How Euler Did It. A Series of Trigonometric Powers. 1 x 2 +1 = 2. x 1, x ln x + 1 x 1.

Size: px
Start display at page:

Download "How Euler Did It. A Series of Trigonometric Powers. 1 x 2 +1 = 2. x 1, x ln x + 1 x 1."

Transcription

1 How Euler Did It by Ed Sifer A Series of Trigonometric Powers June 008 The story of Euler complex numbers is a complicated one. Earlier in his career, Euler was a champion of equal rights for complex numbers, treating them just like real numbers whenever he could. For example, he showed how to integrate x + dx without using inverse trigonometric functions. He factored x += ( x + ) ( x ), then used partial fractions to rewrite then integrated this difference to get x + = x + x, x + dx = ln x + x. Euler typically omitted constants of integration until he needed them, also seldom used i in place of. His role in that particular notational innovation is exaggerated. Euler struck a second, better-known blow for justice for complex numbers when he took the variable in the exponential function e x to be an imaginary number, say x = θ e θ = cosθ + sinθ., showed that Euler continued to use complex numbers late in his life, but his applications seem to me to be less sweeping more technical, showing how they solved a variety of specific problems. This month we look at one such problem from 773. The title of E447 is "Summatio progressionum sinϕ λ + sinϕ λ + sin3ϕ λ +K + sinnϕ λ, cosϕ λ + cosϕ λ + cos3ϕ λ +K + cosnϕ λ." Right off, this is confusing to the modern reader, because

2 Euler writes sinϕ λ where we would write sin λ ϕ mean ( sinϕ ) λ. For this, we will use the modern notation. Euler begins by asking us to let cosϕ + sinϕ = p cosϕ sinϕ = q. Then, from de Moivre's formula, we have cosnϕ = pn + q n sinnϕ = pn q n, because sin ϕ + cos ϕ =, we have pq =. Properties of geometric series tell us p α + p α + p 3α +L + p nα = pα q α + q α + q 3α +L q nα = qα ( p nα ) p α ( q nα ) q α. If we add these together repeatedly apply the identities pq = p kα + q kα = coskαϕ (a consequence of de Moivre's formula), we get + cosnαϕ cos ( n + )αϕ. cosαϕ Likewise, if we subtract the q-series from the p-series we get sinαϕ sin( n + )αϕ + sin nαϕ cosαϕ. Euler uses an integral sign,?, where we would use a summation sign,?, so he writes these results as () cosnαϕ cos n + ( p nα + q nα )= + αϕ cosαϕ αϕ sinαϕ + sin nαϕ sin n + ( p nα q nα )= cosαϕ. Now Euler is ready to work on the sums in the title of the article. He takes λ =, his two series become

3 s = sinϕ + sinϕ + sin 3ϕ +L + sinnϕ = sinnϕ t = cosϕ + cosϕ + cos 3ϕ +L + cosnϕ = cosnϕ. Because of de Moivre's identities, these two series can be rewritten as sinnϕ = pn q n cosnϕ = pn + q n, s = p n q n t = ( p n + q n ). But from formula () above, taking α =, this gives sinϕ + sinnϕ sin n + s = ϕ ( cosϕ) t = cosnϕ cos + ( n + )ϕ. cosϕ Note how unexpectedly simple these formulas are. They each the sum of n terms using only the terms at the beginning the terms at the end, without using any of the terms in between. Now take λ = so that s = sin ϕ + sin ϕ +L + sin nϕ = sin nϕ t = cos ϕ + cos ϕ +L + cos nϕ = cos nϕ. Recalling that pq = we get 3

4 Similarly, sin nϕ = ( sinnϕ) = pn q n = pn p n q n + q n 4 = pn + q n. 4 cos nϕ = + pn + q n. 4 Summing these, we get 4s = 4t = + ( p n + q n ) ( p n + q n ). Obviously, = n, so, using formula () we get s = n + cosnϕ cos ( n + )ϕ 4 4( cosϕ) t = n cosnϕ cos + ( n + )ϕ. 4 4 cosϕ It is reassuring to note that s + t = n, as it should be, because s is a sum of n squared sines t is a sum of the corresponding squared cosines. Euler does λ = 3 λ = 4, his expressions for s t grow first to three, then to four terms, though the terms grow no more complicated, except for involving higher powers of. Moreover, his expressions have the same general form. Let's look a bit more closely at this expression for s in the case λ =, the sum of the squares of a sequence of sines. Note how the last term does not increase as the number n increases. Also, if cos ϕ is not very close to, then the denominator in the last term is not very small. Moreover, the two cosines in the numerator are always between -, so their difference is between -. Consequently, the last term is bounded between two values, + M M, that do not depend on n. Hence, s is always between n M n + M. Thus, as n goes to infinity, so also does s. The same reasoning 4 applies to t. Note that this was not the case for the series corresponding to λ =. The last terms in the expressions for s t are both bounded, by the same argument we gave above, but neither expression contains a term that goes to infinity as n increases. 4

