Instrumental Resolution

Size: px
Start display at page:

Download "Instrumental Resolution"

Transcription

1 Instrumental Resolution MLZ Triple-Axis Workshop T. Weber Technische Universität München, Physikdepartment E21 April 3 4, 2017

2 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

3 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

4 Introduction to resolution calculation Scattering triangle: k i k f = Q and h²/(2m n ) ki 2 h²/(2m n ) kf 2 = E Variances in k i and k f add up to a variance in Q and E. k f Q 2θ k i

5 General formalism Overview General formalism presented here is based on Violini [1] and Eckold [2] papers. Assume Gaussian transmissions Starting with known variances of components Need result in a (δq,δe) coordinate system: ( R (δq,δe) = R 0 exp 1 ( ) t ( δq δq R 2 δe δe With δq = Q Q 0 and δe = E E 0. ) r ( δq δe ) ) c.

6 General formalism Important quantities R (δq,δe) = R 0 exp ( 1 2 ( δq δe ) t ( δq R δe ) ( δq r δe ) ) c R is called the resolution matrix. r is a vector shifting the mean positions Q 0 and E 0. R 0 is often called the resolution volume. c is a factor diminishing the scattering intensity.

7 General formalism Covariance R is the inverse covariance matrix: R = C 1. Reminder: The covariance of two random variables X and Y is defined as: cov(x,y ) = (X X )(Y Y ). It is a measure of the correlation between X and Y.

8 General formalism Instrument parameters Start with known variances σi 2 of instrument parameters p i : C instr = diag ( σ1 2, σ2 2,...,σN 2 ) Assuming no correlation: C instr is diagonal. The parameters p i are defined in terms of k i and k f.

9 General formalism Jacobian Transform the instrument parameters to a system given by Q and E: p 1,p 2,...,p N Q x,q y,q z,e Covariance matrix C in new Q x,q y,q z,e system with x along k i and y perpendicular to k i : C = T C instr T t. With the Jacobian: T = Q x p 1 Q y p 1 Q z p 1 E p 1 Q x p 2... Q y p 2... Q z Q x p N Q y p N Q z p N p 2... E p 2... E p N

10 General formalism Rotation We could stick with the absolute Q x,q y,q z,e system (in fact, Violini [1] does). A more convenient system is the local Q,Q,Q z,e system with x along Q : k f 2θ Q (k i,q) Q k i, θ k i,

11 General formalism Rotation The coordinate systems are rotated by the angle between k i and Q: Q x,q y,q z,e Q,Q,Q z,e. The final covariance matrix is: With the rotation matrix: S = C = S C S t = S T C instr T t S t. cos (k i,q) sin (k i,q) 0 0 sin (k i,q) cos (k i,q)

12 General formalism Contour line We set the general expression equal to 0.5 to get the HWHM contour of the Gaussian (c = 0): ( R (δq,δe) exp 1 ( ) t ( ) ) δq δq R 2 δe δe ( ( )) δq exp r 1 δe 2 ( δq δe ) t ( δq R δe ) ( δq + 2r δe ) = 2ln2

13 General formalism Quadric This contour outlines a four-dimensional quadric, namely an ellipsoid: ( ) t ( δq δq R δe δe }{{} orientation ) ( δq +2r δe } {{ } translation ) = 2ln2. The lengths and the orientation of the ellipsoid axes are obtained via the principal axis theorem, i.e. calculating the eigenvectors and -values of R.

14 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

15 Minimal example Definitions Assume the variances of k i and k f are known and are the only parameters, the Jacobian is: T = Q x k i,x Q y k i,x Q z k i,x E k i,x Q x k i,y Q y k i,y Q z k i,y E k i,y Q x k i,z Q y k i,z Q z k i,z E k i,z Q x k f,x Q y k f,x Q z k f,x E k f,x Q x k f,y Q y k f,y Q z k f,y E k f,y Q x k f,z Q y k f,z Q z k f,z E k f,z.

16 Minimal example Jacobian ( Using Q = k i k f and E = h2 2m n k 2 i kf 2 ) : T = h 2 h m n k 2 h i,x m n k 2 h i,y m n k 2 h i,z m n k 2 h f,x m n k 2 f,y m n k f,z.

