (m/s) LADA = Exponenial Veloiy (m/s) Exponenial LADA = Figure : Obje veloiy, z, for hree differen exponens λ= -1, -1, and +1 [Eq(17)-Eq()] Angular Veloiy (1/s) LADA = Angular Veloiy (1/s) LADA = Angular Veloiy (1/s) LADA = Figure 3: Angular veloiy versus ime,, for he hree differen exponens λ of Figure. 4 hp://mm.spbsu.ru

8 Some issues on ineria propulsion mehanisms Aliude (m) Lamda = Lamda = -1 Lamda = Aliude (m) Lamda 9 = Lamda = -1 Lamda = Angle (deg) Figure 4: Verial displaemen z versus ime for he firs four rounds of he rigid rods (lef) and he firs one (righ) 5. CONCLUSIONS I was shown ha using wo onra-roaing masses (driven by eleri moors) whih have reahed a suffiienly high angular veloiy, a emporal lif of he obje o whih hey are aahed may be ahieved. The laer appears even if he ne impulse equals o zero. Every andidae orbi of he roaing masses, whih is haraerized by a repeaed ime hisory of he angular veloiy (he same value a he same posiion), leads o a zero ne impulse; herefore, he obje an no remain ino he air for a long ime. Furhermore, despie he fa ha a losed-form variable angular veloiy fulfilling he equaion of moion was found, unforunaely i beame singular in he neighborhood of he verial posiions of he rigid arms; herefore, using his formula he obje an no remain sill ino he air. In onras, a variable angular veloiy of exponenial ype an ahieve a ne impulse for only he half of he swep irle, hus i an no solve he problem; however i is apable of onrolling he veloiy of he obje so as i beomes adequaely smooh. Finally, i was shown ha a hypoheial ne impulse leads o a sandard quadrai erm in ime, whih furher leads o a permanen upward anigraviy moion. However, he mehanism for produing suh a ne impulse remains sill an open problem. СITED LITERATURE 1. illis.g., Thomas N.E. Responding o ehanial Anigraviy, NASA/T , AIAA , Deember 6. Available a: hp://glrs.gr.nasa.gov/repors/6/t pdf.. Dean N.L. Sysem for onvering roary moion ino unidireional moion, US Paen,886,976 (Filed Jul. 13, 1954, graned ay 19, 1959). 3. Kapisa P.L. Dynami sabiliy of he pendulum when he poin of suspension is osillaing. J. Exp. Theor. Phys. 1, (1951) (in Russian). 4. Blekhman I.I. Synhronizaion of Dynamial Sysems. osow: Nauka, 1971 (in Russian). 5. Kononenko V.O. Osillaory Sysems wih Limied Exiaion. osow: Nauka, Belesky V.V. Oherki o dvizhenii kosmiheskikh el (Sudies on he oion of Spae Bodies). osow: Nauka, 1977 (in Russian). 7. Belesky V.V. Essays on he moion of elesial bodies, Birkhäuser, Basel (1) (original Russian ediion published by Nauka, osow). 8. Zhao C., Zhu H., Zhang Y., Wen B., Synhronizaion of wo oupled exiers in a vibraing sysem of spaial moion, Aa ehania Sinia (DOI 1.17/s ) Поступила в редакцию После доработки Теория Механизмов и Машин Том 8. 41

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a

Boyce/DiPrima 9 th ed, Ch 6.1: Definition of. Laplace Transform. In this chapter we use the Laplace transform to convert a Boye/DiPrima 9 h ed, Ch 6.: Definiion of Laplae Transform Elemenary Differenial Equaions and Boundary Value Problems, 9 h ediion, by William E. Boye and Rihard C. DiPrima, 2009 by John Wiley & Sons, In.

More information

Analysis of Tubular Linear Permanent Magnet Motor for Drilling Application

Analysis of Tubular Linear Permanent Magnet Motor for Drilling Application Analysis of Tubular Linear Permanen Magne Moor for Drilling Appliaion Shujun Zhang, Lars Norum, Rober Nilssen Deparmen of Eleri Power Engineering Norwegian Universiy of Siene and Tehnology, Trondheim 7491

More information

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee

Amit Mehra. Indian School of Business, Hyderabad, INDIA Vijay Mookerjee RESEARCH ARTICLE HUMAN CAPITAL DEVELOPMENT FOR PROGRAMMERS USING OPEN SOURCE SOFTWARE Ami Mehra Indian Shool of Business, Hyderabad, INDIA {Ami_Mehra@isb.edu} Vijay Mookerjee Shool of Managemen, Uniersiy