5 Indeed, these remarks about λ = are true for all odd exponents. That is to say, if λ is odd, then neither s nor t increase without bound as n increases, but for λ even, the series behaves like λ =, both s t grow without bounds. Euler notices this, too, wants to examine it a bit. In Euler's time, there were several notions of the value of a series. One of them, proposed by Jakob Bernoulli, was that the value was the limit of the average value of the partial sums. Using this notion, the series etc. would have value equal to ½, because half the time the partial sums are half the time they are zero. Hence, the weighted average value of the partial sums is ½. This is apparently the notion that justifies Euler's next steps. Taking λ =, he has shown that s = sinϕ + sinϕ + sin 3ϕ +L + sinnϕ sinϕ + sinnϕ sin n + = ϕ. cosϕ Euler argues that the average value of sinnϕ sin( n +)ϕ is zero, so, if we let n go to infinity the value of the now-infinite series s can be considered to be The same analysis makes the infinite series s = sinϕ ( cosϕ). t =. Modern analysts throughout the world cringe at this, because Euler has given an exact, finite sum to two series for which the terms do not converge to zero. The analysts don't let us do that anymore. Perhaps Euler realizes we may have doubts about this particular result, for he reassures us that it is easy to show that this makes sense. He rewrites t as t = cosϕ ( cosϕ). Multiplying both sides by cosϕ writing t as the series it represents, Euler gets cosϕ = ( cosϕ)t ( cosϕ + cos ϕ + cos 3ϕ +L ) = cosϕ = cosϕ + cosϕ + cos 3ϕ + cos4ϕ + etc. cos ϕ cosϕ cosϕ cosϕ cos3ϕ etc. Now, from the angle addition formula for cosines we know that in teneral 5

6 cosacosb = cos( a b)cos( a + b). Applied to the negative terms of the preceding series, this makes cos ϕ = + cosϕ, cosϕ cos ϕ = cosϕ + cos 3ϕ, cosϕ cos 3ϕ = cosϕ + cos4ϕ, cosϕ cos4ϕ = cos3ϕ + cos5ϕ, cosϕ cos5ϕ = cos4ϕ + cos6ϕ, cosϕ cos6ϕ = cos5ϕ cos 7ϕ, etc. Now, substituting these for those negative terms,, at the same time rearranging the terms a bit, we get cosϕ = cosϕ + cosϕ + cos3ϕ + cos 4ϕ + etc. cosϕ cos ϕ cos 3ϕ cos 4ϕ etc. cos ϕ cos 3ϕ cos 4ϕ etc. Note how, when we substituted + cosϕ for cos ϕ, we put the in the second row of the new expression, the cos ϕ in the third row. Likewise for all the other substitutions. As modern mathematicians, we benefit from the work of Cauchy we know that such rearrangements of terms may not be valid unless the series involved are absolutely convergent, that the series in question here are not absolutely convergent. Today, Euler would have to find another way to do this. Getting back to our formulas, let's rewrite the preceding formula, aligned a bit differently, so that things that cancel can be seen more clearly. We get cosϕ = cosϕ + cosϕ + cos 3ϕ + cos 4ϕ + etc. cosϕ cos ϕ cos 3ϕ cos 4ϕ etc. cos ϕ cos 3ϕ cos 4ϕ etc. which is clearly true. This justifies Euler's claim that, for infinite values of n, t =. Euler thought he was finished, but the Editor's summary at the beginning of the volume of the Novi commentarii mentions that he later added an appendix "Summatio generalis infinitarum aliarum 6

