Dynamic Power Management Based on Continuous-Time Markov Decision Processes*

Size: px
Start display at page:

Download "Dynamic Power Management Based on Continuous-Time Markov Decision Processes*"

Transcription

1 Dynamc Power Managemen Based on Connuous-Tme Markov Decson Processes* Qnru Qu and Massoud Pedram Deparmen of Elecrcal Engneerng-Sysems Unversy of Souhern Calforna Los Angeles Calforna USA {qnru Absrac Ths paper nroduces a connuous-me conrollable Markov process model of a power-managed sysem. The sysem model s composed of he correspondng sochasc models of he servce queue and he servce provder. The sysem envronmen s modeled by a sochasc servce reques process. The problem of dynamc power managemen n such a sysem s formulaed as a polcy opmzaon problem and solved usng an effcen polcy eraon algorhm. Compared o prevous work on dynamc power managemen our formulaon allows beer modelng of he varous sysem componens he power-managed sysem as a whole and s envronmen. In addon capures dependences beween he servce queue and servce provder saus. Fnally he resulng power managemen polcy s asynchronous hence s more power-effcen and more useful n pracce. Expermenal resuls demonsrae he effecveness of our polcy opmzaon algorhm compared o a number of heursc (me-ou and N- polcy) algorhms. I. INTRODUCTION Wh he rapd progress n he semconducor echnology he chp densy and operaon frequency have grealy ncreased makng power consumpon n baery-operaed porable devces a maor concern. The goal of low-power desgn for baery-powered devces s o exend he baery lfeme whle meeng he performance requremen. Reducng power dsspaon s a desgn goal even for non-porable devces snce excessve power dsspaon resuls n ncreased cos of packagng and coolng as well as poenal relably problems. Many compuer aded desgn mehodologes and echnques for low power have been proposed []. The acvy of many componens n a compung sysem s evendrven; for example he acvy of dsplay servers communcaon nerfaces and user nerface funcons s rggered by exernal evens and s ofen nerleaved wh long perods of quescence. An nuve way of reducng he average power dsspaed by he whole sysem consss of shung down he resources durng her perods of nacvy. In oher words one can adop a sysem-level power managemen polcy ha dcaes how and when he varous componens should be shu down. The problem of fndng a power managemen scheme (or polcy) ha mnmzes power dsspaon under performance consrans s of grea neres o sysem desgners. Several heursc power managemen polces have been repored n he pas. A smple *Ths work was suppored n par by SRC under conrac No. 98-DJ-66 NSF under conrac No. MIP and a gran from Toshba Corp. heursc polcy s he me-ou polcy. In hs polcy a devce s pu n s power-down mode afer has been dle for a ceran amoun of me. Obvously hs smple polcy s no effcen. To overcome he lmaons of he sac shu-down polcy Srvasava e al. [6] proposed a predcve power managemen sraegy whch uses a regresson equaon based on he componen s prevous on and off me o esmae he nex urn-on me. In [7] Hwang and Wu have nroduced a more complex predcve shu-down sraegy ha has a beer performance. However hese mehods are only applcable o cases n whch he requess are hghly correlaed. The choce of he polcy ha mnmzes power under performance consrans (or maxmzes performance under power consran) s a new knd of consraned opmzaon problem whch s of grea relevance for low-power elecronc sysems. Ths problem s ofen referred o as he polcy opmzaon (PO) problem. In [] Paleologo e al. proposed a sochasc model for a rgorous mahemacal formulaon of he problem and gve a procedure for s exac soluon. The soluon s compued n polynomal me by solvng a lnear opmzaon problem. Ther approach s based on a sochasc model of power-managed devces and workloads and leverages sochasc opmzaon echnques based on he heory of dscree-me Markov decson chans. In he model of [] me s dvded no small nervals of lengh L. I s assumed ha he