Functional Dependencies

Size: px
Start display at page:

Download "Functional Dependencies"

Transcription

1 Functional Dependencies Functional Dependencies Framework for systematic design and optimization of relational schemas Generalization over the notion of Keys Crucial in obtaining correct normalized schemas 1

2 Definitions In any relation R, if there exists a set of attributes A 1, A 2, A n and an attribute B such that if any two tuples have the same value for A 1, A 2, A n then they also have the same value for B. A functional dependency (FD) of the above form is written as: A 1, A 2, A n B Functional dependencies define properties of the schema and not of any particular instance. The dependency must hold for all tuples in the schema. Definitions If A 1, A 2, A n can uniquely determine many attributes, they can all be clubbed together in one expression. A 1, A 2, A n B 1 A 1, A 2, A n B 2 A 1, A 2, A n B 3 A 1, A 2, A n B m A 1, A 2, A n B 1 B 2 B 3 B m 2

3 Definitions Keys revisited: If a subset of attributes can uniquely determine the entire tuple, then they are called super keys. Minimal super keys and candidate keys can be defined analogously. Functional Dependencies Consider the relation: Movies (title, year, length, filmtype, studio, star) We can identify some FDs as the following: title, year length title, year filmtype However, note that title, year star may not always be true! 3

4 Reasoning about FDs Transitivity: Example: In any relation R, if A B and B C, then the FD A C also holds for R. If Employee_Number Job and Job Salary, then Employee_Number Salary Reasoning about FDs Two FDs S = A B and T = C D are said to be equivalent if the set of relation instances satisfying S is the same as the set of relation instances satisfying T. We say that S follows T, if the set of all relation instances satisfying T also satisfies S. FDs S and T are equivalent, if S follows T and T follows S. 4

5 Trivial Functional Dependencies Note that in the Movies relation: title, year title An FD where the right hand side is contained within the left hand side is called a trivial FD. If there is at least one element on the RHS that is not contained in the LHS, it is called non-trivial, and if none of the elements of the RHS are contained in the LHS, it is called completely non-trivial FD. Closure of FDs In any relation R, let A be a set of attributes of R. The closure of FDs defined by A, is the set of all attributes that are eventually defined by A. Let: A B; B C, D; B D E; Then, closure(a) = A B C D E 5

6 Adding attributes to closure(a): Closure of FDs Let A closure(a) and A F, then closure(a) = closure(a) F Computing closure of FDs Given a relation R and a set of attributes A, closure(a) is computed by the following algorithm: 1. Initially closure(a) = A 2. For every A A, if there exists an FD of the form A B and B A, then closure(a) = closure(a) B 3. Repeat step 2 until no more attributes can be added to closure(a) The closure of a set of attributes A is denoted by A +. Note that if A + is the set of all attributes of R, then A is a super-key of R. 6

7 Inferred FDs In a relation R, suppose A, B, C and D be sets of attributes of R such that: A B; B C; and C D Also let D A D such that D A A and let D = D D A. Given this, we can infer a non-trivial FD: A D. FDs which are specified are called stated FDs, and FDs which are derived are called inferred FDs. Inferred FDs A given set of FDs from which the set of all FDs for a relation can be inferred, is called the basis of the relation. If the basis is such that no subset of the basis is also a basis, then it is said to be a minimal basis for the relation. 7

8 Armstrong s Axioms For computing the set of FDs that follow a given FD, the following rules called Armstrong s axioms are useful: 1. Reflexivity: If B A, then A B 2. Augmentation: If A B, then A C B C Note also that if A B, then A C B for any set of attributes C. 3. Transitivity: If A B and B C then A C Projecting FDs Let R be a relation and F(R) be the set of all FDs in R. Suppose relation S is projected from R, by removing some attributes. How can we infer F(S)? FDs that belong to F(S) are those which: 1. Follow from F(R) 2. Involve only attributes of S 8

9 Projecting FDs Given a relation R (A,B,C,D) and F(R) = {A B, B C, C D}. Suppose S is projected from R as S(A,C,D). What is F(S). To compute F(S), start by computing the closures of all attributes in S. In R, A + = {A B, A C, A D} In S, A + = {A C, A D} C + = {C D} and D + = {D} Since A + contains all attributes of S, it is not required to compute (AC) +, (AD) + or (ACD) +. Designing Relational Schemas In a carelessly designed relational schema, functional dependencies are improper. This leads to the following problems: 1. Redundancy: Information is repeated across tuples 2. Update anomalies: If information is repeated across tuples, then an update of any such information has to be performed across all tuples containing the information 3. Deletion anomalies: If information is repeated across tuples, deletion of information has to be performed across all these tuples. 9