7 progressionum ad hoc genus referendarum" (Summation of infinitely many general progressions related to this kind). It contains a theorem two examples. Theorem: If we know the sum of a progression then it always permits us to sum the two progressions Az + Bz + Cz 3 + Dz 4 +L + Nz n, S = Axsinϕ + Bx sinϕ + Cx 3 sin3ϕ +L + Nx n sinnϕ T = Axcosϕ + Bx cosϕ + Cx 3 cos3ϕ +L + Nx n cosnϕ. The proof is straightforward, but in the course of the proof, Euler introduces the function notation as he generally uses it in the 760s. When he writes : z, he means us to substitute the function defined by the progression Az + Bz + Cz 3 + Dz 4 +L + Nz n. Though he had used the modern f ( x) function notation briefly in the 730s, Euler did not stick with that notation, from the 760s until his death in 783, he his assistants used this notation with a symbol, usually an upper-case Greek letter, followed by a colon, then the variable. Then he notes that, with p q as before, that is, p = cosϕ + sinϕ q = cosϕ sinϕ, his function notation gives S = : px qx T = : px + : qx. Then he gives examples. Example : If all the coefficients in?:z are equal to if the series is taken to be an infinite series, then : z = z z. Then, from the equations in the proof of his theorem as well as the identities p q = sinϕ, p + q = cosϕ pq =, Euler gets that 7

8 S = T = xsinϕ x cosϕ + x x cosϕ x x cosϕ + x. Typically, Euler checks that his result agrees with what he already knows. In a corollary, he finds that for the special case x =, this gives back the formulas from earlier in the paper, that sinϕ S = cosϕ T =. As a second example, Euler takes : z = ln z = z + z + 3 z3 + 4 z 4 +L, he finds that xsinϕ S = arctan xcosϕ We leave the details to the reader. T = ln( x cosϕ + x). References: [E447] Euler, Leonhard, Summatio progressionum sinϕ λ + sinϕ λ + sin 3ϕ λ +L + sinnϕ λ, cosϕ λ + cos ϕ λ + cos 3ϕ λ +L + cos nϕ λ, Novi commentarii academiae scientiarum imperialis Petropolitanae, 8 (773) 774, pp. 8-, Reprinted in Opera omnia I.5, pp Available online at EulerArchive.org Ed Sifer (SiferE@wcsu.edu) is Professor of Mathematics at Western Connecticut State University in Danbury, CT. He is an avid marathon runner, with 36 Boston Marathons on his shoes, he is Secretary of The Euler Society ( His first book, The Early Mathematics of Leonhard Euler, was published by the MAA in December 006, as part of the celebrations of Euler s tercentennial in 007. The MAA published a collection of forty How Euler Did It columns in June 007. How Euler Did It is updated each month. Copyright 008 Ed Sifer 8

How Euler Did It. Today we are fairly comfortable with the idea that some series just don t add up. For example, the series

How Euler Did It. Today we are fairly comfortable with the idea that some series just don t add up. For example, the series Divergent series June 2006 How Euler Did It by Ed Sandifer Today we are fairly comfortable with the idea that some series just don t add up. For example, the series + + + has nicely bounded partial sums,

More information

How Euler Did It. by Ed Sandifer. A theorem of Newton %! 3 =! 3 + " 3 + # 3 +!+ $ 3, %! =! + " + # +!+ $, ! 2 =! 2 + " 2 + # 2 +!

How Euler Did It. by Ed Sandifer. A theorem of Newton %! 3 =! 3 +  3 + # 3 +!+ $ 3, %! =! +  + # +!+ $, ! 2 =! 2 +  2 + # 2 +! How Euler Did It A theorem of Newton April 2008 by Ed Sandifer Early in our algebra careers we learn the basic relationship between the coefficients of a monic quadratic polynomial and the roots of that

More information

How Euler Did It. Many people have been interested in summing powers of integers. Most readers of this column know, for example, that ( )

How Euler Did It. Many people have been interested in summing powers of integers. Most readers of this column know, for example, that ( ) How Euler Did It by Ed Sandifer Sums of powers June 009 Many people have been interested in summing powers of integers. Most readers of this column now, for example, that ( ) i = +, and many of us even

More information

How Euler Did It. Jeff Miller s excellent site [M] Earliest Known Uses of Some of the Words of Mathematics reports:

How Euler Did It. Jeff Miller s excellent site [M] Earliest Known Uses of Some of the Words of Mathematics reports: How Euler Did It Orthogonal matrices August 006 by Ed Sandifer Jeff Miller s excellent site [M] Earliest Known Uses of Some of the Words of Mathematics reports: The term MATRIX was coined in 1850 by James

More information

How Euler Did It. by Ed Sandifer. Partial fractions. June 2007

How Euler Did It. by Ed Sandifer. Partial fractions. June 2007 Partial fractions June 2007 How Euler Did It by Ed Sandifer Sometimes Euler has a nice sense of showmanship and a flair for a big finish At the end of a long, sometimes difficult work, he ll put a beautiful

More information

How Euler Did It. by Ed Sandifer. Foundations of Calculus. September 2006

How Euler Did It. by Ed Sandifer. Foundations of Calculus. September 2006 How Euler Did It Foundations of Calculus September 2006 by Ed Sandifer As we begin a new academic year, many of us are introducing another generation of students to the magic of calculus. As always, those

More information

How Euler Did It. by Ed Sandifer. The Euler line. January 2009

How Euler Did It. by Ed Sandifer. The Euler line. January 2009 The Euler line January 2009 How Euler Did It by Ed Sandifer A hundred years ago, if you'd asked people why Leonhard Euler was famous, those who had an answer would very likely have mentioned his discovery

More information

How Euler Did It. by Ed Sandifer. Inexplicable functions ( ) November 2007

How Euler Did It. by Ed Sandifer. Inexplicable functions ( ) November 2007 How Euler Did It Inexplicable functions November 2007 by Ed Sandifer Imagine my surprise when I was looking at Euler s Calculi differentialis. [E22] There, deep into part 2 (the part that John Blanton

More information

How Euler Did It. a 2 + b 2 = c 2.

How Euler Did It. a 2 + b 2 = c 2. How Euler Did It Rational trigonometry March 2008 by Ed Sandifer Triangles are one of the most basic objects in mathematics. We have been studying them for thousands of years, and the study of triangles,

More information

How Euler Did It. by Ed Sandifer. PDEs of fluids. September 2008

How Euler Did It. by Ed Sandifer. PDEs of fluids. September 2008 PDEs of fluids September 2008 How Euler Did It by Ed Sifer For his whole life Euler was interested in fluids fluid mechanics, especially their applications to shipbuilding navigation. He first wrote on

More information

1 Review of complex numbers

1 Review of complex numbers 1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely

More information

Proof of a theorem of Fermat that every prime number of the form 4n + 1 is a sum of two squares

Proof of a theorem of Fermat that every prime number of the form 4n + 1 is a sum of two squares Proof of a theorem of Fermat that every prime number of the form 4n + 1 is a sum of two squares Leonhard Euler 1. When I recently 1 considered these numbers which arise from the addition of two squares,

More information

On divergent series. Leonhard Euler

On divergent series. Leonhard Euler On divergent series Leonhard Euler Because convergent series are defined in that manner, that they consist of continuously decreasing terms, that finally, if the series continues to infinity, vanish completely;

More information

On the remarkable Properties of the Coefficients which occur in the Expansion of the binomial raised to an arbitrary power *

On the remarkable Properties of the Coefficients which occur in the Expansion of the binomial raised to an arbitrary power * On the remarkable Properties of the Coefficients which occur in the Expansion of the binomial raised to an arbitrary power * Leonhard Euler THEOREM If for the power of the binomial raised to the exponent

More information

An observation on the sums of divisors

An observation on the sums of divisors An observation on the sums of divisors Leonhard Euler. For any number n, I define the expression n to denote the sum of all the divisors of n. Thus for unity, which aside from itself has no other divisors,

More information

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES TAYLOR AND MACLAURIN SERIES Taylor Series of a function f at x = a is ( f k )( a) ( x a) k k! It is a Power Series centered at a. Maclaurin Series of a function

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0.