17 Minimal example Covariance The covariance matrix then reads: C = T diag ( σ 2 k i,x,σ2 k i,y,σ2 k i,z,σ2 k f,x,σ2 k f,y,σ2 k f,z) T t. C = C xx 0 0 C xe 0 C yy 0 C ye 0 0 C zz C ze C xe C ye C ze C EE C qq = σ 2 k i,q + σ 2 k f,q,, with C EE = h4 ( k 2 mn 2 i,x σk 2 i,x k2 f,x σ k 2 f,x +...), C qe = h2 ( ki,q σk 2 m i,q + k f,q σ 2 ) k f,q. n

18 Minimal example Correlation The covariance matrix is not diagonal, there are q,e correlation terms: C qe = h 2 m n }{{} 4.1meVÅ 2 ( ki,q σk 2 i,q + k f,q σk 2 ) f,q. In the standard Q,Q,Q z coordinate system (we re still in Q x,q y,q z,e ) this leads to the important focusing formula for transverse scans: δe [mev] [ [ δq Å 1] 4 k fix Å 1].

19 Minimal example Correlation

20 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

21 Monte-Carlo method In Monte-Carlo simulations (e.g. McStas [3]) we can directly obtain k i and k f for each neutron and immediately get the covariance matrix: C = N j=1 p j (Q j Q ) (Q j Q ) N j=1 p j where j numbers the N Monte-Carlo events. The Q j are the four-vectors: Q j = ( k k f,j ] h 2 2m n [ki,j 2 k2 f,j ).

22 Monte-Carlo method

23 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

24 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

25 Time-of-flight spectrometers Detectors 2θ Q ls D Sample θ l 2 S Chopper 2 Chopper 1 l 1 2 l 1 S Source

26 Time-of-flight spectrometers Energy expression TOF resolution: Violini method [1]: E = h2 ( k 2 2m i k 2 ) m n f = n 2 = m ( ) n 2 l1 2 2 = m n 2 t i ( l1 2 t i ( v 2 i vf 2 ) 2 l S D t f }{{} =t S D 2 ) 2 l S D t 2 D t }{{} 2 S. =l 2 S /v i

27 Time-of-flight spectrometers Momentum expression TOF resolution: Violini method [1]: Q = k i k f = m n h (v i v f ) = m n h l 1 2 t i l S D t f cos2ϑ cos2φ sin2ϑ cos2φ sin2φ. 2ϑ is the in-plane and 2φ the out-of-plane scattering angle.

28 Time-of-flight spectrometers

29 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

30 Triple-Axis spectrometers Q 2θ S Sample θ S η S α 1 α 2 Detector α 3 2θ A η A Ana. 2θ M η M Mono. α 0 Source

31 Triple-Axis spectrometers Algorithms Comparison of TAS resolution algorithms: Method Description Cooper-Nathans [4, 5] Popovici [6] only considers collimators, no geometry collimators + instrument geometry Eckold-Sobolev [2] collimators + geometry + + non-centered beams The Eckold-Sobolev algorithm is the only TAS algorithm considering the linear part of the quadric. It thus allows to calculate the resolution for off-centre neutron paths, non-centered samples and for monochromator and analyser focusing.

32 Triple-Axis spectrometers Cooper-Nathans

33 Triple-Axis spectrometers Popovici

34 Triple-Axis spectrometers Eckold-Sobolev

35 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

36 Triple-Axis spectrometers Cooper-Nathans method Cooper-Nathans [5] resolution matrix in (δk i,δk f ) frame: ( ) ( ) RM RM,h R =, with R M = and R A similarly R M,h = R A R M,v ( ) ( 4tan 2 ϑ M εM tanϑ M ki 2 α( 0 2 (2η M ) 2 ) k( i 2 α0 2 2η) M 2 2ε M tanϑ M ki 2 α0 2 ki 2 α η 2 M α1 2 ηm 2 )

37 Triple-Axis spectrometers Cooper-Nathans method Transformation of resolution matrix from (δk i,δk f ) to (δq,δe) frame: cosϕ i sinϕ i 0 cosϕ f sinϕ f 0 sinϕ i cosϕ i 0 sinϕ f cosϕ f 0 = k i c 0 0 2k f c δq x δq y δq z δe δk ix δk iz δk ix δk iy δk iz δk fx δk fy δk fz using ϕ i = (k i,q), ϕ f = (k f,q), and c = h 2 /(2m n ).

38 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

39 Triple-Axis spectrometers Popovici method Popovici [6] resolution matrix in (δk i,δk f ) frame: [ ( ) ] } R = A{ D S + T T FT D T + G A T S: Covariance matrix of source, monochromator, sample, analyser, and detector sizes. F : Covariance matrix of crystal mosaics. G: Covariance matrix of collimators. D: Matrix of instrumental lengths. Transformation from (δk i,δk f ) to (δq,δe) frame as before in Cooper-Nathans.