10 Designing Relational Schemas Consider the Movie (title, year, length, studio, star) relation, where: title, year length title, year studio But title,year star need not be true. For each movie star of a given movie, the title, year, length and studio information has to be repeated. If any of these values have to be updated or deleted, they should consult all tuples where they occur. Decomposition Anomalies are removed from a relation R(A), by decomposing it into other relations S(B) and T(C) where B, C A, such that there are no anomalies in S and T. A decomposition that does not contain any anomalies is said to be in Boyce-Codd Normal Form (BCNF). A BCNF relation has the following property: A relation R(A) is said to be in BCNF, if any nontrivial FD of the form A A exists in R(A), it means A is a super-key for R. 10

11 Decomposition In a given relation R(A), let there be a functional dependency of the form A A which violates BCNF. In order to bring R into BCNF, decompose R as follows: Let B be the set of all attributes which lie in the RHS of any FD that has A in the LHS. Remove the set of all attributes A B and form a separate relation. Retain A along with A {A B} to form the other decomposed part of the relation R. Decomposition Example: Consider the Movies (title, year, length, studio, star) relation. Here the following FD holds: title, year length, studio, star However, this is a BCNF violating FD, since (title, year) is not a super-key as the attribute star is not in (title,year) +. To decompose Movies, remove (title, year) along with (length, studio, star) and put them in a separate relation. Retain (title, year) along with (star) to form the other relation. 11

12 Decomposition Hence: Movies (title, year, length, studio, star) is decomposed into Movies1 (title, year, length, studio) and Movies2 (title, year, star) 2-attribute Relations Any 2-attribute relation of the form R(A,B) is always in BCNF. To prove, consider the following cases: 1. There are no FDs between A and B, in which case only trivial FDs exist and R is in BCNF 2. A B, but there is no FD of the form B A. In this case, A is the key and R is in BCNF. 3. B A, but there is no FD of the form A B. This is symmetric to the case above, here, B is the key. 4. A B and B A. Both A and B are keys, this does not violate the BCNF condition. 12

13 Third Normal Form (3NF) Sometimes, some BCNF violating FDs cannot be removed from relations without losing information. Consider the relation Drama (title, theater, city) having the following FDs: FD1: title, city theater (title and city form the key as they uniquely determine theater) FD2: theater city (each drama theater has a unique name across cities) FD2 violates BCNF since {theater} is not a key to Drama. Third Normal Form (3NF) Based on FD2, if we decompose Drama into the relations Drama1 (title, theater) and Drama2 (theater, city) it will be incorrect! This is because in the join of the relation Drama1 and Drama2, (title, city) will no longer be the key! 13

14 Third Normal Form (3NF) Consider the example tables: Drama1 Drama2 Title Theater Theater City Jeans Naz Naz Lahore Jeans Jude Brave Golden Jude Brave Golden Karachi Troy Naz Third Normal Form (3NF) A Join between Drama1 and Drama2 gives the table: Title Jeans Jeans Troy Theater Naz Jude Brave Golden Naz City Lahore Karachi Lahore Note that (theater, city) no longer uniquely determine title! 14

15 Third Normal Form (3NF) Discrepancies in the previous example occurred because of the FD theater city where theater is not part of a key, but city is! In accommodate such cases, the third normal form (3NF) decomposition is used which relaxes BCNF as follows: Any relation R is said to be in 3NF, if for any non-trivial FD of the form A B, either A is the super-key, or B is a member of some key. An attribute that is a member of a key is called a prime attribute. Multi-valued Dependencies In some cases, even if a relation is in BCNF, there could still be redundancies. Consider the relation: Drama (title, theater, star, genre). Drama is in BCNF. A given drama may have many stars. For every entry of star, the theater and genre attributes have to be repeated. 15

16 Multi-valued Dependencies The notation for multivalued dependency is a double-headed arrow between two attributes, A B. In English, a multivalued dependency means that if I know a value of A, I can determine a subset of B values. This relationship was also axiomized by Beri, Fagin, and Howard (1977). Their axioms are Reflexive: X X Augmentation: if X Y then XZ Y Union: if X Y and X Z then X YZ Projection: if X Y and X Z then X (Y U Z) and X (Y Z) Multi-valued Dependencies Transitivity: if X Y and Y Z then X (Z Y) Pseudotransitivity: if X Y and YW Z then XW (Z YW) Complement: if X Y and Z = (R XY) then X Z Replication: if X Y then X Y Coalescence: if X Y and Z W where W Y and Y U Z = Ø then X W 16