Feedback D. Incorrect! Exponential functions are continuous everywhere. Look for features like square roots or denominators that could be made 0. Calculus Problem Solving Drill 07: Trigonometric Limits and Continuity No. of 0 Instruction: () Read the problem statement and answer choices carefully. () Do your work on a separate sheet of paper. (3)

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 67 Outline

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

On the general Term of hypergeometric Series *

On the general Term of hypergeometric Series * On the general Term of hypergeometric Series * Leonhard Euler 1 Here, following Wallis I call series hypergeometric, whose general terms proceed according to continuously multiplied factors, while the

More information

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation

LECTURE 10: REVIEW OF POWER SERIES. 1. Motivation LECTURE 10: REVIEW OF POWER SERIES By definition, a power series centered at x 0 is a series of the form where a 0, a 1,... and x 0 are constants. For convenience, we shall mostly be concerned with the

More information

7.5 Partial Fractions and Integration

7.5 Partial Fractions and Integration 650 CHPTER 7. DVNCED INTEGRTION TECHNIQUES 7.5 Partial Fractions and Integration In this section we are interested in techniques for computing integrals of the form P(x) dx, (7.49) Q(x) where P(x) and

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

arxiv: v1 [math.ho] 30 Nov 2007

arxiv: v1 [math.ho] 30 Nov 2007 arxiv:07.4986v [math.ho] 30 Nov 007 On highly transcendental quantities which cannot be expressed by integral formulas Leonhard Euler. Integral formulas, whose integration cannot be obtained in terms of

More information

1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1. Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal and simultaneous equations 1.6 Review 1.1 Kick

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

AP Calculus Chapter 9: Infinite Series

AP Calculus Chapter 9: Infinite Series AP Calculus Chapter 9: Infinite Series 9. Sequences a, a 2, a 3, a 4, a 5,... Sequence: A function whose domain is the set of positive integers n = 2 3 4 a n = a a 2 a 3 a 4 terms of the sequence Begin

More information

Math 1B, lecture 15: Taylor Series

Math 1B, lecture 15: Taylor Series Math B, lecture 5: Taylor Series Nathan Pflueger October 0 Introduction Taylor s theorem shows, in many cases, that the error associated with a Taylor approximation will eventually approach 0 as the degree

More information

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2.

Math Homework 1. The homework consists mostly of a selection of problems from the suggested books. 1 ± i ) 2 = 1, 2. Math 70300 Homework 1 September 1, 006 The homework consists mostly of a selection of problems from the suggested books. 1. (a) Find the value of (1 + i) n + (1 i) n for every n N. We will use the polar

More information

Solutions to Tutorial for Week 3

Solutions to Tutorial for Week 3 The University of Sydney School of Mathematics and Statistics Solutions to Tutorial for Week 3 MATH9/93: Calculus of One Variable (Advanced) Semester, 08 Web Page: sydney.edu.au/science/maths/u/ug/jm/math9/

More information

On Maxima and Minima *

On Maxima and Minima * On Maxima and Minima * Leonhard Euler 50 If a function of x was of such a nature, that while the values of x increase the function itself continuously increases or decreases, then this function will have

More information

Practice Differentiation Math 120 Calculus I Fall 2015

Practice Differentiation Math 120 Calculus I Fall 2015 . x. Hint.. (4x 9) 4x + 9. Hint. Practice Differentiation Math 0 Calculus I Fall 0 The rules of differentiation are straightforward, but knowing when to use them and in what order takes practice. Although

More information

3 + 4i 2 + 3i. 3 4i Fig 1b

3 + 4i 2 + 3i. 3 4i Fig 1b The introduction of complex numbers in the 16th century was a natural step in a sequence of extensions of the positive integers, starting with the introduction of negative numbers (to solve equations of

More information

On the investigation of summable series *

On the investigation of summable series * On the investigation of summable series * Leonhard Euler 9 If the sum of the series whose terms contain the variable quantity x was known and which will therefore be a function of x, then, whatever value

More information

Course Notes for Signals and Systems. Krishna R Narayanan

Course Notes for Signals and Systems. Krishna R Narayanan Course Notes for Signals and Systems Krishna R Narayanan May 7, 018 Contents 1 Math Review 5 1.1 Trigonometric Identities............................. 5 1. Complex Numbers................................

More information

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits

Lecture for Week 2 (Secs. 1.3 and ) Functions and Limits Lecture for Week 2 (Secs. 1.3 and 2.2 2.3) Functions and Limits 1 First let s review what a function is. (See Sec. 1 of Review and Preview.) The best way to think of a function is as an imaginary machine,

More information

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0

Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) a n z n. n=0 Lecture 22 Power series solutions for 2nd order linear ODE s (not necessarily with constant coefficients) Recall a few facts about power series: a n z n This series in z is centered at z 0. Here z can

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Section 7.3 Double Angle Identities

Section 7.3 Double Angle Identities Section 7.3 Double Angle Identities 3 Section 7.3 Double Angle Identities Two special cases of the sum of angles identities arise often enough that we choose to state these identities separately. Identities

More information

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q.