40 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

41 Convolution The measured intensity is the convolution of the dynamical structure factor S with the instrumental resolution function R: I (Q,E) = d (δq)d (δe) S (Q + δq,e + δe) R (δq,δe). Convolution of a simple transverse-acoustic phonon branch: E (mev) S (q, ω) (a.u.) Convolution simulation, χ 2 /n df = q (rlu) E (mev)

42 Convolution Fitting Change model parameters and minimise χ 2. I (a.u.) E (mev) B (T) 0.2

43 Contents General formalism Minimal example Monte-Carlo method Time-of-flight spectrometers Violini resolution function Triple-axis spectrometers Cooper-Nathans resolution function Popovici resolution function Convolution Summary

44 Summary General formalism: Resolution = Covariance 1 For Monte-Carlo simulations the resolution can be directly obtained. Several different methods of increasing complexity available for triple-axis resolution calculation. Important instrument-independent rule of thumb: E [mev]/q [ Å 1] 4 k fix [Å 1]. Also valid for TOF!

45 Appendix References I [1] N. Violini, J. Voigt, S. Pasini, T. Brückel, A method to compute the covariance matrix of wavevector-energy transfer for neutron time-of-flight spectrometers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 736 (2014) doi: /j.nima URL pii/s x [2] G. Eckold, O. Sobolev, Analytical approach to the 4D-resolution function of three axes neutron spectrometers with focussing monochromators and analysers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 752 (2014)

46 Appendix References II doi: /j.nima URL pii/s [3] L. Udby, P. K. Willendrup, E. Knudsen, C. Niedermayer, U. Filges, N. B. Christensen, E. Farhi, B. O. Wells, K. Lefmann, Analysing neutron scattering data using McStas virtual experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 634 (1, Supplement) (2011) S138 S143, proceedings of the International Workshop on Neutron Optics (NOP2010). doi: /j.nima URL pii/s

47 Appendix References III [4] M. J. Cooper, R. Nathans, The resolution function in neutron diffractometry. I. The resolution function of a neutron diffractometer and its application to phonon measurements, Acta Crystallographica 23 (3) (1967) doi: /s x URL [5] P. W. Mitchell, R. A. Cowley, S. A. Higgins, The resolution function of triple-axis neutron spectrometers in the limit of small scattering angles, Acta Crystallographica Section A 40 (2) (1984) doi: /s URL

48 Appendix References IV [6] M. Popovici, On the resolution of slow-neutron spectrometers. IV. The triple-axis spectrometer resolution function, spatial effects included, Acta Crystallographica Section A 31 (4) (1975) doi: /s URL

1 Introduction Goal of calculating the analytical model of the instrument Basic method Parameters out of optimization...

1 Introduction Goal of calculating the analytical model of the instrument Basic method Parameters out of optimization... Contents 1 Introduction 3 1.1 Goal of calculating the analytical model of the instrument...................... 3 1.2 Basic method............................................... 3 1.3 Parameters out of

More information

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008)

Excitations. 15 th Oxford School of Neutron Scattering. Elizabeth Blackburn University of Birmingham. Blackburn et al., Pramana 71, 673 (2008) Excitations Elizabeth Blackburn University of Birmingham Cowley and Woods., Can. J. Phys. 49, 177 (1971) Blackburn et al., Pramana 71, 673 (2008) 15 th Oxford School of Neutron Scattering Excitations Elizabeth

More information

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018

Good Vibrations Studying phonons with momentum resolved spectroscopy. D.J. Voneshen 20/6/2018 Good Vibrations Studying phonons with momentum resolved spectroscopy D.J. Voneshen 20/6/2018 Overview What probe to use? Types of instruments. Single crystals example Powder example Thing I didn t talk

More information

Introduction to Triple Axis Neutron Spectroscopy

Introduction to Triple Axis Neutron Spectroscopy Introduction to Triple Axis Neutron Spectroscopy Bruce D Gaulin McMaster University The triple axis spectrometer Constant-Q and constant E Practical concerns Resolution and Spurions Neutron interactions

More information

A 2D Acceptance Diagram Description of Neutron Primary Spectrometer Beams

A 2D Acceptance Diagram Description of Neutron Primary Spectrometer Beams This article was submitted to Nuclear Instruments and Methods in Physics Research Part A on 21 st December 2015 but rejected on 11 th June 2016. It is presented here because it is cited in Nucl. Instrum.