sysem can only change s sae a he begnnng of a me nerval. Durng nerval (L (+)L) he ranson probably of he sysem depends only on he sae of he sysem a me L (hence he Markovan propery) and he command ssued by he power manager. The sysem model consss of four componens: a power manager (PM) a servce provder (SP) a servce requesor (SR) and a servce reques queue (). Once he model and s parameers have been deermned an opmal power managemen polcy s obaned o acheve bes power-delay rade-off. Ths approach offers sgnfcan mprovemen over prevous power managemen echnques n erms of s heorecal foundaon and a robus sysem model. Ths approach however has some shorcomngs. Frsly he power-managed sysem s modeled n he dscree-me doman whch lms s n real applcaons. Secondly he model does no dsngush beween he busy sae and he dle sae of he SP (hey are lumped no he power-up sae) herefore he sae ranson probably of he sysem model canno be calculaed accuraely. Thrdly he assumpon ha he ransons of he and he SP are ndependen s naccurae and hus affecs he overall accuracy of hs model. Fnally he power managemen program needs o send conrol sgnals o he componens n every me-slce whch resuls n heavy sgnal raffc and heavy load on he sysem resources (herefore more power dsspaon). In hs work we overcome he shorcomngs of [] by nroducng a new sysem model based on connuous-me Markov decson processes. Ths new model has he followng characerscs:

2 . The new model s based on he connuous-me Markov decson processes whch s closer o he scenaros encounered n pracce.. The resulng power managemen polcy s asynchronous whch s more suable for mplemenaon as par of he operang sysem. 3. The new model nroduces a ransfer sae n he model of he ; n hs way can dsngush beween he busy and dle saes of he SP. 4. The new model consders he correlaon beween he sae of he and he sae of he SP. 5. A polcy eraon algorhm s used o solve he polcy opmzaon problem. The new algorhm ends o be more effcen han he lnear programmng mehod. We also explore he class of N-polces and show ha under ceran condons hs class of algorhms whch are very easy o mplemen produces opmal soluons. Ths paper s organzed as follows Secon II provdes he background for connuous-me Markov processes and connuous-me Markov decson processes. Secon III descrbes our sysem model for he dynamc power managemen he defnon of cos funcon and he polcy eraon algorhm. Secon V gves he expermenal resuls concludng remarks. II. BACKGROUND Defnon. A sochasc process s a famly of random varables {X() } where s he me parameer. The values assumed by he process are called he saes and he se of possble values s called he sae space. Defnon. A sochasc process X() s called a Markov process f for any se of me < < < n < s condonal dsrbuon has he propery: P [ X ( ) x X ( n ) = xn K X ( ) = x ] = P[ X ( ) x X ( n ) = xn ] where n T and x x x n S. T and S are called he parameer space and sae space of he Markov process respecvely. When T s a connuous space and S s a dscree space he Markov process s called he connuous-me Markov process. Gven a connuous-me Markov process wh n saes s generaor marx G s defned as an n n marx as shown n Eqn. (.). An enry σ n G s called he ranson rae from sae o sae. All enres are defned n Eqn. (.) and Eqn. (.3). Eqn. (.4) gves he relaonshp beween σ and σ. Marx G (also known as he ranson rae marx) s called a dfferenal marx f s enres sasfy propery (.4). σ σ σ L σ σ σ L G = (.) σ σ σ L M M M O p ( ) σ = lm = p () = n (.) p ( ) σ = lm = p () = n; (.3) σ = σ = n; (.4) where p () s he ranson probably from sae (drecly or ndrecly) o sae durng me o and p () s s dervave. The generaor marx n he connuous-me Markov process s he analogue of he ranson probably marx n he dscree-me Markov process. We can calculae he lmng dsrbuon (seady) sae probables of he connuous-me Markov process from s generaor marx. Theorem. shows he relaon beween hs marx and he lmng dsrbuon probables [7]. Before sang he heorem we gve some