17 Multi-valued Dependencies In a given relation R(A), we say that there is a multi-valued dependency (MVD) if the following condition exists: Suppose A be the key and suppose A B Now if B is independent of all attributes in A B, then the above dependency is said to be a multi-valued dependency denoted by: A B Fourth Normal Form (4NF) A relation that has no non-trivial multi-valued dependencies is said to be in fourth normal form (4NF). In a given relation R(A), the MVD A B is said to be non-trivial if: B A and A B A A relation R(A) is said to be in 4NF if for every non-trivial MVD of the form A B, A is the super-key. 17

18 Example Consider a table of departments, their projects, and the parts they stock. The MVDs in the table would be department projects department parts Assume that department d1 works on jobs j1 and j2 with parts p1 and p2; that department d2 works on jobs j3, j4, and j5 with parts p2 and p4; and that department d3 works on job j2 only with parts p5 and p6. The table would look like this: Example Contd.. Table department job part d1 j1 p1 d1 j1 p2 d1 j2 p1 d1 j2 p2 d2 j3 p2 d2 j3 p4 d2 j4 p2 d2 j4 p4 d2 j5 p2 d2 j5 p4 d3 j2 p5 d3 j2 p6 18

19 Example Contd.. If you want to add a part to a department, you must create more than one new row. Likewise, to remove a part or a job from a row can destroy information. Updating a part or job name will also require multiple rows to be changed. The solution is to split this table into two tables, one with (department, projects) in it and one with (department, parts) in it. The definition of 4NF is that we have no more than one MVD in a table. If a table is in 4NF, it is also in BCNF. Relationship between NFs 4NF BCNF 3NF Note that 4NF implies BCNF implies 3NF. 19

20 Join Dependencies A join dependency is a further generalization of MVDs. A join dependency (JD) {R1...Rn} is said to hold over a relation R if R1... Rn is a lossless-join decomposition of R. An MVD X Y over a relation R can be expressed as the join dependency {XY, X(R Y)}. Unlike FDs and MVDs, there is no set of sound and complete inference rules for JDs. course teacher book Physics101 Green Mechanics Physics101 Green Optics Physics101 Brown Mechanics Physics101 Brown Optics Math301 Green Mechanics Math301 Green Vectors Math301 Green Geometry As an example, in the CTB relation, the MVD C T can be expressed as the join dependency {CT, CB}. 20

21 21

22 SELECT BS.buyer, SL.seller, BL.lender FROM BuyerLender AS BL, SellerLender AS SL, BuyerSeller AS BS WHERE BL.buyer = BS.buyer AND BL.lender = SL.lender AND SL.seller = BS.seller; 22

23 Fifth Normal Form (5NF) Fifth normal form, also called the join-projection normal form (JPNF) or the projection-join normal form Based on the idea of a lossless join or the lack of a join-projection anomaly. This problem occurs when you have an n-way relationship, where n > 2. A quick check for 5NF is to see if the table is in 3NF and all the candidate keys are single columns. Domain-Key Normal Form (DKNF) Domain-key normal form was proposed by Ron Fagin (1981). The idea is that if all the constraints implied by domain restrictions and by key conditions are true, then the database is in at least 5NF. The interesting part of Fagin s paper is that there is no mention of functional dependencies, multivalued dependencies, or join dependencies. This is currently considered the stongest normal form possible. The problem is that his paper does not tell you how you can achieve DKNF and shows that in some cases it is impossible. 23

Relational Database Design

Relational Database Design Relational Database Design Jan Chomicki University at Buffalo Jan Chomicki () Relational database design 1 / 16 Outline 1 Functional dependencies 2 Normal forms 3 Multivalued dependencies Jan Chomicki

More information

Schema Refinement: Other Dependencies and Higher Normal Forms

Schema Refinement: Other Dependencies and Higher Normal Forms Schema Refinement: Other Dependencies and Higher Normal Forms Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Higher Normal Forms 1 / 14 Outline 1

More information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information Relational Database Design Database Design To generate a set of relation schemas that allows - to store information without unnecessary redundancy - to retrieve desired information easily Approach - design