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

BAMBUS: a new inelastic multiplexed neutron spectrometer for PANDA

BAMBUS: a new inelastic multiplexed neutron spectrometer for PANDA BAMBUS: a new inelastic multiplexed neutron spectrometer for PANDA J A Lim 1, K Siemensmeyer 2, P Cermák 3, B Lake 2, A Schneidewind 3 and D S Inosov 1 1 Institut für Festkörperphysik, TU Dresden, Dresden,

More information

The Neutron Resonance Spin Echo V2/FLEXX at BER II

The Neutron Resonance Spin Echo V2/FLEXX at BER II The Neutron Resonance Spin Echo Option @ V2/FLEXX at BER II Klaus Habicht Helmholtz-Zentrum Berlin für Materialien und Energie Key Question Is an NRSE option better than a dedicated instrument? V2/FLEXX,

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2)

School on Pulsed Neutrons: Characterization of Materials October Neurton Sources & Scattering Techniques (1-2) 1866-6 School on Pulsed Neutrons: Characterization of Materials 15-26 October 2007 Neurton Sources & Scattering Techniques (1-2) Guenter Bauer Forschungzentrum Julich GmbH Julich Germany The Abdus Salam

More information

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n.

Educjatipnal. L a d ie s * COBNWALILI.S H IG H SCHOOL. I F O R G IR L S A n B k i n d e r g a r t e n. - - - 0 x ] - ) ) -? - Q - - z 0 x 8 - #? ) 80 0 0 Q ) - 8-8 - ) x ) - ) -] ) Q x?- x - - / - - x - - - x / /- Q ] 8 Q x / / - 0-0 0 x 8 ] ) / - - /- - / /? x ) x x Q ) 8 x q q q )- 8-0 0? - Q - - x?-

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University

Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Momentum Transfer Dependence of Spin Isospin Modes in Quasielastic Region (RCNP E131 Collaboration) Tomotsugu WAKASA RCNP Osaka University Overview Motivations Experiment Definition of Experimental Spin

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Electron and vibrational spectroscopy

Electron and vibrational spectroscopy Electron and vibrational spectroscopy Stéphane Pailhès Institute of Light and Matter, CNRS and UCBLyon 1 Team (Nano)Materials for Energy Phonons definition A phonon (i.e. a lattice wave) is described by

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

The Resolution Function of the Chopper Spectrometer HET at ISIS

The Resolution Function of the Chopper Spectrometer HET at ISIS The Resolution Function of the Chopper Spectrometer HET at ISIS T.G. Perring ISIS Facility, Rutherford Appleton Laboratory, Chilton, nr. Didcot, Oxon OX1 1 OQX, U.K. 0. ABSTRACT The calculation of the

More information

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ).

x. Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ 2 ). .8.6 µ =, σ = 1 µ = 1, σ = 1 / µ =, σ =.. 3 1 1 3 x Figure 1: Examples of univariate Gaussian pdfs N (x; µ, σ ). The Gaussian distribution Probably the most-important distribution in all of statistics

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry

High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry High-Resolution Neutron Diffraction Monochromators for Neutron Diffractometry Pavol Mikula, Nuclear Physics Institute ASCR 25 68 Řež near Prague, Czech Republic NMI3-Meeting, Barcelona, 21 Motivation Backscattering

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL Y G q G Y Y 29 8 $ 29 G 6 q )

More information

Pyrolytic Graphite Experimental Results

Pyrolytic Graphite Experimental Results McStas n CAMEA Pyrolytic Graphite Experimental Results Author: J. Larsen Content 1 Introduction 2 2 PG Alignments 2 2.1 Tails 2 2.2 Lorentzian Tails and Mosaicity 3 2.3 Further Investigations on RITA II

More information

v v y = v sinθ Component Vectors:

v v y = v sinθ Component Vectors: Component Vectors: Recall that in order to simplify vector calculations we change a complex vector into two simple horizontal (x) and vertical (y) vectors v v y = v sinθ v x = v cosθ 1 Component Vectors:

More information

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions Closed-Form Solution Of Absolute Orientation Using Unit Berthold K. P. Horn Department of Computer and Information Sciences November 11, 2004 Outline 1 Introduction 2 3 The Problem Given: two sets of corresponding

More information

Avoided Crossing of Rattler Modes in Thermoelectric Materials

Avoided Crossing of Rattler Modes in Thermoelectric Materials 1 Supplementary Material for Avoided Crossing of Rattler Modes in Thermoelectric Materials M. Christensen, 1 A. B. Abrahamsen, N. Christensen,,3,4 F. Juranyi, 3 N. H. Andersen, K. Lefmann, J. Andreasson,

More information

45-Degree Update of The Wic Fitter Algorithm. Rob Kroeger, Vance Eschenburg

45-Degree Update of The Wic Fitter Algorithm. Rob Kroeger, Vance Eschenburg 45-Degree Update of The Wic Fitter Algorithm Rob Kroeger, Vance Eschenburg Abstract This note describes changes in the calculation of the inverse weight matrix due to multiple scattering for the 45-Degree