defnons. Defnon.3 A sae s sad o be recurren f and only f sarng from evenual reurn o hs sae s ceran. A recurren sae s sad o be posve recurren f and only f he mean me o reurn o hs sae s fne. A sae s sad o be ransen f and only f sarng from here s a posve probably ha he process may no evenually reurn o hs sae. Defnon.4 Sae s sad o be accessble from sae f can be reached from whn fne me whch s denoed as. If and hey are sad o be communcae whch s denoed as. The se of all saes of a Markov process ha communcae wh each oher forms a communcang class. Defnon.5 If he se of all saes of a sochasc process X form a sngle communcang class hen X s rreducble. Theorem. () If he Markov process s rreducble hen he lmng dsrbuon lm p () = p S exss and s ndependen of he nal condons of he process The lms {p n n S) are such ha hey eher vansh dencally (.e. p = for all S) or are all posve and form a probably dsrbuon (.e. p > for all S Σ S p = ). () The lmng dsrbuon {p S } of an rreducble posve recurren Markov process s gven by he unque soluon of he equaon: pg = and Σ S p = where p = (p p ). Defnon.6 If we map he saes of a Markov process as verces of a graph and he saes ransons as dreced edges beween he verces. The Markov process s called a conneced Markov process f hs graph s a conneced graph. For he dscussons n he res of hs paper we wll om he erm connuous-me for more concse descrpon. Unless oherwse saed all processes are assumed connuous-me. Frs we descrbe a Markov process wh reward. Assume he sysem earns a reward a rae r (per un me) durng all he me ha occupes sae. When makes a ranson from sae o sae ( ) receves a reward of r. Noe ha r and r have dfferen dmensons. I s no necessary ha he sysem earns accordng o boh reward raes and ranson rewards bu hese defnons gve us generaly. We defne he earnng rae of sae as: r = r + σ r. Le v () be he expeced oal reward ha he sysem wll earn durng a me perod of f sars n sae. The oal expeced reward durng a me perod of +d ha s v (+d) can be wren as: v + d) = ( σ d)[ r d + v ( )] + d[ r + v ( )] ( σ I can be nerpreed as follows. Durng he me nerval d he sysem may reman n sae or make a ranson o some oher sae. If remans n sae for a me d wll earn a rae r d plus he expeced reward ha wll earn n he remanng uns of me v (). The probably ha remans n sae for a me d s ( σ d ). On he oher hand he sysem may make a ranson o some sae durng he me nerval d wh probably σ d. In hs case he sysem would receve he reward

3 r plus he expeced reward o be made f sars n sae wh me remanng v (). The produc of probably and reward mus hen be summed over all saes o oban he oal conrbuon o he expeced values. Wh d and usng he defnon of earnng rae r we have: d d n v ( ) = r + σ v ( = n (.5) = ) where n s he oal number of saes of he process. Eqn. (.5) gves a se of lnear consan coeffcen dfferenal equaons ha relae he oal reward n me from a sarng sae o he quanes of r and σ. Secondly a conrollable Markov process s a Markov process whose sae ranson raes can be conrolled by conrollng commands (defned as acons). When he sysem s n sae an acon a s chosen from a fne se A whch ncludes all possble acons for sae. We denoe hs sae acon relaon as <a >. If he chosen acon changes as he me changes we denoe he acon as a me-dependen varable a (). Hence he sae-acon par s wren as <a ()>. The sae ranson raes σ have a ( ) dfferen values when dfferen acons are aken. We use σ o denoe he ranson rae from sae o sae when acon a () s aken for sae a me. As a resul he generaor marx of a conrollable Markov process can be represened by a parameerzed (acon s he parameer) marx. Defnon.7 A polcy π s he se of sae-acon pars for all he saes of a conrollable Markov process ha s π={ <a ()> a () A n}. A Markov decson process s a conrollable Markov process wh ( ) rewards. In a Markov decson process snce σ s acondependen he reward rae r becomes also acon-dependen a () whch s denoed as r a () A. The expeced oal reward v () depends on he chosen acon of