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Linear Quadratic Regulator (LQR) - State Feedback Design

Linear Quadratic Regulator (LQR) - State Feedback Design Linear Quadrai Regulaor (LQR) - Sae Feedbak Design A sysem is expressed in sae variable form as x = Ax + Bu n m wih x( ) R, u( ) R and he iniial ondiion x() = x A he sabilizaion problem using sae variable

More information

A New Formulation of Electrodynamics

A New Formulation of Electrodynamics . Eleromagnei Analysis & Appliaions 1 457-461 doi:1.436/jemaa.1.86 Published Online Augus 1 hp://www.sirp.org/journal/jemaa A New Formulaion of Elerodynamis Arbab I. Arbab 1 Faisal A. Yassein 1 Deparmen

More information

An Inventory Model for Weibull Time-Dependence. Demand Rate with Completely Backlogged. Shortages

An Inventory Model for Weibull Time-Dependence. Demand Rate with Completely Backlogged. Shortages Inernaional Mahemaial Forum, 5, 00, no. 5, 675-687 An Invenory Model for Weibull Time-Dependene Demand Rae wih Compleely Baklogged Shorages C. K. Tripahy and U. Mishra Deparmen of Saisis, Sambalpur Universiy

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle

Generalized electromagnetic energy-momentum tensor and scalar curvature of space at the location of charged particle Generalized eleromagnei energy-momenum ensor and salar urvaure of spae a he loaion of harged parile A.L. Kholmeskii 1, O.V. Missevih and T. Yarman 3 1 Belarus Sae Universiy, Nezavisimosi Avenue, 0030 Minsk,

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

LIGHT and SPECIAL RELATIVITY

LIGHT and SPECIAL RELATIVITY VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT LIGHT and SPECIAL RELATIVITY LENGTH CONTRACTION RELATIVISTIC ADDITION OF VELOCITIES Time is a relaie quaniy: differen obserers an measuremen differen ime

More information

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits

mywbut.com Lesson 11 Study of DC transients in R-L-C Circuits mywbu.om esson Sudy of DC ransiens in R--C Ciruis mywbu.om Objeives Be able o wrie differenial equaion for a d iruis onaining wo sorage elemens in presene of a resisane. To develop a horough undersanding

More information

Mass Transfer Coefficients (MTC) and Correlations I

Mass Transfer Coefficients (MTC) and Correlations I Mass Transfer Mass Transfer Coeffiiens (MTC) and Correlaions I 7- Mass Transfer Coeffiiens and Correlaions I Diffusion an be desribed in wo ways:. Deailed physial desripion based on Fik s laws and he diffusion

More information

Generalized The General Relativity Using Generalized Lorentz Transformation

Generalized The General Relativity Using Generalized Lorentz Transformation P P P P IJISET - Inernaional Journal of Innoaie Siene, Engineering & Tehnology, Vol. 3 Issue 4, April 6. www.ijise.om ISSN 348 7968 Generalized The General Relaiiy Using Generalized Lorenz Transformaion

More information

Energy Momentum Tensor for Photonic System

Energy Momentum Tensor for Photonic System 018 IJSST Volume 4 Issue 10 Prin ISSN : 395-6011 Online ISSN : 395-60X Themed Seion: Siene and Tehnology Energy Momenum Tensor for Phooni Sysem ampada Misra Ex-Gues-Teaher, Deparmens of Eleronis, Vidyasagar

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

The Relativistic Field of a Rotating Body

The Relativistic Field of a Rotating Body The Relaivisi Field of a Roaing Body Panelis M. Pehlivanides Alani IKE, Ahens 57, Greee ppexl@eemail.gr Absra Based on he pahs of signals emanaing from a roaing poin body, e find he equaions and properies

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system with uncertainties

Hybrid probabilistic interval dynamic analysis of vehicle-bridge interaction system with uncertainties 1 APCOM & SCM 11-14 h Deember, 13, Singapore Hybrid probabilisi inerval dynami analysis of vehile-bridge ineraion sysem wih unerainies Nengguang iu 1, * Wei Gao 1, Chongmin Song 1 and Nong Zhang 1 Shool

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

Derivation of longitudinal Doppler shift equation between two moving bodies in reference frame at rest