More information

Monte Carlo Sampling

Monte Carlo Sampling Monte Carlo Sampling Sampling from PDFs: given F(x) in analytic or tabulated form, generate a random number ξ in the range (0,1) and solve the equation to get the randomly sampled value X X ξ = F(x)dx

More information

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO

T k b p M r will so ordered by Ike one who quits squuv. fe2m per year, or year, jo ad vaoce. Pleaie and THE ALTO SOLO q q P XXX F Y > F P Y ~ Y P Y P F q > ##- F F - 5 F F?? 5 7? F P P?? - - F - F F - P 7 - F P - F F % P - % % > P F 9 P 86 F F F F F > X7 F?? F P Y? F F F P F F

More information

Fall 2016 Math 2B Suggested Homework Problems Solutions

Fall 2016 Math 2B Suggested Homework Problems Solutions Fall 016 Math B Suggested Homework Problems Solutions Antiderivatives Exercise : For all x ], + [, the most general antiderivative of f is given by : ( x ( x F(x = + x + C = 1 x x + x + C. Exercise 4 :

More information

Nucleosynthesis. at MAGIX/MESA. Stefan Lunkenheimer MAGIX Collaboration Meeting 2017

Nucleosynthesis. at MAGIX/MESA. Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Nucleosynthesis 12 C(α, γ) 16 O at MAGIX/MESA Stefan Lunkenheimer MAGIX Collaboration Meeting 2017 Topics S-Factor Simulation Outlook 2 S-Factor 3 Stages of stellar nucleosynthesis Hydrogen Burning (PPI-III

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6 6.1. Summary In this Lecture we cover the theory of x-ray diffraction, which gives direct information about the atomic structure of crystals. In these experiments, the wavelength of the incident beam must

More information

Neutron spectroscopy

Neutron spectroscopy Neutron spectroscopy Andrew Wildes Institut Laue-Langevin 20 September 2017 A. R. Wildes Plan: Properties of the neutron Neutron spectroscopy Harmonic oscillators Atomic vibrations - Quantized energy levels

More information

McStas a Monte Carlo ray-tracing package for neutrons

McStas a Monte Carlo ray-tracing package for neutrons McStas a Monte Carlo ray-tracing package for neutrons 24 February 2009, ESRF Kim Lefmann, Niels Bohr Institute, Univ. Copenhagen Peter Willendrup RISØ DTU Outline The McStas package Validation of results

More information

Strain analysis.

Strain analysis. Strain analysis ecalais@purdue.edu Plates vs. continuum Gordon and Stein, 1991 Most plates are rigid at the until know we have studied a purely discontinuous approach where plates are

More information

An introduction to. Neutron Scattering Monte Carlo Ray Tracing Methods For Virtual Experiments. by E. Farhi, ILL/DS/CS

An introduction to. Neutron Scattering Monte Carlo Ray Tracing Methods For Virtual Experiments. by E. Farhi, ILL/DS/CS An introduction to Neutron Scattering Monte Carlo Ray Tracing Methods For Virtual Experiments by E. Farhi, ILL/DS/CS E. Farhi ILL/DS/CS - ESI 2011 1 Outline 1. Definition of Monte Carlo methods 2. What

More information

Physics with Neutrons II, SS2016

Physics with Neutrons II, SS2016 Physics with Neutrons II, SS2016 Spin Echo Spectroscopy Lecture 11, 11.07.2016 Conventional Spectrometer (Triple Axes) k i, Δk i k f, Δk f Monochromator Analyser Large structures (polymers, biomolecules,

More information

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between:

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between: Physics with Neutrons II, SS 2016 Lecture 1, 11.4.2016 MLZ is a cooperation between: Organization Lecture: Monday 12:00 13:30, PH227 Sebastian Mühlbauer (MLZ/FRM II) Sebastian.muehlbauer@frm2.tum.de Tel:089/289

More information

SET 1. (1) Solve for x: (a) e 2x = 5 3x

SET 1. (1) Solve for x: (a) e 2x = 5 3x () Solve for x: (a) e x = 5 3x SET We take natural log on both sides: ln(e x ) = ln(5 3x ) x = 3 x ln(5) Now we take log base on both sides: log ( x ) = log (3 x ln 5) x = log (3 x ) + log (ln(5)) x x

More information

MCRT L10: Scattering and clarification of astronomy/medical terminology

MCRT L10: Scattering and clarification of astronomy/medical terminology MCRT L10: Scattering and clarification of astronomy/medical terminology What does the scattering? Shape of scattering Sampling from scattering phase functions Co-ordinate frames Refractive index changes