each sae.e. becomes polcy-dependen and s denoed as v (). The generaor marx a G s hen also polcy-dependen and s denoed as G π. Le () denoe he probably of beng n sae a me when he nal sae s and he sae ranson raes are deermned by polcy π. The oal expeced reward ha he process can earn for a me perod of can be wren as [9]: p = n = a ( τ ) v ( ) p ( τ ) r Gven wo polces π and π f we can fnd a me ξ such ha v ( ) v ( ) for all >ξ = n we denoe as π π. A polcy π s called he opmal polcy f π {any possble polcy for he Markov decson process}. Le v = lm v ( ). The goal of a Markov decson process s o fnd he opmal polcy ha maxmzes pracce we canno use v for all. However n v drecly for calculang he opmal polcy snce v () approaches nfny when approaches nfny. Two alernave quanes are commonly used. () lmng average reward: n a ( τ ) avg = lm p ( τ ) r = v Obvously maxmzng lmng average reward s he same as maxmzng he oal expeced reward. () dscouned reward: n aτ a ( τ ) ds ) = v ( α) = lm e p ( τ r Boh reward models are meanngful for dfferen conex. The decson based on he average lmng reward assumes ha he sysem wll run forever herefore consders reurn n near fuure and far fuure o have he same sgnfcance. Whle he decson based on he dscouned reward consders he fuure as unpredcable.e. he sysem may be ermnaed any me n he fuure. Therefore emphaszes he reurn of he near fuure. The dscoun facor α decdes how greedy hs reward model s. The larger α s he less consders he fuure. When α approaches he dscouned reward approaches he oal expeced reward. Defnon.8 A polcy π s saonary f he decson-makng (acon) s only a funcon of he sae and ndependen of me ha s: π={ <a > a A n}. Theorem. [9] For any α here exss a saonary polcy whch maxmzes v ( ) for all = n. Such a polcy s called ds α α-opmal. Defnon.9 A polcy π s pecewse-saonary f for any τ nerval [ τ) can be dvded no a fne number of nervals [ ) [ ) [ m- τ) such ha nsde each nerval he polcy s saonary. Theorem.3 [9] There exss a saonary polcy ha s α-opmal for π a se of α havng as a lm pon. Ths polcy maxmzes v avg over he class of pecewse-saonary polces. We herefore do no lose generaly f our search for he opmum polcy s resrced on he se of saonary polces. Acons and polces ha we wll dscuss laer are hus me-ndependen. The goal of a Markov decson process s o fnd a polcy ha maxmzes he expeced reward. In our case we wan o fnd a polcy ha mnmzes our cos funcon (delay and power). These wo problems are equvalen f we use he negave of cos as he reward. In he remander of he paper we wll use he erm cos nsead of reward and use c and c nsead of r and r. For he res of he dscusson our goal s o mnmze he cos under eher he dscouned model or lmng average model. III. SYSTEM MODELING We assume he sysem s embedded n an envronmen where here s only a sngle source of requess whch s defned as he servce requesor (SR). Requess ssued by he SR are servced by he sysem. The sysem self consss of hree componens: a resource ha processes requess (he SP) a queue whch sores he requess ha canno be servced mmedaely upon arrval () and a power manager (PM). Boh he reques arrval even and reques servce even are sochasc processes. We assume ha hey follow he Posson process (.e. durng me ( ] he number of he evens has he Posson dsrbuon wh mean λ). Consequenly he reques ner-arrval me (from he SR) and he servce me (he me needed by he SP o servce a reques) follow he exponenal dsrbuon wh mean /λ. In order o be more general n our model we assume ha he SP has more han one workng mode herefore can servce he