In Z: x + 3 = 2 3x = 2 x = 1 No solution In Q: 3x = 2 x 2 = 2. x = 2 No solution. In R: x 2 = 2 x = 0 x = ± 2 No solution Z Q. THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH 1141 HIGHER MATHEMATICS 1A ALGEBRA. Section 1: - Complex Numbers. 1. The Number Systems. Let us begin by trying to solve various

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Math 308 Midterm November 6, 2009

Math 308 Midterm November 6, 2009 Math 308 Midterm November 6, 2009 We will write A 1,..., A n for the columns of an m n matrix A. If x R n, we will write x = (x 1,..., x n ). he null space and range of a matrix A are denoted by N (A)

More information

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance,

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance, Subsequences and Limsups Some sequences of numbers converge to limits, and some do not. For instance,,, 3, 4, 5,,... converges to 0 3, 3., 3.4, 3.4, 3.45, 3.459,... converges to π, 3,, 3.,, 3.4,... does

More information

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities

5.2. November 30, 2012 Mrs. Poland. Verifying Trigonometric Identities 5.2 Verifying Trigonometric Identities Verifying Identities by Working With One Side Verifying Identities by Working With Both Sides November 30, 2012 Mrs. Poland Objective #4: Students will be able to

More information

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities.

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities. Section 7. Addition and Subtraction Identities 47 Section 7. Addition and Subtraction Identities In this section, we begin expanding our repertoire of trigonometric identities. Identities The sum and difference

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

History of Mathematics

History of Mathematics History of Mathematics Paul Yiu Department of Mathematics Florida Atlantic University Spring 2014 10A: Newton s binomial series Issac Newton (1642-1727) obtained the binomial theorem and the area of a

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

PURE MATHEMATICS AM 27

PURE MATHEMATICS AM 27 AM Syllabus (014): Pure Mathematics AM SYLLABUS (014) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (014): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)

More information

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then.

The modulus, or absolute value, of a complex number z a bi is its distance from the origin. From Figure 3 we see that if z a bi, then. COMPLEX NUMBERS _+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with

More information

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers

Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers Coach Stones Expanded Standard Pre-Calculus Algorithm Packet Page 1 Section: P.1 Algebraic Expressions, Mathematical Models and Real Numbers CLASSIFICATIONS OF NUMBERS NATURAL NUMBERS = N = {1,2,3,4,...}

More information

CHAPTER 4. Series. 1. What is a Series?

CHAPTER 4. Series. 1. What is a Series? CHAPTER 4 Series Given a sequence, in many contexts it is natural to ask about the sum of all the numbers in the sequence. If only a finite number of the are nonzero, this is trivial and not very interesting.

More information

Graphical Analysis and Errors MBL

Graphical Analysis and Errors MBL Graphical Analysis and Errors MBL I Graphical Analysis Graphs are vital tools for analyzing and displaying data Graphs allow us to explore the relationship between two quantities -- an independent variable

More information

4.5 Integration of Rational Functions by Partial Fractions

4.5 Integration of Rational Functions by Partial Fractions 4.5 Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something like this, 2 x + 1 + 3 x 3 = 2(x 3) (x + 1)(x 3) + 3(x + 1) (x

More information

School District of Marshfield Course Syllabus

School District of Marshfield Course Syllabus School District of Marshfield Course Syllabus Course Name: Algebra II Length of Course: 1 Year Credit: 1 Program Goal: The School District of Marshfield Mathematics Program will prepare students for college

More information

Notes on generating functions in automata theory

Notes on generating functions in automata theory Notes on generating functions in automata theory Benjamin Steinberg December 5, 2009 Contents Introduction: Calculus can count 2 Formal power series 5 3 Rational power series 9 3. Rational power series

More information

Solving equations UNCORRECTED PAGE PROOFS

Solving equations UNCORRECTED PAGE PROOFS 1 Solving equations 1.1 Kick off with CAS 1. Polynomials 1.3 Trigonometric symmetry properties 1.4 Trigonometric equations and general solutions 1.5 Literal equations and simultaneous equations 1.6 Review