More information

FLEX at HZB its options its upgrade

FLEX at HZB its options its upgrade FLEX at HZB its options its upgrade Klaus Habicht Helmholtz-Zentrum Berlin für Materialien und Energie The cold-neutron triple axis spectrometer FLEX at the BER II, HZB excellently suited for extreme sample

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

4: birefringence and phase matching

4: birefringence and phase matching /3/7 4: birefringence and phase matching Polarization states in EM Linear anisotropic response χ () tensor and its symmetry properties Working with the index ellipsoid: angle tuning Phase matching in crystals

More information

Compact chopper spectrometers for pulsed sources

Compact chopper spectrometers for pulsed sources Journal of Physics: Conference Series PAPER OPEN ACCESS Compact chopper spectrometers for pulsed sources To cite this article: J. Voigt et al 216 J. Phys.: Conf. Ser. 746 1218 View the article online for

More information

Good Diffraction Practice Webinar Series

Good Diffraction Practice Webinar Series Good Diffraction Practice Webinar Series High Resolution X-ray Diffractometry (1) Mar 24, 2011 www.bruker-webinars.com Welcome Heiko Ress Global Marketing Manager Bruker AXS Inc. Madison, Wisconsin, USA

More information

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II OLLSCOIL N heirenn M NUD THE NTIONL UNIVERSITY OF IRELND MYNOOTH MTHEMTICL PHYSICS EE112 Engineering Mathematics II Prof. D. M. Heffernan and Mr. S. Pouryahya 1 5 Scalars and Vectors 5.1 The Scalar Quantities

More information

Gaussian random variables inr n

Gaussian random variables inr n Gaussian vectors Lecture 5 Gaussian random variables inr n One-dimensional case One-dimensional Gaussian density with mean and standard deviation (called N, ): fx x exp. Proposition If X N,, then ax b

More information

Correlation Functions and Fourier Transforms

Correlation Functions and Fourier Transforms Correlation Functions and Fourier Transforms Introduction The importance of these functions in condensed matter physics Correlation functions (aside convolution) Fourier transforms The diffraction pattern

More information

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary

Outline. Comparison with MAID2000: Could it be a narrow state? Fermi motion correction: Some preliminaries Summary Outline Previous experiments. Evidence for a resonant structure at W=1.675 GeV in γn ηp data at GRAAL; Theoretical assumptions: D 15 (1675) or the nonstrange pentaquark? Comparison with MAID2000: Could

More information

Relativistic Transformations

Relativistic Transformations Relativistic Transformations Lecture 7 1 The Lorentz transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow

More information

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle Physical Properties Contents 1 Physical Properties 2 Scalar, Vector 3 Second Rank Tensor 4 Transformation 5 Representation Quadric 6 Neumann s Principle Physical Properties of Crystals - crystalline- translational

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r?

a s*:?:; -A: le London Dyers ^CleanefSt * S^d. per Y ard. -P W ..n 1 0, , c t o b e e d n e sd *B A J IllW6fAi>,EB. E D U ^ T IG r? ? 9 > 25? < ( x x 52 ) < x ( ) ( { 2 2 8 { 28 ] ( 297 «2 ) «2 2 97 () > Q ««5 > «? 2797 x 7 82 2797 Q z Q (

More information

The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments

The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments The (hopefully) Definitive Guide to Coordinate Systems and Transformation in the Low Energy Hall A Experiments Guy Ron Tel Aviv University July 22, 2006 1 Introduction In the upcoming polarized beam Hall

More information

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles.

University of Oslo. Department of Physics. Interaction Between Ionizing Radiation And Matter, Part 2 Charged-Particles. Interaction Between Ionizing Radiation And Matter, Part Charged-Particles Audun Sanderud Excitation / ionization Incoming charged particle interact with atom/molecule: Ionization Excitation Ion pair created

More information

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ). X-Ray Diffraction X-ray diffraction geometry A simple X-ray diffraction (XRD) experiment might be set up as shown below. We need a parallel X-ray source, which is usually an X-ray tube in a fixed position

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

FINAL EXAM { SOLUTION

FINAL EXAM { SOLUTION United Arab Emirates University ollege of Sciences Department of Mathematical Sciences FINAL EXAM { SOLUTION omplex Analysis I MATH 5 SETION 0 RN 56 9:0 { 0:45 on Monday & Wednesday Date: Wednesday, January