4 requess wh more han one servce speed. We also assume ha all requess have he same servce prory. The servce of he requess are based on a FIFO order. The SP can operae n a number of dfferen power modes. We assume ha he me needed for he SP o swch from one sae o anoher follows he exponenal dsrbuon. The PM s a conroller ha reads he sysem sae (he on saes of he SP and he ) and ssues mode-swchng commands o he SP. In he remander of hs paper we wll use upper case bold leers (e.g. M) o denoe marces lowercase bold leers (e.g. v) o denoe vecors alczed Aral leers (e.g. S) o denoe ses uppercase alczed leers (e.g. S) o denoe scalar consans and lower case alczed leers (e.g. x) o denoe scalar varables. The Servce Requesor (SR) has only one reques generang mode. The average nerval me of requess generaed by SR follows he exponenal dsrbuon wh mean value /λ. An SR model wh one reques generang mode s a smplfed model of a real SR whose reques generang speed vares from me o me dependng on he workload. From our observaons however we fnd ha he average ner-arrval me of a gven Posson process can be esmaed whn 5% error afer observng 5 evens. Therefore f he npu says sable long enough he power manager can observe and esmae he npu rae dynamcally and adapvely change s polcy. The Servce Provder (SP) s modeled as a saonary connuousme conrollable Markov process wh sae (operaon mode) se S={s s.. = S} acon se A and generaor marx G SP ( a A. I can be descrbed by a quadruple (χ µ(s) pow(s) ene(s s )) where: () χ s an S S marx; () µ(s) s a funcon µ: S ; () pow(s) s a funcon pow: S ; (v) ene(s s ) s a funcon eng: S S. We call χ he swchng speed marx. The ()h enry of χ s denoed as χ and represens he swchng speed from sae s s s o s. The average swchng me from sae s o sae s s hen / χ. We se χ o be because he swch from sae s o s s s s self s nsananeous. The enres of he parameerzed generaor marx G SP ( can be calculaed as: σ s s ( a ) = δ ( s χ s s s s ; σ ( = σ s s a ) s s s s δ(s equals o f s s he desnaon sae of a oherwse δ(s equals o. A servce rae µ(s) represens he servce speed of SP n sae s. Therefore /µ(s) gves he average me ha s needed by SP o complee he servce for one reques when SP s n sae s. A power consumpon rae pow(s) s assocaed wh each sae s S. I represens he power consumpon of SP durng he me occupes sae s. The cos rae c ss of sae s s equal o pow(s). A swchng energy ene(s s ) s assocaed wh each sae par (s s ) s s S s s. I represens he energy needed for SP o swch from sae s o sae s. The cos c s s s equal o ene(s s ). From Eqn. (3.5) we know ha he expeced power consumpon of SP when s n sae s and acon a s s chosen can be calculaed by: c = pow s) + σ ( a ) ene( s s ). s ( s s s s s We can dvde he sae se S no wo groups: () The se of acve saes Sacve where µ(s a ) s larger han for each s a Sacve. () The se of nacve saes Snacve where µ(s na ) s for each s na Snacve. Furhermore we can dvde he marx G SP ( no wo pars: AA G ( G ( = SP SP IA GSP ( AI G SP( II GSP( AA SP where marx G ( conans he ranson rae for ransons beween nacve saes. Marx G SP ( conans he ranson raes for ransons from any nacve sae o any acve sae. IA SP II SP G ( and G ( are defned smlarly. Example 4. Consder a SP wh hree saes S={acve wang sleepng}. Laer we wll also denoe acve as A. wang as W. sleepng as S.. Le he acon se be defned as A={wakeup wa sleep}. Assume ha all hree commands are vald n any sae. The swchng speed marx χ s a 3 3 marx. The power consumpon rae pow(s) can be represened by a vecor. The swchng energy ene(s s ) can be represened by a wo-dmensonal able. Assume ha he chosen polcy s: {<A. wa> <W. sleep> <S. wakeup>} Fgure gves an llusraon of hs Markov process. Noe ha he self-loops are no shown n hs fgure. sleepng wang Fgure Markov process model of he SP The Servce Queue () s modeled as a saonary connuousme conrollable Markov process wh sae se Q=Qsable Qransfer where Qsable={q s.. = Q} Qransfer={q - s.. = Q} and he generaor marx G (s a (qs) ) where s s he SP sae a (qs) s he acon when SP s n sae s and s n sae q. The model of s consruced based on ha of an M/M/ queue. The queue lengh s Q. We assume ha he reques wll be los f he s full a he me he reques arrves. The sae se Qransfer s he se of ransfer saes whch represen he saes of he when he servce of a reques has been fnshed and he servce of he nex reques has no sared. Noe ha here s a concurrency consran