Derivation of longitudinal Doppler shift equation between two moving bodies in reference frame at rest Deriaion o longiudinal Doppler shi equaion beween wo moing bodies in reerene rame a res Masanori Sao Honda Eleronis Co., d., Oyamazuka, Oiwa-ho, Toyohashi, ihi 44-393, Japan E-mail: msao@honda-el.o.jp

More information

κt π = (5) T surrface k BASELINE CASE

κt π = (5) T surrface k BASELINE CASE II. BASELINE CASE PRACICAL CONSIDERAIONS FOR HERMAL SRESSES INDUCED BY SURFACE HEAING James P. Blanhard Universi of Wisonsin Madison 15 Engineering Dr. Madison, WI 5376-169 68-63-391 blanhard@engr.is.edu

More information

Problem 1 / 25 Problem 2 / 10 Problem 3 / 15 Problem 4 / 30 Problem 5 / 20 TOTAL / 100

Problem 1 / 25 Problem 2 / 10 Problem 3 / 15 Problem 4 / 30 Problem 5 / 20 TOTAL / 100 Deparmen of Applied Eonomis Johns Hopkins Universiy Eonomis 60 Maroeonomi Theory and Poliy Miderm Exam Suggesed Soluions Professor Sanjay Chugh Summer 0 NAME: The Exam has a oal of five (5) problems and

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theor of Relaii The Speial Theor of Relaii Chaper I. Conradiions in phsis?. Galilean Transformaions of lassial mehanis 3. The effe on Mawell s equaions ligh 4. Mihelson-Morle eperimen 5. insein

More information

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion)

PHYS-3301 Lecture 5. Chapter 2. Announcement. Sep. 12, Special Relativity. What about y and z coordinates? (x - direction of motion) Announemen Course webpage hp://www.phys.u.edu/~slee/33/ Tebook PHYS-33 Leure 5 HW (due 9/4) Chaper, 6, 36, 4, 45, 5, 5, 55, 58 Sep., 7 Chaper Speial Relaiiy. Basi Ideas. Consequenes of Einsein s Posulaes

More information

New Oscillation Criteria For Second Order Nonlinear Differential Equations

New Oscillation Criteria For Second Order Nonlinear Differential Equations Researh Inveny: Inernaional Journal Of Engineering And Siene Issn: 78-47, Vol, Issue 4 (Feruary 03), Pp 36-4 WwwResearhinvenyCom New Osillaion Crieria For Seond Order Nonlinear Differenial Equaions Xhevair

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Structural Dynamics and Earthquake Engineering

Structural Dynamics and Earthquake Engineering Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

More information

15. Vector Valued Functions

15. Vector Valued Functions 1. Vecor Valued Funcions Up o his poin, we have presened vecors wih consan componens, for example, 1, and,,4. However, we can allow he componens of a vecor o be funcions of a common variable. For example,

More information

B Signals and Systems I Solutions to Midterm Test 2. xt ()

B Signals and Systems I Solutions to Midterm Test 2. xt () 34-33B Signals and Sysems I Soluions o Miderm es 34-33B Signals and Sysems I Soluions o Miderm es ednesday Marh 7, 7:PM-9:PM Examiner: Prof. Benoi Boule Deparmen of Elerial and Compuer Engineering MGill

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI

THE 2-BODY PROBLEM. FIGURE 1. A pair of ellipses sharing a common focus. (c,b) c+a ROBERT J. VANDERBEI THE 2-BODY PROBLEM ROBERT J. VANDERBEI ABSTRACT. In his shor noe, we show ha a pair of ellipses wih a common focus is a soluion o he 2-body problem. INTRODUCTION. Solving he 2-body problem from scrach

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information

3. Differential Equations

3. Differential Equations 3. Differenial Equaions 3.. inear Differenial Equaions of Firs rder A firs order differenial equaion is an equaion of he form d() d ( ) = F ( (),) (3.) As noed above, here will in general be a whole la

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Optimal Motion of an Articulated Body in a Perfect Fluid

Optimal Motion of an Articulated Body in a Perfect Fluid Opimal Moion of an Ariulaed Body in a Perfe Fluid Eva Kanso and Jerrold E. Marsden Absra An ariulaed body an propel and seer iself in a perfe fluid by hanging is shape only. Our sraegy for moion planning

More information

(Radiation Dominated) Last Update: 21 June 2006

(Radiation Dominated) Last Update: 21 June 2006 Chaper Rik s Cosmology uorial: he ime-emperaure Relaionship in he Early Universe Chaper he ime-emperaure Relaionship in he Early Universe (Radiaion Dominaed) Las Updae: 1 June 006 1. Inroduion n In Chaper