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University

Updated: January 16, 2016 Calculus II 7.4. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University Math 30 Calculus II Brian Veitch Fall 015 Northern Illinois University Integration of Rational Functions by Partial Fractions From algebra, we learned how to find common denominators so we can do something

More information

Algebra 2 and Mathematics 3 Critical Areas of Focus

Algebra 2 and Mathematics 3 Critical Areas of Focus Critical Areas of Focus Ohio s Learning Standards for Mathematics include descriptions of the Conceptual Categories. These descriptions have been used to develop critical areas for each of the courses

More information

Math 200 University of Connecticut

Math 200 University of Connecticut IRRATIONALITY OF π AND e KEITH CONRAD Math 2 University of Connecticut Date: Aug. 3, 25. Contents. Introduction 2. Irrationality of π 2 3. Irrationality of e 3 4. General Ideas 4 5. Irrationality of rational

More information

Physics 6303 Lecture 22 November 7, There are numerous methods of calculating these residues, and I list them below. lim

Physics 6303 Lecture 22 November 7, There are numerous methods of calculating these residues, and I list them below. lim Physics 6303 Lecture 22 November 7, 208 LAST TIME:, 2 2 2, There are numerous methods of calculating these residues, I list them below.. We may calculate the Laurent series pick out the coefficient. 2.

More information

2 Complex Functions and the Cauchy-Riemann Equations

2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)

More information

Part 3.3 Differentiation Taylor Polynomials

Part 3.3 Differentiation Taylor Polynomials Part 3.3 Differentiation 3..3.1 Taylor Polynomials Definition 3.3.1 Taylor 1715 and Maclaurin 1742) If a is a fixed number, and f is a function whose first n derivatives exist at a then the Taylor polynomial

More information

B Elements of Complex Analysis

B Elements of Complex Analysis Fourier Transform Methods in Finance By Umberto Cherubini Giovanni Della Lunga Sabrina Mulinacci Pietro Rossi Copyright 21 John Wiley & Sons Ltd B Elements of Complex Analysis B.1 COMPLEX NUMBERS The purpose

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

8.7 MacLaurin Polynomials

8.7 MacLaurin Polynomials 8.7 maclaurin polynomials 67 8.7 MacLaurin Polynomials In this chapter you have learned to find antiderivatives of a wide variety of elementary functions, but many more such functions fail to have an antiderivative

More information

NORMS OF PRODUCTS OF SINES. A trigonometric polynomial of degree n is an expression of the form. c k e ikt, c k C.

NORMS OF PRODUCTS OF SINES. A trigonometric polynomial of degree n is an expression of the form. c k e ikt, c k C. L NORMS OF PRODUCTS OF SINES JORDAN BELL Abstract Product of sines Summary of paper and motivate it Partly a survey of L p norms of trigonometric polynomials and exponential sums There are no introductory

More information

Chapter 2 Linear Equations and Inequalities in One Variable

Chapter 2 Linear Equations and Inequalities in One Variable Chapter 2 Linear Equations and Inequalities in One Variable Section 2.1: Linear Equations in One Variable Section 2.3: Solving Formulas Section 2.5: Linear Inequalities in One Variable Section 2.6: Compound

More information

4 Differential Equations

4 Differential Equations Advanced Calculus Chapter 4 Differential Equations 65 4 Differential Equations 4.1 Terminology Let U R n, and let y : U R. A differential equation in y is an equation involving y and its (partial) derivatives.

More information

Practice 14. imathesis.com By Carlos Sotuyo

Practice 14. imathesis.com By Carlos Sotuyo Practice 4 imathesis.com By Carlos Sotuyo Suggested solutions for Miscellaneous exercises 0, problems 5-0, pages 53 to 55 from Pure Mathematics, by Hugh Neil and Douglas Quailing, Cambridge University

More information

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows.