beween he and he SP as follows: Whenever he s n a ransfer sae he SP s ransonng from one sae o nex. Furhermore he leaves he ransfer sae exacly when he SP ranson s complee. The sae se Qsable s he se of sable saes.e. saes of he oher han he ransfer saes. We denoe a sable sae as q whch also mples ha here are requess n he. Gven he sae of SP he ranson raes beween he saes of are fxed. There are four ypes of possble ransons. They are: () The ranson from sable sae q o sable sae q +. The wll make hs ranson when s n sae q and a reques s generaed by he SR. The ranson rae s: σ q = λ = AI q + Q- where λ s he reques generaon rae of SR. () The ranson from sable sae q o ransfer sae q -. The wll make hs ranson when s n sae q and he servce for he curren reques s compleed by he SP. The ranson rae s: σ = ( ) = Q q s q µ.9 acve

5 (3) The ranson from ransfer sae q - o sable sae q -. The wll make hs ranson when s sae q - and he SP complees swchng and sars o provde servce for he nex reques. The ranson rae s: σ = χ = Q- q q s s where s s he desnaon sae of acon a (qs). (4) The ranson from ransfer sae q - o ransfer sae q +. The wll make hs ranson when s n sae q - and a reques s generaed by he. The ranson rae s: σ q = λ q = Q-. + For he sake of brevy we do no descrbe he boundary case when he s n sae q Q Q- and a reques s generaed. Transon beween saes oher han hese four classes has a rae of. The self-ranson rae can hen be calculaed as: σ = q q Q. q q σ q q q q Based on he above groupng we can dvde he marx G (s no four pars: SS SS G ( s G ( s = TS G ( s ST G ( s where marx TT G ( s G ( s conans he ranson rae for ransons beween ST sable saes. Marx G ( s conans he ranson raes for TS ransons from any sable sae o any ransfer sae. G ( s TT and G ( s are defned smlarly. Example 4.3 Consder he SP model gven n prevous examples and assume a maxmum queue lengh of. Assume ha whenever he s n ransfer sae he PM wll ssue he sleep command. Fgure gves he llusraon of he Markov process model of hs. Noe ha he self-loops are no shown n he fgure. λ q q χ A.S. q µ(s) χ A.S. λ Fgure Markov process model of he The Power-Managed Sysem (SYS) can be modeled as a saonary connuous-me conrollable Markov process whch s he composon of he Markov processes of he SP and he. The sae se s gven X=S Qsable Sacve Q ransfer. The acon se s he same as ha n he SP model. A parameerzed generaor marx G SYS (x gves he sae ranson raes under acon a. A cos funcon Cos(x gves he sysem cos under acon a when he SYS s n sae x. There s an acon se A x assocaed wh each sae x. When he sysem s n sae x he PM chooses a command from he A x. The acon gves he mode of SP ha should swch o. No all acons are vald n all saes. Consrans on a vald acon are as follows: () When he s n sable sae he SP canno swch from acve sae o nacve sae. () When he s n sable sae q Q ( s full) he SP canno swch from an nacve sae o anoher nacve sae wh longer wakeup me. λ q µ(s) q (3) When he s n ransfer sae q Q Q- he SP canno swch from an acve sae o anoher acve sae wh longer servce me. The frs consran ensures ha he work of SP wll no be nerruped by he command ssued by he PM and all commands ssued by he PM wll be acceped by he SP wh probably.the las wo consrans ensure ha he resulng SYS model s a conneced Markov process. Consequenly he lmng dsrbuon of he sae probably exss and s ndependen of he nal sae [7]. These wo consrans are also reasonable because when SP and he are n hese forbdden saes hen he servce speed canno follow he generaon speed of he requess. Therefore we need o ncrease he servce speed. There s some dependence beween he Markov process model of and he Markov process model of SP because he ransfer saes of are assocaed wh he acve saes of SP and her ransons are synchronzed. When he s n sable sae however he s ndependen from he SP. Defnon 4.4 Consder wo marces A and B: a a b b A = and B = a a. The ensor produc b b ab ab C=AB s gven by C =. The ensor sum ab ab C=A B s gven by: C = A I + I