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

Economics 202 (Section 05) Macroeconomic Theory Practice Problem Set 7 Suggested Solutions Professor Sanjay Chugh Fall 2013

Economics 202 (Section 05) Macroeconomic Theory Practice Problem Set 7 Suggested Solutions Professor Sanjay Chugh Fall 2013 Deparmen of Eonomis Boson College Eonomis 0 (Seion 05) Maroeonomi Theory Praie Problem Se 7 Suggesed Soluions Professor Sanjay Chugh Fall 03. Lags in Labor Hiring. Raher han supposing ha he represenaive

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

Optimal Transform: The Karhunen-Loeve Transform (KLT)

Optimal Transform: The Karhunen-Loeve Transform (KLT) Opimal ransform: he Karhunen-Loeve ransform (KL) Reall: We are ineresed in uniary ransforms beause of heir nie properies: energy onservaion, energy ompaion, deorrelaion oivaion: τ (D ransform; assume separable)

More information

The Special Theory of Relativity Chapter II

The Special Theory of Relativity Chapter II The Speial Theory of Relaiiy Chaper II 1. Relaiisi Kinemais. Time dilaion and spae rael 3. Lengh onraion 4. Lorenz ransformaions 5. Paradoes? Simulaneiy/Relaiiy If one obserer sees he eens as simulaneous,

More information

Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations

Peakon, pseudo-peakon, and cuspon solutions for two generalized Camassa-Holm equations JOURNAL OF MATHEMATICAL PHYSICS 54 13501 (013) Peakon pseudo-peakon and uspon soluions for wo generalized Camassa-Holm equaions Jibin Li 1a) and Zhijun Qiao 3a) 1 Deparmen of Mahemais Zhejiang Normal Universiy

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 5 Creep and Shrinkage Deformation

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 5 Creep and Shrinkage Deformation 1.54/1.541 Mehanis and Design of Conree ruures pring 24 Prof. Oral Buyukozurk Massahuses Insiue of Tehnology Ouline 5 1.54/1.541 Mehanis and Design of Conree ruures (3--9 Ouline 5 and hrinkage Deformaion

More information

Second-Order Boundary Value Problems of Singular Type

Second-Order Boundary Value Problems of Singular Type JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 226, 4443 998 ARTICLE NO. AY98688 Seond-Order Boundary Value Probles of Singular Type Ravi P. Agarwal Deparen of Maheais, Naional Uniersiy of Singapore,

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Section 3.8, Mechanical and Electrical Vibrations

Section 3.8, Mechanical and Electrical Vibrations Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

More information

Boundary Control of a Tensioned Elastic Axially Moving String

Boundary Control of a Tensioned Elastic Axially Moving String ICCAS5 June -5 KINTEX Gyeonggi-Do Korea Boundary Conrol of a Tensioned Elasi Aially Moving Sring Chang-Won Kim* Keum-Shik Hong** and Hahn Park* *Deparmen of Mehanial and Inelligen Sysems Engineering Pusan

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180 Algebra Chapers & : Trigonomeric Funcions of Angles and Real Numbers Chapers & : Trigonomeric Funcions of Angles and Real Numbers - Angle Measures Radians: - a uni (rad o measure he size of an angle. rad

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents Announemens HW # Due oday a 6pm. HW # posed online oday and due nex Tuesday a 6pm. Due o sheduling onflis wih some sudens, lasses will resume normally his week and nex. Miderm enaively 7/. EE4 Summer 5:

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

Lecture 23 Damped Motion

Lecture 23 Damped Motion Differenial Equaions (MTH40) Lecure Daped Moion In he previous lecure, we discussed he free haronic oion ha assues no rearding forces acing on he oving ass. However No rearding forces acing on he oving

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Lorentz Transformation Properties of Currents for the Particle-Antiparticle Pair Wave Functions

Lorentz Transformation Properties of Currents for the Particle-Antiparticle Pair Wave Functions Open Aess Library Journal 17, Volume 4, e373 ISSN Online: 333-971 ISSN Prin: 333-975 Lorenz Transformaion Properies of Currens for he Parile-Aniparile Pair Wave Funions Raja Roy Deparmen of Eleronis and

More information

5.2 Design for Shear (Part I)

5.2 Design for Shear (Part I) 5. Design or Shear (Par I) This seion overs he ollowing opis. General Commens Limi Sae o Collapse or Shear 5..1 General Commens Calulaion o Shear Demand The objeive o design is o provide ulimae resisane

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

5. An economic understanding of optimal control as explained by Dorfman (1969) AGEC

5. An economic understanding of optimal control as explained by Dorfman (1969) AGEC This doumen was generaed a 1:27 PM, 09/17/15 Copyrigh 2015 Rihard T Woodward 5 An eonomi undersanding of opimal onrol as explained by Dorfman (1969) AGEC 642-2015 The purpose of his leure and he nex is

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

Einstein built his theory of special relativity on two fundamental assumptions or postulates about the way nature behaves.