More information

Relational Design Theory

Relational Design Theory Relational Design Theory CSE462 Database Concepts Demian Lessa/Jan Chomicki Department of Computer Science and Engineering State University of New York, Buffalo Fall 2013 Overview How does one design a

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Fall 2017 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 42 Schema Design When we get a relational

More information

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016 Normal Forms Dr Paolo Guagliardo University of Edinburgh Fall 2016 Example of bad design BAD Title Director Theatre Address Time Price Inferno Ron Howard Vue Omni Centre 20:00 11.50 Inferno Ron Howard

More information

Functional Dependencies & Normalization. Dr. Bassam Hammo

Functional Dependencies & Normalization. Dr. Bassam Hammo Functional Dependencies & Normalization Dr. Bassam Hammo Redundancy and Normalisation Redundant Data Can be determined from other data in the database Leads to various problems INSERT anomalies UPDATE

More information

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17 Normalization October 5, 2017 Chapter 19 Pacific University 1 Description A Real Estate agent wants to track offers made on properties. Each customer has a first and last name. Each property has a size,

More information

Relational Design: Characteristics of Well-designed DB

Relational Design: Characteristics of Well-designed DB Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz 20000 Cotts

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design! First Normal Form! Pitfalls in Relational Database Design! Functional Dependencies! Decomposition! Boyce-Codd Normal Form! Third

More information

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional Dependencies Decomposition Boyce-Codd Normal Form Third Normal

More information

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due Information Systems for Engineers Exercise 8 ETH Zurich, Fall Semester 2017 Hand-out 24.11.2017 Due 01.12.2017 1. (Exercise 3.3.1 in [1]) For each of the following relation schemas and sets of FD s, i)

More information

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20 FUNCTIONAL DEPENDENCY THEORY II CS121: Relational Databases Fall 2018 Lecture 20 Canonical Cover 2 A canonical cover F c for F is a set of functional dependencies such that: F logically implies all dependencies

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 32 Schema Design When we get a relational

More information

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems Relational Database Design Theory Part II CPS 116 Introduction to Database Systems Announcements (October 12) 2 Midterm graded; sample solution available Please verify your grades on Blackboard Project

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms UMass Amherst Feb 14, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke, Dan Suciu 1 Relational Schema Design Conceptual Design name Product buys Person price name

More information

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi Design Theory for Relational Databases Spring 2011 Instructor: Hassan Khosravi Chapter 3: Design Theory for Relational Database 3.1 Functional Dependencies 3.2 Rules About Functional Dependencies 3.3 Design

More information

Schema Refinement and Normal Forms Chapter 19

Schema Refinement and Normal Forms Chapter 19 Schema Refinement and Normal Forms Chapter 19 Instructor: Vladimir Zadorozhny vladimir@sis.pitt.edu Information Science Program School of Information Sciences, University of Pittsburgh Database Management

More information

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms Database Design: Normal Forms as Quality Criteria Functional Dependencies Normal Forms Design and Normal forms Design Quality: Introduction Good conceptual model: - Many alternatives - Informal guidelines

More information

Lossless Joins, Third Normal Form

Lossless Joins, Third Normal Form Lossless Joins, Third Normal Form FCDB 3.4 3.5 Dr. Chris Mayfield Department of Computer Science James Madison University Mar 19, 2018 Decomposition wish list 1. Eliminate redundancy and anomalies 2. Recover

More information

Relational Database Design

Relational Database Design CSL 451 Introduction to Database Systems Relational Database Design Department of Computer Science and Engineering Indian Institute of Technology Ropar Narayanan (CK) Chatapuram Krishnan! Recap - Boyce-Codd

More information

Normaliza)on and Func)onal Dependencies

Normaliza)on and Func)onal Dependencies Normaliza)on and Func)onal Dependencies 1NF and 2NF Redundancy and Anomalies Func)onal Dependencies A9ribute Closure Keys and Super keys 3NF BCNF Minimal Cover Algorithm 3NF Synthesis Algorithm Decomposi)on

More information

SCHEMA NORMALIZATION. CS 564- Fall 2015

SCHEMA NORMALIZATION. CS 564- Fall 2015 SCHEMA NORMALIZATION CS 564- Fall 2015 HOW TO BUILD A DB APPLICATION Pick an application Figure out what to model (ER model) Output: ER diagram Transform the ER diagram to a relational schema Refine the

More information

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19 FUNCTIONAL DEPENDENCY THEORY CS121: Relational Databases Fall 2017 Lecture 19 Last Lecture 2 Normal forms specify good schema patterns First normal form (1NF): All attributes must be atomic Easy in relational

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

CSE 132B Database Systems Applications

CSE 132B Database Systems Applications CSE 132B Database Systems Applications Alin Deutsch Database Design and Normal Forms Some slides are based or modified from originals by Sergio Lifschitz @ PUC Rio, Brazil and Victor Vianu @ CSE UCSD and

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms INFO 330, Fall 2006 1 Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies?

