Relational Design: Characteristics of Well-designed DB

Size: px
Start display at page:

Download "Relational Design: Characteristics of Well-designed DB"

Transcription

1 Relational Design: Characteristics of Well-designed DB 1. Minimal duplication Consider table newfaculty (Result of F aculty T each Course) Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz Cotts 103 DuPont EE Cotts 103 DuPont CIS Garth 423 DuPont EE Garth 423 DuPont EE Jones 211 Ewing MATH Clarke 103 DuPont AST Clarke 103 DuPont AST Represent all info in specs 3. Prevent info from being lost Duplication can be minimized by decomposition: Consider tables newfac: Id Lname Off Bldg Phone Salary Cotts 103 DuPont Garth 423 DuPont Jones 211 Ewing Clarke 103 DuPont and newcourse: Off Bldg Numb Dept Lvl MaxSz 103 DuPont 867 EE DuPont 652 CIS DuPont 323 EE DuPont 413 EE Ewing 230 MATH DuPont 120 AST DuPont 450 AST Now, consider their join newf ac newcourse: Id Lname Off Bldg Phone Salary Numb Dept Lvl MaxSz Cotts 103 DuPont EE Cotts 103 DuPont CIS Cotts 103 DuPont AST Cotts 103 DuPont AST Garth 423 DuPont EE Garth 423 DuPont EE Jones 211 Ewing MATH Clarke 103 DuPont AST Clarke 103 DuPont AST Clarke 103 DuPont EE Clarke 103 DuPont CIS

2 Relational Design: Functional Dependencies (FDs) FD expresses a constraint on values of a set of attributes imposed by another set Formally: Let X, Y R Y is functionally dependent on X, denoted X Y, iff for all tuples t 1, t 2 r(r), t 1 [Y ] = t 2 [Y ] whenever t 1 [X] = t 2 [X] Denoted X Y Relational Design: Closure of a Set of FDs Generally, given a set of FDs, there are additional FDs that can be derived from the set The closure of a set FDs F : Set of FDs derivable from F Denoted F + Armstrong s Axioms allow computation of F + 1. Reflexivity rule: Given set of attributes X and Y X, then X Y 2. Augmentation rule: If X Y, and Z is a set of attributes, then XZ Y Z (OR, If X Y, then XZ Y ) 3. Transitivity rule: If X Y, and Y Z, then X Z Supplemental axioms: 1. Union rule: If X Y, and X Z, then X Y Z 2. Decomposition rule: If X Y Z, then X Y and X Z 3. Pseudotransitivity rule: If X Y, and Y W Z, then XW Z Full family of FDs: A set of FDs F is said to be a full family of FDs if F = F + Closure of X under F Let X be a set of attributes Relational Design: Closure of a Set of Attributes Closure of X under F is the set of attributes functionally dependent on X as determined by a set of FDs F when applied to X Denoted X + To determine X + with respect to F : X + X do { oldx + X + for (each Y Z F ) if (Y X + ) X + X + Z } until (oldx + = X + ) 2

3 K schema R is a superkey of R if for all tuples t 1, t 2 r(r), t 1 = t 2 whenever t 1 [K] = t 2 [K] I.e., K R Full functional dependency: Y is fully functionally dependent on X in FD X Y if there is no subset of X on which Y is dependent I.e., for any Z X, Z Y X is said to be irreducible C R is a candidate key of R if C R and C is irreducible To find a key K for scheme R: K R for (each a i K) { T (K a i ) + if ((K a i ) + = R K K a i } Given sets of FDs F and G F covers G if G F + Relational Design: Equivalence of sets of FDs F and G are equivalent if F covers G and G covers F I.e., F + G + To determine whether X Y F +, compute X + WRT F If Y X +, then X Y F + To determine equivalence of F and G 1. For each X Y F, compute X + WRT G (a) If Y X +, then X Y G + (b) If fail for any FD, stop. G does not cover F 2. For each A B G, compute A + WRT F (a) If B A +, then A B F + (b) If fail for any FD, stop. F does not cover G 3. If succeed for all FDs, F G 3

4 Minimal cover of a set of FDs F : Smallest set of FD s that is equivalent to F Denoted F c Minimal cover has the following properties 1. Every FD has a single attribute on right side 2. No left-hand side has extraneous attributes Relational Design: Minimal (Canonical) Covers I.e., every left-hand side is irreducible a is extraneous in X if (F c (X y)) ((X a) y) F 3. No FD is redundant; I.e., X y is redundant if (F c (X y)) F To compute the minimal cover G for F : 1. G F 2. For each FD of the form X a 1, a 2,..., a n, replace by X a 1, X a 2,..., X a n 3. For each FD X a G, delete all extraneous attributes 4. Delete each redundant FD X a from G Relational Design: Decomposition A decomposition of a scheme R is a set of subschemas derived from R Formally: Let R be a relational scheme Then {R 1, R 2,..., R n } is a decomposition of R if R 1 R 2... R n = R Formally: Given Relational Design: Lossless Join Decomposition 1. Scheme R, 2. Relation r(r), 3. Decomposition D = {R 1, R 2,..., R n }, and 4. Relations r 1 (R 1 ), r 2 (R 2 ),..., r n (R n ), where r 1 = π R1 (R) Then D is a lossless join decomposition of R if r 1 r 2... r n = r A decomposition of R is lossless if either 1. R 1 R2 (R 1 R 2 ) 2. R 1 R2 (R 2 R 1 ) 4