Einstein built his theory of special relativity on two fundamental assumptions or postulates about the way nature behaves. In he heory of speial relaiviy, an even, suh as he launhing of he spae shule in Figure 8., is a physial happening ha ours a a erain plae and ime. In his drawing wo observers are wahing he lif-off, one

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg Oscillaions PHY 207 - oscillaions - J. Hedberg - 2017 1. Periodic Moion 2. Sinusoidal Moion 3. How do we ge his kind of moion? 4. Posiion - Velociy - cceleraion 5. spring wih vecors 6. he reference circle

More information

ECON Lecture 4 (OB), Sept. 14, 2010

ECON Lecture 4 (OB), Sept. 14, 2010 ECON4925 21 Leure 4 (OB), Sep. 14, 21 Exraion under imperfe ompeiion: monopoly, oligopoly and he arel-fringe model Perman e al. (23), Ch. 15.6; Salan (1976) 2 MONOPOLISTIC EXPLOITATION OF A NATURAL RESOURCE

More information

Capacitance and Inductance. The Capacitor

Capacitance and Inductance. The Capacitor apaiane and Induane OUTINE apaiors apaior volage, urren, power, energy Induors eure 9, 9/9/5 Reading Hambley haper 3 (A) EE4 Fall 5 eure 9, Slide The apaior Two onduors (a,b) separaed by an insulaor: differene

More information

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3

Mathematical Foundations -1- Choice over Time. Choice over time. A. The model 2. B. Analysis of period 1 and period 2 3 Mahemaial Foundaions -- Choie over Time Choie over ime A. The model B. Analysis of period and period 3 C. Analysis of period and period + 6 D. The wealh equaion 0 E. The soluion for large T 5 F. Fuure

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

LAB # 2 - Equilibrium (static)

LAB # 2 - Equilibrium (static) AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Predator - Prey Model Trajectories and the nonlinear conservation law

Predator - Prey Model Trajectories and the nonlinear conservation law Predaor - Prey Model Trajecories and he nonlinear conservaion law James K. Peerson Deparmen of Biological Sciences and Deparmen of Mahemaical Sciences Clemson Universiy Ocober 28, 213 Ouline Drawing Trajecories

More information

Mahgoub Transform Method for Solving Linear Fractional Differential Equations

Mahgoub Transform Method for Solving Linear Fractional Differential Equations Mahgoub Transform Mehod for Solving Linear Fraional Differenial Equaions A. Emimal Kanaga Puhpam 1,* and S. Karin Lydia 2 1* Assoiae Professor&Deparmen of Mahemais, Bishop Heber College Tiruhirappalli,

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation

TRANSMISSION LINES AND WAVEGUIDES. Uniformity along the Direction of Propagation TRANSMISSION LINES AND WAVEGUIDES Uniformi along he Direion of Propagaion Definiion: Transmission Line TL is he erm o desribe ransmission ssems wih wo or more mealli onduors eleriall insulaed from eah

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

4. Voltage Induction in Three-Phase Machines

4. Voltage Induction in Three-Phase Machines 4. Volage Indion in Three-Phase Mahines NIVERSITÄT 4/1 FARADAY s law of indion a b Eah hange of flx, whih is linked o ondor loop C, ases an inded volage i in ha loop; he inded volage is he negaive rae

More information

MEI STRUCTURED MATHEMATICS 4758

MEI STRUCTURED MATHEMATICS 4758 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary General Cerificae of Educaion Advanced General Cerificae of Educaion MEI STRUCTURED MATHEMATICS 4758 Differenial Equaions Thursday 5 JUNE 006 Afernoon

More information

Traveling Waves. Chapter Introduction

Traveling Waves. Chapter Introduction Chaper 4 Traveling Waves 4.1 Inroducion To dae, we have considered oscillaions, i.e., periodic, ofen harmonic, variaions of a physical characerisic of a sysem. The sysem a one ime is indisinguishable from

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information