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies? Normalization Introduction What problems are caused by redundancy? UVic C SC 370 Dr. Daniel M. German Department of Computer Science What are functional dependencies? What are normal forms? What are the

More information

Schema Refinement and Normal Forms. Why schema refinement?

Schema Refinement and Normal Forms. Why schema refinement? Schema Refinement and Normal Forms Why schema refinement? Consider relation obtained from Hourly_Emps: Hourly_Emps (sin,rating,hourly_wages,hourly_worked) Problems: Update Anomaly: Can we change the wages

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004 Schema Refinement and Normal Forms CIS 330, Spring 2004 Lecture 11 March 2, 2004 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage,

More information

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst November 1 & 6, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Redundancy is at the root of several problems associated with relational

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram Schema Refinement and Normal Forms Chapter 19 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram The Evils of Redundancy Schema Refinement and Normalization Chapter 1 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Redundancy is at the root of several problems

More information

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties Review: Keys Superkey: set of attributes whose values are unique for each tuple Note: a superkey isn t necessarily minimal. For example, for any relation, the entire set of attributes is always a superkey.

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization There are many forms of constraints on relational database schemata other than key dependencies. Undoubtedly most important is the functional dependency. A functional

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19 Schema Refinement and Normal Forms [R&G] Chapter 19 CS432 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

CS54100: Database Systems

CS54100: Database Systems CS54100: Database Systems Keys and Dependencies 18 January 2012 Prof. Chris Clifton Functional Dependencies X A = assertion about a relation R that whenever two tuples agree on all the attributes of X,

More information

Schema Refinement and Normal Forms. Chapter 19

Schema Refinement and Normal Forms. Chapter 19 Schema Refinement and Normal Forms Chapter 19 1 Review: Database Design Requirements Analysis user needs; what must the database do? Conceptual Design high level descr. (often done w/er model) Logical

More information

Functional Dependencies. Getting a good DB design Lisa Ball November 2012

Functional Dependencies. Getting a good DB design Lisa Ball November 2012 Functional Dependencies Getting a good DB design Lisa Ball November 2012 Outline (2012) SEE NEXT SLIDE FOR ALL TOPICS (some for you to read) Normalization covered by Dr Sanchez Armstrong s Axioms other

More information

Schema Refinement & Normalization Theory

Schema Refinement & Normalization Theory Schema Refinement & Normalization Theory Functional Dependencies Week 13 1 What s the Problem Consider relation obtained (call it SNLRHW) Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) What

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10 & 15, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

Schema Refinement. Feb 4, 2010

Schema Refinement. Feb 4, 2010 Schema Refinement Feb 4, 2010 1 Relational Schema Design Conceptual Design name Product buys Person price name ssn ER Model Logical design Relational Schema plus Integrity Constraints Schema Refinement

More information

Functional Dependency and Algorithmic Decomposition

Functional Dependency and Algorithmic Decomposition Functional Dependency and Algorithmic Decomposition In this section we introduce some new mathematical concepts relating to functional dependency and, along the way, show their practical use in relational

More information

Relational-Database Design

Relational-Database Design C H A P T E R 7 Relational-Database Design Exercises 7.2 Answer: A decomposition {R 1, R 2 } is a lossless-join decomposition if R 1 R 2 R 1 or R 1 R 2 R 2. Let R 1 =(A, B, C), R 2 =(A, D, E), and R 1

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Quiz #2 Next Thursday Comp 521 Files and Databases Fall 2012 1 The Evils of Redundancy v Redundancy is at the root of several problems associated with relational

More information

Chapter 3 Design Theory for Relational Databases

Chapter 3 Design Theory for Relational Databases 1 Chapter 3 Design Theory for Relational Databases Contents Functional Dependencies Decompositions Normal Forms (BCNF, 3NF) Multivalued Dependencies (and 4NF) Reasoning About FD s + MVD s 2 Remember our

More information

Databases 2012 Normalization

Databases 2012 Normalization Databases 2012 Christian S. Jensen Computer Science, Aarhus University Overview Review of redundancy anomalies and decomposition Boyce-Codd Normal Form Motivation for Third Normal Form Third Normal Form