5 Algorithm to determine whether decomposition is lossless: Given 1. A set of FDs F, 2. schema R(A 1, A 2,..., A n ), and 3. decomposition D = R 1, R 2,..., R k Steps: Consider 1. Construct table with n columns and k rows Rows correspond to k subschemas R i Columns correspond to n attributes A j 2. In table[i, j], put a j if A j R i Otherwise, put b ij 3. For each FD α β F Look for 2 rows that have matching values for every A j α Set the column values that correspond to the attributes in β to the same values for these 2 rows The goal is to replace b ij with a j 4. Continue until either (a) No more changes can be made, or (b) A row contains α 1, α 2,..., α n 5. If a row contains α 1, α 2,..., α n, The decomposition is lossless R Snum City Status s1 London 20 s2 Paris 10 s3 Paris 10 s4 London 20 and FDs Snum City City Status Now consider the following decompositions Relational Design: Dependency Preservation - Motivation S1 Snum City s1 London s2 Paris s3 Paris s4 London T1 Snum City s1 London s2 Paris s3 Paris s4 London S2 City Status London 20 Paris 10 T2 Snum Status s1 20 s2 10 s3 10 s4 20 Both decompositions are LLJ 5

6 Suppose you wanted to insert the data (s5, London, 30) into each decomposition For decomposition S This would require inserting 1. < s5, London > into S1, and 2. < London, 30 > into S2 The insert into S2 would violate FD 2 For decomposition T This would require inserting 1. < s5, London > into T 1, and 2. < s5, 30 > into T 2 The fact that FD 2 is violated is not obvious from an examination of the individual tables The only way to determnine whether FD 2 is violated in T is to join T 1 and T 2 Restriction of set of FDs Given 1. set of FDs F, 2. schema R, 3. decomposition D = {R 1, R 2,...} Relational Design: Dependency Preservation The restriction of F to R i is the set of FDs in F + that are wholly contained in R i I.e., X Y F i if X Y R i and X Y F Denoted F i Let F = n i=1 F i Generally, F F But if F + F +, checking against F is equivalent to checking against F Dependency preservation A decomposition is dependency preserving if F + F + Rissamon s Theorem: A decomposition {R 1, R 2 } of R is DP if 1. {F 1 F 2 } + = F + 2. R 1 R 2 is candidate key of R 1 or R 2 Given scheme R, decomposition D = R 1, R 2,...t, and F To determine dependency preservation of F compute F + for (each R i in D) F i restriction of F to R i F F i compute F + if (F + = F + ) return TRUE else return FALSE Relational Design: Dependency Preservation - Algorithms 6

7 To determine dependency preservation of α β in F oldresult φ result α while (oldresult!= result) { oldresult result for (each R i ) { I result R i C I + T C R i result result T } } if (β in Result) return TRUE else return FALSE Relational Design: Normalization - Intro Normal form is a set of constraints on a DB schema Normal forms: Form Alt Name Restrictiveness Duplication 1NF least most 2NF 3NF Boyce-Codd NF 4NF 5NF Project-Join 6NF Domain-Key most least Except for 1NF, normal forms based on dependencies (2, 3, BNF: FDs; 4: MVDs; 5: JDs; 6: DK) A schema R is in 1NF if all attributes are atomic Composites: flatten (ala ER-RM mapping) Multivalued: Relational Design: Normalization - 1NF 1. Decompose into 2 tables (ala ER-RM mapping): R 1 contains PK + MV attribute R 2 contains R MV attribute 2. Use 1 table: For each key, have one row for each value of the MV attribute 7