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

arxiv: v1 [math.ds] 18 Nov 2008

arxiv: v1 [math.ds] 18 Nov 2008 arxiv:0811.2889v1 [math.ds] 18 Nov 2008 Abstract Quaternions And Dynamics Basile Graf basile.graf@epfl.ch February, 2007 We give a simple and self contained introduction to quaternions and their practical

More information

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations Wavepackets Outline - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations 1 Sample Midterm (one of these would be Student X s Problem) Q1: Midterm 1 re-mix (Ex:

More information

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie

Methoden moderner Röntgenphysik I + II: Struktur und Dynamik kondensierter Materie I + II: Struktur und Dynamik kondensierter Materie Vorlesung zum Haupt/Masterstudiengang Physik SS 2009 G. Grübel, M. Martins, E. Weckert, W. Wurth 1 Trends in Spectroscopy 23.4. 28.4. 30.4. 5.4. Wolfgang

More information

PH 451/551 Quantum Mechanics Capstone Winter 201x

PH 451/551 Quantum Mechanics Capstone Winter 201x These are the questions from the W7 exam presented as practice problems. The equation sheet is PH 45/55 Quantum Mechanics Capstone Winter x TOTAL POINTS: xx Weniger 6, time There are xx questions, for

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A.

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. Melikian Yerevan Physics Institute, Yerevan, Armenia Abstract In this report

More information

Physical Properties. Reading Assignment: 1. J. F. Nye, Physical Properties of Crystals -chapter 1

Physical Properties. Reading Assignment: 1. J. F. Nye, Physical Properties of Crystals -chapter 1 Physical Properties Reading Assignment: 1. J. F. Nye, Physical Properties of Crystals -chapter 1 Contents 1 Physical Properties 2 Scalar, Vector 3 Second Rank Tensor 4 Transformation 5 Representation Quadric

More information

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014 Math 3 - Spring 4 Solutions to Assignment # Completion Date: Thursday June, 4 Question. [p 67, #] Use residues to evaluate the improper integral x + ). Ans: π/4. Solution: Let fz) = below. + z ), and for

More information

THE COMPOUND ANGLE IDENTITIES

THE COMPOUND ANGLE IDENTITIES TRIGONOMETRY THE COMPOUND ANGLE IDENTITIES Question 1 Prove the validity of each of the following trigonometric identities. a) sin x + cos x 4 4 b) cos x + + 3 sin x + 2cos x 3 3 c) cos 2x + + cos 2x cos

More information

Absolute photon energy calibration using π 0 s

Absolute photon energy calibration using π 0 s Absolute photon energy calibration using π s A.D. Bukin BINP, Novosibirsk June 1, 25 BaBar Note #571 BaBar Note #582 analytically First idea of deconvolution algorithm Idea to use special fitting functions

More information

II.D Scattering and Fluctuations

II.D Scattering and Fluctuations II.D Scattering and Fluctuations In addition to bulk thermodynamic experiments, scattering measurements can be used to probe microscopic fluctuations at length scales of the order of the probe wavelength

More information

CAMEA. Bench Marking

CAMEA. Bench Marking McStas n Bench Marking Author: P. G. Freeman Benching Mark Against Present Inelastic Neutron Spectrometers The concept will be compared to the world leading spectrometers to grade performance. The exact

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2

George Mason University. Physics 540 Spring Notes on Relativistic Kinematics. 1 Introduction 2 George Mason University Physics 540 Spring 2011 Contents Notes on Relativistic Kinematics 1 Introduction 2 2 Lorentz Transformations 2 2.1 Position-time 4-vector............................. 3 2.2 Velocity

More information

arxiv: v1 [cond-mat.supr-con] 23 May 2013

arxiv: v1 [cond-mat.supr-con] 23 May 2013 Absolute cross-section normalization of magnetic neutron scattering data Guangyong Xu, 1 Zhijun Xu, 1 and J. M. Tranquada 1 1 Condensed Matter Physics and Materials Science Department, Brookhaven National

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

Physics 110. Exam #1. April 15, 2013

Physics 110. Exam #1. April 15, 2013 Physics 110 Exam #1 April 15, 013 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them Your work must be legible, and the organization clear

More information

Surface Sensitive X-ray Scattering

Surface Sensitive X-ray Scattering Surface Sensitive X-ray Scattering Introduction Concepts of surfaces Scattering (Born approximation) Crystal Truncation Rods The basic idea How to calculate Examples Reflectivity In Born approximation

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 32 1 Overview In this set of notes we extend the spectral-domain method to analyze infinite periodic structures. Two typical examples of infinite

More information

Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment

Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment 65 Acta Cryst. (1999). A55, 65±69 Comments on the characteristics of incommensurate modulation in quartz: discussion about a neutron scattering experiment T. A. Aslanyan,² T. Shigenari* and K. Abe Department