More information

INF1383 -Bancos de Dados

INF1383 -Bancos de Dados INF1383 -Bancos de Dados Prof. Sérgio Lifschitz DI PUC-Rio Eng. Computação, Sistemas de Informação e Ciência da Computação Projeto de BD e Formas Normais Alguns slides são baseados ou modificados dos originais

More information

Database Design and Implementation

Database Design and Implementation Database Design and Implementation CS 645 Schema Refinement First Normal Form (1NF) A schema is in 1NF if all tables are flat Student Name GPA Course Student Name GPA Alice 3.8 Bob 3.7 Carol 3.9 Alice

More information

CSE 303: Database. Outline. Lecture 10. First Normal Form (1NF) First Normal Form (1NF) 10/1/2016. Chapter 3: Design Theory of Relational Database

CSE 303: Database. Outline. Lecture 10. First Normal Form (1NF) First Normal Form (1NF) 10/1/2016. Chapter 3: Design Theory of Relational Database CSE 303: Database Lecture 10 Chapter 3: Design Theory of Relational Database Outline 1st Normal Form = all tables attributes are atomic 2nd Normal Form = obsolete Boyce Codd Normal Form = will study 3rd

More information

Information Systems (Informationssysteme)

Information Systems (Informationssysteme) Information Systems (Informationssysteme) Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2015 c Jens Teubner Information Systems Summer 2015 1 Part VII Schema Normalization c Jens Teubner

More information

Functional Dependency Theory II. Winter Lecture 21

Functional Dependency Theory II. Winter Lecture 21 Functional Dependency Theory II Winter 2006-2007 Lecture 21 Last Time Introduced Third Normal Form A weakened version of BCNF that preserves more functional dependencies Allows non-trivial dependencies

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 12 (Week 13) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 Multivalued Dependencies Employee Child Salary Year Hilbert Hubert

More information

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago COSC 430 Advanced Database Topics Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago Learning objectives and references You should be able to: define the elements of the relational

More information

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Background We started with schema design ER model translation into a relational schema Then we studied relational

More information

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design Applied Databases Handout 2a. Functional Dependencies and Normal Forms 20 Oct 2008 Functional Dependencies This is the most mathematical part of the course. Functional dependencies provide an alternative

More information

A CORRECTED 5NF DEFINITION FOR RELATIONAL DATABASE DESIGN. Millist W. Vincent ABSTRACT

A CORRECTED 5NF DEFINITION FOR RELATIONAL DATABASE DESIGN. Millist W. Vincent ABSTRACT A CORRECTED 5NF DEFINITION FOR RELATIONAL DATABASE DESIGN Millist W. Vincent Advanced Computing Research Centre, School of Computer and Information Science, University of South Australia, Adelaide, Australia

More information

Lecture 6 Relational Database Design

Lecture 6 Relational Database Design Lecture 6 Relational Database Design Shuigeng Zhou October 21/27, 2009 School of Computer Science Fudan University Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional

More information

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University Lecture 6 Relational Database Design Shuigeng Zhou April 6/13, 2016 School of Computer Science Fudan University Relational Database Design p First Normal Form p Pitfalls in Relational Database Design p

More information

Schema Refinement and Normalization

Schema Refinement and Normalization Schema Refinement and Normalization Schema Refinements and FDs Redundancy is at the root of several problems associated with relational schemas. redundant storage, I/D/U anomalies Integrity constraints,

More information

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1 CAS CS 460/660 Introduction to Database Systems Functional Dependencies and Normal Forms 1.1 Review: Database Design Requirements Analysis user needs; what must database do? Conceptual Design high level

More information

CSIT5300: Advanced Database Systems

CSIT5300: Advanced Database Systems CSIT5300: Advanced Database Systems L05: Functional Dependencies Dr. Kenneth LEUNG Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR, China

More information

CS322: Database Systems Normalization

CS322: Database Systems Normalization CS322: Database Systems Normalization Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Introduction The normalization process takes a relation schema through

More information

Design theory for relational databases

Design theory for relational databases Design theory for relational databases 1. Consider a relation with schema R(A,B,C,D) and FD s AB C, C D and D A. a. What are all the nontrivial FD s that follow from the given FD s? You should restrict

More information

Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See for conditions on re-use "

Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See   for conditions on re-use Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use " Features of Good Relational Design! Atomic Domains and First Normal Form! Decomposition