8 Relational Design: Normalization - 2NF A non-prime attribute is not part of a candidate key An attribute is fully dependent on a set of FDs if it is not dependent on a subset of those attributes A schema R is in 2NF if it is in 1NF and every non-prime attribute is fully functionally dependent on the PK of R Alternative definition: No non-prime attribute is partially dependent on the PK To normalize to 2NF: 1. For every schema R in which FD X Y F + violates 2NF (a) Replace schema R with schemas i. R 1 = X Y ii. R 2 = R Y Transitive dependency Relational Design: Normalization - 3NF Y is transitively dependent on PK X if there is a Z such that 1. X Z, 2. Z Y, and 3. Z P K X Y is a transitive dependency on the PK A schema R is in 3NF if it is in 2NF and every non-prime attribute is non-transitively dependent on the PK of R To normalize to 3NF: 1. For every table R in which FD Z Y violates 3NF (a) create 2 tables: i. R 1 = Z Y ii. R 2 = R Y Codd s definition of 3NF is based on 2NF Given schema R and set of FDs F, create a 3NF decomposition directly from 1NF by: 1. Find minimal cover F c of F 2. For each unique set of attributes appearing on the lefthand side of an FD X Y i F c (a) Create a schema consisting of X n i=1 Y i 3. Create a schema containing any attributes of R not included in the previous step 4. If none of the schemas created contain a candidate key (a) Create a schema containing a candidate key Resulting DB schema guaranteed to be 1. Lossless join 2. Dependency preserving Not unique 8

9 Relational Design: Normalization - General Definitions for 2NF and 3NF A schema R is in 2NF if it is in 1NF and every non-prime attribute is fully functionally dependent on every CK of R A schema R is in 3NF if it is in 2NF and every non-prime attribute is non-transitively dependent on every CK of R Alternative 3NF def: A schema R is in 3NF if for every non-trivial FD X Y F +, either 1. X is a superkey of R, or 2. Every attribute in Y is prime Relational Design: Normalization - BCNF A schema R is in BCNF if every attribute is fully functionally dependent on every CK of R Alternative BCNF def: A schema R is in BCNF if, for every non-trivial FD X Y F +, X is a superkey of R To normalize to BCNF: 1. For every schema R in which FD X Y F + violates BCNF (a) Replace schema R with schemas i. R 1 = X Y ii. R 2 = R Y Resulting DB schema guaranteed to be Lossless join Resulting DB schema not guaranteed to be Dependency preserving Unique 9

Relational Database Design

Relational Database Design Relational Database Design Jan Chomicki University at Buffalo Jan Chomicki () Relational database design 1 / 16 Outline 1 Functional dependencies 2 Normal forms 3 Multivalued dependencies Jan Chomicki

More information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information

UVA UVA UVA UVA. Database Design. Relational Database Design. Functional Dependency. Loss of Information Relational Database Design Database Design To generate a set of relation schemas that allows - to store information without unnecessary redundancy - to retrieve desired information easily Approach - design

More information

SCHEMA NORMALIZATION. CS 564- Fall 2015

SCHEMA NORMALIZATION. CS 564- Fall 2015 SCHEMA NORMALIZATION CS 564- Fall 2015 HOW TO BUILD A DB APPLICATION Pick an application Figure out what to model (ER model) Output: ER diagram Transform the ER diagram to a relational schema Refine the

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Fall 2017 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 42 Schema Design When we get a relational

More information

Constraints: Functional Dependencies

Constraints: Functional Dependencies Constraints: Functional Dependencies Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Functional Dependencies 1 / 32 Schema Design When we get a relational

More information

Functional Dependency Theory II. Winter Lecture 21

Functional Dependency Theory II. Winter Lecture 21 Functional Dependency Theory II Winter 2006-2007 Lecture 21 Last Time Introduced Third Normal Form A weakened version of BCNF that preserves more functional dependencies Allows non-trivial dependencies

More information

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due

Information Systems for Engineers. Exercise 8. ETH Zurich, Fall Semester Hand-out Due Information Systems for Engineers Exercise 8 ETH Zurich, Fall Semester 2017 Hand-out 24.11.2017 Due 01.12.2017 1. (Exercise 3.3.1 in [1]) For each of the following relation schemas and sets of FD s, i)

More information

Relational Database Design

Relational Database Design CSL 451 Introduction to Database Systems Relational Database Design Department of Computer Science and Engineering Indian Institute of Technology Ropar Narayanan (CK) Chatapuram Krishnan! Recap - Boyce-Codd

More information

Functional Dependencies

Functional Dependencies Functional Dependencies Functional Dependencies Framework for systematic design and optimization of relational schemas Generalization over the notion of Keys Crucial in obtaining correct normalized schemas

More information

Chapter 7: Relational Database Design

Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design! First Normal Form! Pitfalls in Relational Database Design! Functional Dependencies! Decomposition! Boyce-Codd Normal Form! Third

More information

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago

COSC 430 Advanced Database Topics. Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago COSC 430 Advanced Database Topics Lecture 2: Relational Theory Haibo Zhang Computer Science, University of Otago Learning objectives and references You should be able to: define the elements of the relational

More information

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design

Chapter 7: Relational Database Design. Chapter 7: Relational Database Design Chapter 7: Relational Database Design Chapter 7: Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional Dependencies Decomposition Boyce-Codd Normal Form Third Normal

More information

CS54100: Database Systems

CS54100: Database Systems CS54100: Database Systems Keys and Dependencies 18 January 2012 Prof. Chris Clifton Functional Dependencies X A = assertion about a relation R that whenever two tuples agree on all the attributes of X,