More information

An introduction to Monte Carlo methods in XRF analysis. Tom Schoonjans Joint ICTP-IAEA school, Trieste

An introduction to Monte Carlo methods in XRF analysis. Tom Schoonjans Joint ICTP-IAEA school, Trieste An introduction to Monte Carlo methods in XRF analysis Tom Schoonjans Joint ICTP-IAEA school, Trieste Outline 1. Introduction to Monte Carlo methods 2. Monte Carlo simulation of energy dispersive X-ray

More information

Compton Storage Rings

Compton Storage Rings Compton Polarimetry @ Storage Rings Wolfgang Hillert ELectron Stretcher Accelerator Physics Institute of Bonn University Møller-Polarimeter Compton-Polarimeter Mott-Polarimeter Compton Scattering Differential

More information

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue)

3/31/ Product of Inertia. Sample Problem Sample Problem 10.6 (continue) /1/01 10.6 Product of Inertia Product of Inertia: I xy = xy da When the x axis, the y axis, or both are an axis of symmetry, the product of inertia is zero. Parallel axis theorem for products of inertia:

More information

STT 843 Key to Homework 1 Spring 2018

STT 843 Key to Homework 1 Spring 2018 STT 843 Key to Homework Spring 208 Due date: Feb 4, 208 42 (a Because σ = 2, σ 22 = and ρ 2 = 05, we have σ 2 = ρ 2 σ σ22 = 2/2 Then, the mean and covariance of the bivariate normal is µ = ( 0 2 and Σ

More information

Vibrational Spectroscopy with Neutrons: Inelastic Neutron Scattering (INS)

Vibrational Spectroscopy with Neutrons: Inelastic Neutron Scattering (INS) Vibrational Spectroscopy with Neutrons: Inelastic Neutron Scattering (INS) Ian Silverwood and Stewart F. Parker OSNS 11 th September 2017 What is inelastic neutron scattering? Neutron spectroscopy A neutron

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University

Neutron facilities and generation. Rob McQueeney, Ames Laboratory and Iowa State University Neutron facilities and generation Rob McQueeney, Ames Laboratory and Iowa State University September 12, 2018 19-Sep-18 Physics 502 2 Neutrons compared to other probes of matter Bulk probe Interacts with

More information

Polarization Optics. N. Fressengeas

Polarization Optics. N. Fressengeas Polarization Optics N. Fressengeas Laboratoire Matériaux Optiques, Photonique et Systèmes Unité de Recherche commune à l Université de Lorraine et à Supélec Download this document from http://arche.univ-lorraine.fr/

More information

Disordered Materials: Glass physics

Disordered Materials: Glass physics Disordered Materials: Glass physics > 2.7. Introduction, liquids, glasses > 4.7. Scattering off disordered matter: static, elastic and dynamics structure factors > 9.7. Static structures: X-ray scattering,

More information

Homogeneous Bianisotropic Medium, Dissipation and the Non-constancy of Speed of Light in Vacuum for Different Galilean Reference Systems

Homogeneous Bianisotropic Medium, Dissipation and the Non-constancy of Speed of Light in Vacuum for Different Galilean Reference Systems Progress In Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 5 8, 2010 489 Homogeneous Bianisotropic Medium, Dissipation and the Non-constancy of Speed of Light in Vacuum for Different

More information

Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe

Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe Qisi Wang 1, Yao Shen 1, Bingying Pan 1, Yiqing ao 1, Mingwei Ma 2, Fang Zhou 2, P. Steens 3,. Schmalzl 4, T.

More information

T d T C. Rhombohedral Tetragonal Cubic (%) 0.1 (222) Δa/a 292K 0.0 (022) (002) Temperature (K)

T d T C. Rhombohedral Tetragonal Cubic (%) 0.1 (222) Δa/a 292K 0.0 (022) (002) Temperature (K) (%) 0.3 0.2 Rhombohedral Tetragonal Cubic Δa/a 292K 0.1 (222) 0.0 (022) -0.1 (002) T C T d 300 400 500 600 700 800 900 Temperature (K) Supplementary Figure 1: Percent thermal expansion on heating for x-

More information

Enrico Fermi and the FERMIAC. Mechanical device that plots 2D random walks of slow and fast neutrons in fissile material

Enrico Fermi and the FERMIAC. Mechanical device that plots 2D random walks of slow and fast neutrons in fissile material Monte Carlo History Statistical sampling Buffon s needles and estimates of π 1940s: neutron transport in fissile material Origin of name People: Ulam, von Neuman, Metropolis, Teller Other areas of use:

More information