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 11 (Week 12) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 1NF FIRST S# Status City P# Qty S1 20 London P1 300 S1 20 London

More information

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design Outline Introduction to Database Systems CSE 444 Design theory: 3.1-3.4 [Old edition: 3.4-3.6] Lectures 6-7: Database Design 1 2 Schema Refinements = Normal Forms 1st Normal Form = all tables are flat

More information

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Schema Refinement Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Revisit a Previous Example ssn name Lot Employees rating hourly_wages hours_worked ISA contractid Hourly_Emps

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases FUNCTIONAL DEPENDENCIES DECOMPOSITIONS NORMAL FORMS 1 Functional Dependencies X ->Y is an assertion about a relation R that whenever two tuples of R agree on all

More information

Relational Design Theory I. Functional Dependencies: why? Redundancy and Anomalies I. Functional Dependencies

Relational Design Theory I. Functional Dependencies: why? Redundancy and Anomalies I. Functional Dependencies Relational Design Theory I Functional Dependencies Functional Dependencies: why? Design methodologies: Bottom up (e.g. binary relational model) Top-down (e.g. ER leads to this) Needed: tools for analysis

More information

Functional Dependencies

Functional Dependencies Functional Dependencies P.J. M c.brien Imperial College London P.J. M c.brien (Imperial College London) Functional Dependencies 1 / 41 Problems in Schemas What is wrong with this schema? bank data no sortcode

More information

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh Functional Dependencies and Normalization Instructor: Mohamed Eltabakh meltabakh@cs.wpi.edu 1 Goal Given a database schema, how do you judge whether or not the design is good? How do you ensure it does

More information

Introduction to Data Management. Lecture #6 (Relational DB Design Theory)

Introduction to Data Management. Lecture #6 (Relational DB Design Theory) Introduction to Data Management Lecture #6 (Relational DB Design Theory) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v Homework

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases Keys: formal definition K is a superkey for relation R if K functionally determines all attributes of R K is a key for R if K is a superkey, but no proper subset

More information

Chapter 3 Design Theory for Relational Databases

Chapter 3 Design Theory for Relational Databases 1 Chapter 3 Design Theory for Relational Databases Contents Functional Dependencies Decompositions Normal Forms (BCNF, 3NF) Multivalued Dependencies (and 4NF) Reasoning About FD s + MVD s 2 Our example

More information

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 DESIGN THEORY FOR RELATIONAL DATABASES csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 1 Introduction There are always many different schemas for a given

More information

Database Normaliza/on. Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata

Database Normaliza/on. Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata Database Normaliza/on Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata Problems with redundancy Data (attributes) being present in multiple tables Potential problems Increase of storage

More information

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 Announcement Read Chapter 14 and 15 You must self-study these chapters Too huge to cover in Lectures Project 2 Part 1 due tonight Agenda 1.

More information

DECOMPOSITION & SCHEMA NORMALIZATION

DECOMPOSITION & SCHEMA NORMALIZATION DECOMPOSITION & SCHEMA NORMALIZATION CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? Bad schemas lead to redundancy To correct bad schemas: decompose relations

More information

CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen

CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen CS 464/564 Introduction to Database Management System Instructor: Abdullah Mueen LECTURE 4: DESIGN THEORIES (FUNCTIONAL DEPENDENCIES) Design theory E/R diagrams are high-level design Formal theory for

More information

CSC 261/461 Database Systems Lecture 13. Spring 2018

CSC 261/461 Database Systems Lecture 13. Spring 2018 CSC 261/461 Database Systems Lecture 13 Spring 2018 BCNF Decomposition Algorithm BCNFDecomp(R): Find X s.t.: X + X and X + [all attributes] if (not found) then Return R let Y = X + - X, Z = (X + ) C decompose

More information

A few details using Armstrong s axioms. Supplement to Normalization Lecture Lois Delcambre

A few details using Armstrong s axioms. Supplement to Normalization Lecture Lois Delcambre A few details using Armstrong s axioms Supplement to Normalization Lecture Lois Delcambre 1 Armstrong s Axioms with explanation and examples Reflexivity: If X Y, then X Y. (identity function is a function)

More information

Practice and Applications of Data Management CMPSCI 345. Lecture 16: Schema Design and Normalization

Practice and Applications of Data Management CMPSCI 345. Lecture 16: Schema Design and Normalization Practice and Applications of Data Management CMPSCI 345 Lecture 16: Schema Design and Normalization Keys } A superkey is a set of a/ributes A 1,..., A n s.t. for any other a/ribute B, we have A 1,...,