More information

Lossless Joins, Third Normal Form

Lossless Joins, Third Normal Form Lossless Joins, Third Normal Form FCDB 3.4 3.5 Dr. Chris Mayfield Department of Computer Science James Madison University Mar 19, 2018 Decomposition wish list 1. Eliminate redundancy and anomalies 2. Recover

More information

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20

FUNCTIONAL DEPENDENCY THEORY II. CS121: Relational Databases Fall 2018 Lecture 20 FUNCTIONAL DEPENDENCY THEORY II CS121: Relational Databases Fall 2018 Lecture 20 Canonical Cover 2 A canonical cover F c for F is a set of functional dependencies such that: F logically implies all dependencies

More information

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19

FUNCTIONAL DEPENDENCY THEORY. CS121: Relational Databases Fall 2017 Lecture 19 FUNCTIONAL DEPENDENCY THEORY CS121: Relational Databases Fall 2017 Lecture 19 Last Lecture 2 Normal forms specify good schema patterns First normal form (1NF): All attributes must be atomic Easy in relational

More information

Relational-Database Design

Relational-Database Design C H A P T E R 7 Relational-Database Design Exercises 7.2 Answer: A decomposition {R 1, R 2 } is a lossless-join decomposition if R 1 R 2 R 1 or R 1 R 2 R 2. Let R 1 =(A, B, C), R 2 =(A, D, E), and R 1

More information

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies?

Introduction. Normalization. Example. Redundancy. What problems are caused by redundancy? What are functional dependencies? Normalization Introduction What problems are caused by redundancy? UVic C SC 370 Dr. Daniel M. German Department of Computer Science What are functional dependencies? What are normal forms? What are the

More information

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties

Review: Keys. What is a Functional Dependency? Why use Functional Dependencies? Functional Dependency Properties Review: Keys Superkey: set of attributes whose values are unique for each tuple Note: a superkey isn t necessarily minimal. For example, for any relation, the entire set of attributes is always a superkey.

More information

CS322: Database Systems Normalization

CS322: Database Systems Normalization CS322: Database Systems Normalization Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Introduction The normalization process takes a relation schema through

More information

A few details using Armstrong s axioms. Supplement to Normalization Lecture Lois Delcambre

A few details using Armstrong s axioms. Supplement to Normalization Lecture Lois Delcambre A few details using Armstrong s axioms Supplement to Normalization Lecture Lois Delcambre 1 Armstrong s Axioms with explanation and examples Reflexivity: If X Y, then X Y. (identity function is a function)

More information

Chapter 8: Relational Database Design

Chapter 8: Relational Database Design Chapter 8: Relational Database Design Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Chapter 8: Relational Database Design Features of Good Relational Design Atomic Domains

More information

Functional Dependencies and Normalization

Functional Dependencies and Normalization Functional Dependencies and Normalization There are many forms of constraints on relational database schemata other than key dependencies. Undoubtedly most important is the functional dependency. A functional

More information

Schema Refinement: Other Dependencies and Higher Normal Forms

Schema Refinement: Other Dependencies and Higher Normal Forms Schema Refinement: Other Dependencies and Higher Normal Forms Spring 2018 School of Computer Science University of Waterloo Databases CS348 (University of Waterloo) Higher Normal Forms 1 / 14 Outline 1

More information

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design

Functional Dependencies. Applied Databases. Not all designs are equally good! An example of the bad design Applied Databases Handout 2a. Functional Dependencies and Normal Forms 20 Oct 2008 Functional Dependencies This is the most mathematical part of the course. Functional dependencies provide an alternative

More information

Databases 2012 Normalization

Databases 2012 Normalization Databases 2012 Christian S. Jensen Computer Science, Aarhus University Overview Review of redundancy anomalies and decomposition Boyce-Codd Normal Form Motivation for Third Normal Form Third Normal Form

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms UMass Amherst Feb 14, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke, Dan Suciu 1 Relational Schema Design Conceptual Design name Product buys Person price name

More information

DECOMPOSITION & SCHEMA NORMALIZATION

DECOMPOSITION & SCHEMA NORMALIZATION DECOMPOSITION & SCHEMA NORMALIZATION CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? Bad schemas lead to redundancy To correct bad schemas: decompose relations

More information

But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status)

But RECAP. Why is losslessness important? An Instance of Relation NEWS. Suppose we decompose NEWS into: R1(S#, Sname) R2(City, Status) So far we have seen: RECAP How to use functional dependencies to guide the design of relations How to modify/decompose relations to achieve 1NF, 2NF and 3NF relations But How do we make sure the decompositions

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 11 (Week 12) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 1NF FIRST S# Status City P# Qty S1 20 London P1 300 S1 20 London

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007

Schema Refinement and Normal Forms. The Evils of Redundancy. Schema Refinement. Yanlei Diao UMass Amherst April 10, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated

More information

Functional Dependency and Algorithmic Decomposition

Functional Dependency and Algorithmic Decomposition Functional Dependency and Algorithmic Decomposition In this section we introduce some new mathematical concepts relating to functional dependency and, along the way, show their practical use in relational

More information

Schema Refinement & Normalization Theory

Schema Refinement & Normalization Theory Schema Refinement & Normalization Theory Functional Dependencies Week 13 1 What s the Problem Consider relation obtained (call it SNLRHW) Hourly_Emps(ssn, name, lot, rating, hrly_wage, hrs_worked) What

More information

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17

Normalization. October 5, Chapter 19. CS445 Pacific University 1 10/05/17 Normalization October 5, 2017 Chapter 19 Pacific University 1 Description A Real Estate agent wants to track offers made on properties. Each customer has a first and last name. Each property has a size,

More information

Relational Design Theory

Relational Design Theory Relational Design Theory CSE462 Database Concepts Demian Lessa/Jan Chomicki Department of Computer Science and Engineering State University of New York, Buffalo Fall 2013 Overview How does one design a

More information

Chapter 10. Normalization Ext (from E&N and my editing)

Chapter 10. Normalization Ext (from E&N and my editing) Chapter 10 Normalization Ext (from E&N and my editing) Outline BCNF Multivalued Dependencies and Fourth Normal Form 2 BCNF A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X ->

More information

Schema Refinement and Normal Forms. Why schema refinement?

Schema Refinement and Normal Forms. Why schema refinement? Schema Refinement and Normal Forms Why schema refinement? Consider relation obtained from Hourly_Emps: Hourly_Emps (sin,rating,hourly_wages,hourly_worked) Problems: Update Anomaly: Can we change the wages

More information

Kapitel 3: Formal Design

Kapitel 3: Formal Design Theory I: Database Foundations 3. Formal Design 3. Kapitel 3: Formal Design We want to distinguish good from bad database design. What kind of additional information do we need? Can we transform a bad

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Functional Dependencies (FDs) Example: Constraints on Entity Set. Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms INFO 330, Fall 2006 1 Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016

Normal Forms. Dr Paolo Guagliardo. University of Edinburgh. Fall 2016 Normal Forms Dr Paolo Guagliardo University of Edinburgh Fall 2016 Example of bad design BAD Title Director Theatre Address Time Price Inferno Ron Howard Vue Omni Centre 20:00 11.50 Inferno Ron Howard

More information

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems

Relational Database Design Theory Part II. Announcements (October 12) Review. CPS 116 Introduction to Database Systems Relational Database Design Theory Part II CPS 116 Introduction to Database Systems Announcements (October 12) 2 Midterm graded; sample solution available Please verify your grades on Blackboard Project

More information

Functional Dependencies & Normalization. Dr. Bassam Hammo

Functional Dependencies & Normalization. Dr. Bassam Hammo Functional Dependencies & Normalization Dr. Bassam Hammo Redundancy and Normalisation Redundant Data Can be determined from other data in the database Leads to various problems INSERT anomalies UPDATE

More information

INF1383 -Bancos de Dados

INF1383 -Bancos de Dados INF1383 -Bancos de Dados Prof. Sérgio Lifschitz DI PUC-Rio Eng. Computação, Sistemas de Informação e Ciência da Computação Projeto de BD e Formas Normais Alguns slides são baseados ou modificados dos originais

More information

CSIT5300: Advanced Database Systems

CSIT5300: Advanced Database Systems CSIT5300: Advanced Database Systems L05: Functional Dependencies Dr. Kenneth LEUNG Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong SAR, China

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) CIS 330, Spring 2004 Lecture 11 March 2, 2004 Schema Refinement and Normal Forms CIS 330, Spring 2004 Lecture 11 March 2, 2004 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage,

More information

Lecture 6 Relational Database Design

Lecture 6 Relational Database Design Lecture 6 Relational Database Design Shuigeng Zhou October 21/27, 2009 School of Computer Science Fudan University Relational Database Design First Normal Form Pitfalls in Relational Database Design Functional

More information

Normaliza)on and Func)onal Dependencies

Normaliza)on and Func)onal Dependencies Normaliza)on and Func)onal Dependencies 1NF and 2NF Redundancy and Anomalies Func)onal Dependencies A9ribute Closure Keys and Super keys 3NF BCNF Minimal Cover Algorithm 3NF Synthesis Algorithm Decomposi)on

More information

Schema Refinement. Feb 4, 2010

Schema Refinement. Feb 4, 2010 Schema Refinement Feb 4, 2010 1 Relational Schema Design Conceptual Design name Product buys Person price name ssn ER Model Logical design Relational Schema plus Integrity Constraints Schema Refinement

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Yanlei Diao UMass Amherst April 10 & 15, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms

Database Design: Normal Forms as Quality Criteria. Functional Dependencies Normal Forms Design and Normal forms Database Design: Normal Forms as Quality Criteria Functional Dependencies Normal Forms Design and Normal forms Design Quality: Introduction Good conceptual model: - Many alternatives - Informal guidelines

More information

Chapter 3 Design Theory for Relational Databases

Chapter 3 Design Theory for Relational Databases 1 Chapter 3 Design Theory for Relational Databases Contents Functional Dependencies Decompositions Normal Forms (BCNF, 3NF) Multivalued Dependencies (and 4NF) Reasoning About FD s + MVD s 2 Remember our

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normalization. Functional Dependencies (FDs) Example: Constraints on Entity Set. Refining an ER Diagram The Evils of Redundancy Schema Refinement and Normalization Chapter 1 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Redundancy is at the root of several problems

More information

Information Systems (Informationssysteme)

Information Systems (Informationssysteme) Information Systems (Informationssysteme) Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2015 c Jens Teubner Information Systems Summer 2015 1 Part VII Schema Normalization c Jens Teubner

More information

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University

Shuigeng Zhou. April 6/13, 2016 School of Computer Science Fudan University Lecture 6 Relational Database Design Shuigeng Zhou April 6/13, 2016 School of Computer Science Fudan University Relational Database Design p First Normal Form p Pitfalls in Relational Database Design p

More information

Schema Refinement and Normal Forms Chapter 19

Schema Refinement and Normal Forms Chapter 19 Schema Refinement and Normal Forms Chapter 19 Instructor: Vladimir Zadorozhny vladimir@sis.pitt.edu Information Science Program School of Information Sciences, University of Pittsburgh Database Management

More information

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19

Schema Refinement and Normal Forms. The Evils of Redundancy. Functional Dependencies (FDs) [R&G] Chapter 19 Schema Refinement and Normal Forms [R&G] Chapter 19 CS432 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational schemas: redundant storage, insert/delete/update

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd.

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Example (Contd. The Evils of Redundancy Schema Refinement and Normal Forms Chapter 19 Database Management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Redundancy is at the root of several problems associated with relational

More information

CSE 132B Database Systems Applications

CSE 132B Database Systems Applications CSE 132B Database Systems Applications Alin Deutsch Database Design and Normal Forms Some slides are based or modified from originals by Sergio Lifschitz @ PUC Rio, Brazil and Victor Vianu @ CSE UCSD and

More information

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram

The Evils of Redundancy. Schema Refinement and Normal Forms. Example: Constraints on Entity Set. Functional Dependencies (FDs) Refining an ER Diagram Schema Refinement and Normal Forms Chapter 19 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 The Evils of Redundancy Redundancy is at the root of several problems associated with relational

More information

Schema Refinement and Normal Forms. Chapter 19

Schema Refinement and Normal Forms. Chapter 19 Schema Refinement and Normal Forms Chapter 19 1 Review: Database Design Requirements Analysis user needs; what must the database do? Conceptual Design high level descr. (often done w/er model) Logical

More information

Chapter 11, Relational Database Design Algorithms and Further Dependencies

Chapter 11, Relational Database Design Algorithms and Further Dependencies Chapter 11, Relational Database Design Algorithms and Further Dependencies Normal forms are insufficient on their own as a criteria for a good relational database schema design. The relations in a database

More information

Database Design and Implementation

Database Design and Implementation Database Design and Implementation CS 645 Schema Refinement First Normal Form (1NF) A schema is in 1NF if all tables are flat Student Name GPA Course Student Name GPA Alice 3.8 Bob 3.7 Carol 3.9 Alice

More information

Functional Dependencies

Functional Dependencies Functional Dependencies P.J. M c.brien Imperial College London P.J. M c.brien (Imperial College London) Functional Dependencies 1 / 41 Problems in Schemas What is wrong with this schema? bank data no sortcode

More information

CS122A: Introduction to Data Management. Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li

CS122A: Introduction to Data Management. Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li CS122A: Introduction to Data Management Lecture #13: Relational DB Design Theory (II) Instructor: Chen Li 1 Third Normal Form (3NF) v Relation R is in 3NF if it is in 2NF and it has no transitive dependencies

More information

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018

CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 CSC 261/461 Database Systems Lecture 10 (part 2) Spring 2018 Announcement Read Chapter 14 and 15 You must self-study these chapters Too huge to cover in Lectures Project 2 Part 1 due tonight Agenda 1.