Preliminary algebra. Polynomial equations. and three real roots altogether. Continue an investigation of its properties as follows. 978-0-51-67973- - Student Solutions Manual for Mathematical Methods for Physics and Engineering: 1 Preliminary algebra Polynomial equations 1.1 It can be shown that the polynomial g(x) =4x 3 +3x 6x 1 has

More information

Lecture 13: Series Solutions near Singular Points

Lecture 13: Series Solutions near Singular Points Lecture 13: Series Solutions near Singular Points March 28, 2007 Here we consider solutions to second-order ODE s using series when the coefficients are not necessarily analytic. A first-order analogy

More information

Mathematical Review for Signal and Systems

Mathematical Review for Signal and Systems Mathematical Review for Signal and Systems 1 Trigonometric Identities It will be useful to memorize sin θ, cos θ, tan θ values for θ = 0, π/3, π/4, π/ and π ±θ, π θ for the above values of θ. The following

More information

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Shapes of Polynomials Look at the shape of the odd degree polynomials

More information

WHCSD Grade Content Area

WHCSD Grade Content Area Course Overview and Timing This section is to help you see the flow of the unit/topics across the entire school year. Quarter Unit Description Unit Length Early First Quarter Unit 1: Investigations and

More information

Math Final Exam Review

Math Final Exam Review Math - Final Exam Review. Find dx x + 6x +. Name: Solution: We complete the square to see if this function has a nice form. Note we have: x + 6x + (x + + dx x + 6x + dx (x + + Note that this looks a lot

More information

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions

Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions Course 2BA1: Hilary Term 2006 Section 7: Trigonometric and Exponential Functions David R. Wilkins Copyright c David R. Wilkins 2005 Contents 7 Trigonometric and Exponential Functions 1 7.1 Basic Trigonometric

More information

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence.

Section Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. Example Determine the Maclaurin series of f (x) = e x and its the interval of convergence. f n (0)x n Recall from

More information

Chapter 13 - Inverse Functions

Chapter 13 - Inverse Functions Chapter 13 - Inverse Functions In the second part of this book on Calculus, we shall be devoting our study to another type of function, the exponential function and its close relative the Sine function.

More information

Chapter One Hilbert s 7th Problem: It s statement and origins

Chapter One Hilbert s 7th Problem: It s statement and origins Chapter One Hilbert s 7th Problem: It s statement and origins At the second International Congress of athematicians in Paris, 900, the mathematician David Hilbert was invited to deliver a keynote address,

More information

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number

Complex Numbers. 1 Introduction. 2 Imaginary Number. December 11, Multiplication of Imaginary Number Complex Numbers December, 206 Introduction 2 Imaginary Number In your study of mathematics, you may have noticed that some quadratic equations do not have any real number solutions. For example, try as

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions Chapter Five Exponential and Logarithmic Functions Exponential Functions Logarithmic Functions Properties of Logarithms Exponential Equations Exponential Situations Logarithmic Equations Exponential Functions

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

,... We would like to compare this with the sequence y n = 1 n

,... We would like to compare this with the sequence y n = 1 n Example 2.0 Let (x n ) n= be the sequence given by x n = 2, i.e. n 2, 4, 8, 6,.... We would like to compare this with the sequence = n (which we know converges to zero). We claim that 2 n n, n N. Proof.

More information

Course Notes for Calculus , Spring 2015

Course Notes for Calculus , Spring 2015 Course Notes for Calculus 110.109, Spring 2015 Nishanth Gudapati In the previous course (Calculus 110.108) we introduced the notion of integration and a few basic techniques of integration like substitution

More information

MATH 113: ELEMENTARY CALCULUS

MATH 113: ELEMENTARY CALCULUS MATH 3: ELEMENTARY CALCULUS Please check www.ualberta.ca/ zhiyongz for notes updation! 6. Rates of Change and Limits A fundamental philosophical truth is that everything changes. In physics, the change

More information

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution.

With this expanded version of what we mean by a solution to an equation we can solve equations that previously had no solution. M 74 An introduction to Complex Numbers. 1 Solving equations Throughout the calculus sequence we have limited our discussion to real valued solutions to equations. We know the equation x 1 = 0 has distinct

More information

Unions of Solutions. Unions. Unions of solutions

Unions of Solutions. Unions. Unions of solutions Unions of Solutions We ll begin this chapter by discussing unions of sets. Then we ll focus our attention on unions of sets that are solutions of polynomial equations. Unions If B is a set, and if C is

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms EECS2 (6.082), MIT Fall 2006 Lectures 2 and 3 Fourier Series From your differential equations course, 18.03, you know Fourier s expression representing a T -periodic

More information

SUMMATION TECHNIQUES

SUMMATION TECHNIQUES SUMMATION TECHNIQUES MATH 53, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Scattered around, but the most cutting-edge parts are in Sections 2.8 and 2.9. What students should definitely

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information