More information

Chapter 10. Normalization Ext (from E&N and my editing)

Chapter 10. Normalization Ext (from E&N and my editing) Chapter 10 Normalization Ext (from E&N and my editing) Outline BCNF Multivalued Dependencies and Fourth Normal Form 2 BCNF A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X ->

More information

Introduction to Data Management. Lecture #6 (Relational Design Theory)

Introduction to Data Management. Lecture #6 (Relational Design Theory) Introduction to Data Management Lecture #6 (Relational Design Theory) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v HW#2 is

More information

Relational Design Theory II. Detecting Anomalies. Normal Forms. Normalization

Relational Design Theory II. Detecting Anomalies. Normal Forms. Normalization Relational Design Theory II Normalization Detecting Anomalies SID Activity Fee Tax 1001 Piano $20 $2.00 1090 Swimming $15 $1.50 1001 Swimming $15 $1.50 Why is this bad design? Can we capture this using

More information

Database Tutorial 2: Functional Dependencies and Normal Forms

Database Tutorial 2: Functional Dependencies and Normal Forms Database Tutorial 2: Functional Dependencies and Normal Forms 2015-02-10 1. (9 points) Modeling and Design flight airline prime operating departure departure destination destination aircraft seats code

More information

CS 186, Fall 2002, Lecture 6 R&G Chapter 15

CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Schema Refinement and Normalization CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Functional Dependencies (Review)

More information

12/3/2010 REVIEW ALGEBRA. Exam Su 3:30PM - 6:30PM 2010/12/12 Room C9000

12/3/2010 REVIEW ALGEBRA. Exam Su 3:30PM - 6:30PM 2010/12/12 Room C9000 REVIEW Exam Su 3:30PM - 6:30PM 2010/12/12 Room C9000 2 ALGEBRA 1 RELATIONAL ALGEBRA OPERATIONS Basic operations Selection ( ) Selects a subset of rows from relation. Projection ( ) Deletes unwanted columns

More information

Normal Forms (ii) ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Normal Forms (ii) ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa ICS 321 Fall 2012 Normal Forms (ii) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/12/2012 Lipyeow Lim -- University of Hawaii at Manoa 1 Hourly_Emps

More information

CMPS Advanced Database Systems. Dr. Chengwei Lei CEECS California State University, Bakersfield

CMPS Advanced Database Systems. Dr. Chengwei Lei CEECS California State University, Bakersfield CMPS 4420 Advanced Database Systems Dr. Chengwei Lei CEECS California State University, Bakersfield CHAPTER 15 Relational Database Design Algorithms and Further Dependencies Slide 15-2 Chapter Outline

More information

Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms

Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms Database Group http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement: dbdm:start March 1, 2017 Exemple

More information

Design Theory: Functional Dependencies and Normal Forms, Part I Instructor: Shel Finkelstein

Design Theory: Functional Dependencies and Normal Forms, Part I Instructor: Shel Finkelstein Design Theory: Functional Dependencies and Normal Forms, Part I Instructor: Shel Finkelstein Reference: A First Course in Database Systems, 3 rd edition, Chapter 3 Important Notices CMPS 180 Final Exam

More information

CSC 261/461 Database Systems Lecture 11

CSC 261/461 Database Systems Lecture 11 CSC 261/461 Database Systems Lecture 11 Fall 2017 Announcement Read the textbook! Chapter 8: Will cover later; But self-study the chapter Everything except Section 8.4 Chapter 14: Section 14.1 14.5 Chapter

More information

Plan of the lecture. G53RDB: Theory of Relational Databases Lecture 10. Logical consequence (implication) Implication problem for fds

Plan of the lecture. G53RDB: Theory of Relational Databases Lecture 10. Logical consequence (implication) Implication problem for fds Plan of the lecture G53RDB: Theory of Relational Databases Lecture 10 Natasha Alechina School of Computer Science & IT nza@cs.nott.ac.uk Logical implication for functional dependencies Armstrong closure.

More information

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 CSC 261/461 Database Systems Lecture 8 Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 Agenda 1. Database Design 2. Normal forms & functional dependencies 3. Finding functional dependencies

More information

But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status)

But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status) So far we have seen: RECAP How to use functional dependencies to guide the design of relations How to modify/decompose relations to achieve 1NF, 2NF and 3NF relations But How do we make sure the decompositions

More information