More information

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke

Schema Refinement. Yanlei Diao UMass Amherst. Slides Courtesy of R. Ramakrishnan and J. Gehrke Schema Refinement Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Revisit a Previous Example ssn name Lot Employees rating hourly_wages hours_worked ISA contractid Hourly_Emps

More information

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018

DESIGN THEORY FOR RELATIONAL DATABASES. csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 DESIGN THEORY FOR RELATIONAL DATABASES csc343, Introduction to Databases Renée J. Miller and Fatemeh Nargesian and Sina Meraji Winter 2018 1 Introduction There are always many different schemas for a given

More information

Schema Refinement and Normal Forms

Schema Refinement and Normal Forms Schema Refinement and Normal Forms Chapter 19 Quiz #2 Next Thursday Comp 521 Files and Databases Fall 2012 1 The Evils of Redundancy v Redundancy is at the root of several problems associated with relational

More information

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007

Schema Refinement and Normal Forms. Case Study: The Internet Shop. Redundant Storage! Yanlei Diao UMass Amherst November 1 & 6, 2007 Schema Refinement and Normal Forms Yanlei Diao UMass Amherst November 1 & 6, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke 1 Case Study: The Internet Shop DBDudes Inc.: a well-known database consulting

More information

Schema Refinement and Normalization

Schema Refinement and Normalization Schema Refinement and Normalization Schema Refinements and FDs Redundancy is at the root of several problems associated with relational schemas. redundant storage, I/D/U anomalies Integrity constraints,

More information

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1

Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Schema Refinement & Normalization Theory: Functional Dependencies INFS-614 INFS614, GMU 1 Background We started with schema design ER model translation into a relational schema Then we studied relational

More information

Database Design and Normalization

Database Design and Normalization Database Design and Normalization Chapter 12 (Week 13) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 Multivalued Dependencies Employee Child Salary Year Hilbert Hubert

More information

Background: Functional Dependencies. æ We are always talking about a relation R, with a æxed schema èset of attributesè and a

Background: Functional Dependencies. æ We are always talking about a relation R, with a æxed schema èset of attributesè and a Background: Functional Dependencies We are always talking about a relation R, with a xed schema èset of attributesè and a varying instance èset of tuplesè. Conventions: A;B;:::are attributes; :::;Y;Z are

More information

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design

10/12/10. Outline. Schema Refinements = Normal Forms. First Normal Form (1NF) Data Anomalies. Relational Schema Design Outline Introduction to Database Systems CSE 444 Design theory: 3.1-3.4 [Old edition: 3.4-3.6] Lectures 6-7: Database Design 1 2 Schema Refinements = Normal Forms 1st Normal Form = all tables are flat

More information

Relational Design Theory II. Detecting Anomalies. Normal Forms. Normalization

Relational Design Theory II. Detecting Anomalies. Normal Forms. Normalization Relational Design Theory II Normalization Detecting Anomalies SID Activity Fee Tax 1001 Piano $20 $2.00 1090 Swimming $15 $1.50 1001 Swimming $15 $1.50 Why is this bad design? Can we capture this using

More information

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh

Functional Dependencies and Normalization. Instructor: Mohamed Eltabakh Functional Dependencies and Normalization Instructor: Mohamed Eltabakh meltabakh@cs.wpi.edu 1 Goal Given a database schema, how do you judge whether or not the design is good? How do you ensure it does

More information

Functional. Dependencies. Functional Dependency. Definition. Motivation: Definition 11/12/2013

Functional. Dependencies. Functional Dependency. Definition. Motivation: Definition 11/12/2013 Functional Dependencies Functional Dependency Functional dependency describes the relationship between attributes in a relation. Eg. if A and B are attributes of relation R, B is functionally dependent

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases Keys: formal definition K is a superkey for relation R if K functionally determines all attributes of R K is a key for R if K is a superkey, but no proper subset

More information

CSE 344 AUGUST 6 TH LOSS AND VIEWS

CSE 344 AUGUST 6 TH LOSS AND VIEWS CSE 344 AUGUST 6 TH LOSS AND VIEWS ADMINISTRIVIA WQ6 due tonight HW7 due Wednesday DATABASE DESIGN PROCESS Conceptual Model: name product makes company price name address Relational Model: Tables + constraints

More information

Design Theory for Relational Databases

Design Theory for Relational Databases Design Theory for Relational Databases FUNCTIONAL DEPENDENCIES DECOMPOSITIONS NORMAL FORMS 1 Functional Dependencies X ->Y is an assertion about a relation R that whenever two tuples of R agree on all

More information

Functional Dependencies. Getting a good DB design Lisa Ball November 2012

Functional Dependencies. Getting a good DB design Lisa Ball November 2012 Functional Dependencies Getting a good DB design Lisa Ball November 2012 Outline (2012) SEE NEXT SLIDE FOR ALL TOPICS (some for you to read) Normalization covered by Dr Sanchez Armstrong s Axioms other

More information

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101

CSC 261/461 Database Systems Lecture 8. Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 CSC 261/461 Database Systems Lecture 8 Spring 2017 MW 3:25 pm 4:40 pm January 18 May 3 Dewey 1101 Agenda 1. Database Design 2. Normal forms & functional dependencies 3. Finding functional dependencies

More information

Normal Forms 1. ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa

Normal Forms 1. ICS 321 Fall Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa ICS 321 Fall 2013 Normal Forms 1 Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 9/16/2013 Lipyeow Lim -- University of Hawaii at Manoa 1 The Problem with

More information

Introduction to Data Management. Lecture #7 (Relational DB Design Theory II)

Introduction to Data Management. Lecture #7 (Relational DB Design Theory II) Introduction to Data Management Lecture #7 (Relational DB Design Theory II) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements v Homework

More information

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi

Design Theory for Relational Databases. Spring 2011 Instructor: Hassan Khosravi Design Theory for Relational Databases Spring 2011 Instructor: Hassan Khosravi Chapter 3: Design Theory for Relational Database 3.1 Functional Dependencies 3.2 Rules About Functional Dependencies 3.3 Design

More information

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1

CAS CS 460/660 Introduction to Database Systems. Functional Dependencies and Normal Forms 1.1 CAS CS 460/660 Introduction to Database Systems Functional Dependencies and Normal Forms 1.1 Review: Database Design Requirements Analysis user needs; what must database do? Conceptual Design high level

More information

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on

CS 4604: Introduc0on to Database Management Systems. B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on CS 4604: Introduc0on to Database Management Systems B. Aditya Prakash Lecture #15: BCNF, 3NF and Normaliza:on Overview - detailed DB design and normaliza:on pi?alls of bad design decomposi:on normal forms

More information

CSC 261/461 Database Systems Lecture 13. Spring 2018

CSC 261/461 Database Systems Lecture 13. Spring 2018 CSC 261/461 Database Systems Lecture 13 Spring 2018 BCNF Decomposition Algorithm BCNFDecomp(R): Find X s.t.: X + X and X + [all attributes] if (not found) then Return R let Y = X + - X, Z = (X + ) C decompose

More information

CMPS Advanced Database Systems. Dr. Chengwei Lei CEECS California State University, Bakersfield

CMPS Advanced Database Systems. Dr. Chengwei Lei CEECS California State University, Bakersfield CMPS 4420 Advanced Database Systems Dr. Chengwei Lei CEECS California State University, Bakersfield CHAPTER 15 Relational Database Design Algorithms and Further Dependencies Slide 15-2 Chapter Outline

More information

Database Normaliza/on. Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata

Database Normaliza/on. Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata Database Normaliza/on Debapriyo Majumdar DBMS Fall 2016 Indian Statistical Institute Kolkata Problems with redundancy Data (attributes) being present in multiple tables Potential problems Increase of storage

More information

CSC 261/461 Database Systems Lecture 11

CSC 261/461 Database Systems Lecture 11 CSC 261/461 Database Systems Lecture 11 Fall 2017 Announcement Read the textbook! Chapter 8: Will cover later; But self-study the chapter Everything except Section 8.4 Chapter 14: Section 14.1 14.5 Chapter

More information

Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See for conditions on re-use "

Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See   for conditions on re-use Database System Concepts, 5th Ed.! Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use " Features of Good Relational Design! Atomic Domains and First Normal Form! Decomposition

More information

Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms

Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms Data Bases Data Mining Foundations of databases: from functional dependencies to normal forms Database Group http://liris.cnrs.fr/ecoquery/dokuwiki/doku.php?id=enseignement: dbdm:start March 1, 2017 Exemple

More information

Lecture #7 (Relational Design Theory, cont d.)

Lecture #7 (Relational Design Theory, cont d.) Introduction to Data Management Lecture #7 (Relational Design Theory, cont d.) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Announcements

More information

L13: Normalization. CS3200 Database design (sp18 s2) 2/26/2018

L13: Normalization. CS3200 Database design (sp18 s2)   2/26/2018 L13: Normalization CS3200 Database design (sp18 s2) https://course.ccs.neu.edu/cs3200sp18s2/ 2/26/2018 274 Announcements! Keep bringing your name plates J Page Numbers now bigger (may change slightly)

More information

CS 186, Fall 2002, Lecture 6 R&G Chapter 15

CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Schema Refinement and Normalization CS 186, Fall 2002, Lecture 6 R&G Chapter 15 Nobody realizes that some people expend tremendous energy merely to be normal. Albert Camus Functional Dependencies (Review)

More information

Introduction to Data Management CSE 344

Introduction to Data Management CSE 344 Introduction to Data Management CSE 344 Lectures 18: BCNF 1 What makes good schemas? 2 Review: Relation Decomposition Break the relation into two: Name SSN PhoneNumber City Fred 123-45-6789 206-555-1234

More information

Relational Normalization: Contents

Relational Normalization: Contents Relational Normalization: Contents Motivation Functional Dependencies First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form Decomposition Algorithms Multivalued Dependencies and

More information

Normal Forms Lossless Join.

Normal Forms Lossless Join. Normal Forms Lossless Join http://users.encs.concordia.ca/~m_oran/ 1 Types of Normal Forms A relation schema R is in the first normal form (1NF) if the domain of its each attribute has only atomic values

More information