B where n s he n n order of A n s he order of B I s he deny marx of order n. We can wre he generaor marx G SYS ( as (please refer o [8] for proof) : SS G SP ( G ( M( G SYS ( = A TT GSP ( N I S G ( acve ST I G ( ) M = a A AA AI I Q O G SP = GSP GSP O O s a S nacve (Q+) (S acve Q) marx of all zeros O s a column vecor of all zeros. The dagonal enres of G SYS ( are calculaed as: σ ( a ) = σ (. S acve [ ] n N = [ ] The cos of he sysem s relaed o he sae x of he SYS and he acon a aken by he SYS n sae x. We use he average power consumpon C pow (x and he average number of wang requess C sq o capure he sysem cos. Le x be denoed by (s q) where s S q Q. The power cos can be calculaed as: C ( x = pow( s) + σ ( ene( s s'. pow s s ) s' S s' s The delay cos s: C sq = when s n sable sae q or ransfer sae q +. We defne a oal cos as a weghed summaon of he power and delay coss Cos(x= C pow (x+w C lsq (x) (3.) IV. POLICY OPTIMIZATION The problem of power managemen s o fnd he opmal se of sae-acon pars for he PM such ha he expeced power consumpon s mnmzed subec o he performance consrans. Ths problem can be formally wren as: mn lm p x X x x ( τ ) C pow ( x a π )

6 s.. lm p x X π x x ( τ ) C sq ( x) D M x x X Where p x x (τ ) s he sae ranson (drec or ndrec) probably from sae x o x n a me perod of τ under polcy π. a π n C pow (xa π ) denoes he acon n sae x. Anoher problem formulaon s: mn lm px x ( τ ) Cos( x a ) x x X ' x X By adusng he weghs n Eqn. (3.) we can acheve mnmum power under dfferen delay consrans. Fgure 3 gves he workflow of our polcy opmzaon algorhm. The polcy eraon algorhm s he same as ha n [9]. Deals are omed here o save space. Sysem Model Polcy Ieraon Algorhm Does he polcy mee he performance consran? YES Oupu opmal polcy Fgure 3 Polcy opmzaon workflow Increase he weghs of delay n (3.) NO V. EXPERIMENTAL RESULTS Frs we descrbe a class of heursc polces ha can gve rade off beween power and performance. An N-polcy s a polcy ha acvaes he server when here are N cusomers wang for servce and deacvaes he server when here are no cusomer n he sysem []. When he server has only wo saes: acve and sleepng can easly be shown ha he N-polcy gves he mnmum power compared o oher saonary polces wh he same performance consran. Our expermens show ha however for a sysem wh more han wo server saes he N- polcy does no gve he opmal power-delay radeoff. Our expermenal seup s as follows. We have wren an evendrven smulaor for smulang he real-me operaon of a porable sysem ogeher wh he power managemen polcy. The smulaor smulaes he operaons of he server he queue and he power manager under real-me npu requess. The server has hree saes: acve wang and sleepng. We se he lengh of he queue o 5. Tasks are represened by a sequence of evens. The nerval me beween wo consecuve requess s generaed randomly o follow an exponenal dsrbuon wh mean value of 6sec. Therefore λ=.67 n he sochasc model of he sysem. The oal number of requess s 5. The servce me of each ask s also generaed accordng o an exponenal dsrbuon wh mean value.5sec. Therefore µ(acve)=.67 n he sochasc model of he sysem. When he sysem sae changes he power manager s rggered and a new command s ssued accordng o he curren sysem sae. The swchng me of he server s also generaed randomly. Eqn. (4.) ( gves he expermenal value of he average swchng me. The me s gven n seconds. Noe ha hese refer o he values of /χ n he sochasc model. We se he server power dsspaon when he server s acve wang and sleepng o 4w 5w and.w respecvely. These values are assgned o he correspondng cos raes c n he sochasc model. The energy needed for each ranson (gven n J) s gven n Eqn. (4.) (b). These values are assgned o he correspondng ranson coss c n he model. The performance and he cos mercs are measured by he average number of wang requess and he average power dsspaon of he sysem durng he smulaon ( r _ me =.5. (b) r _ energy =. (4.)..5 5 In he frs expermen we changed he value of he performance wegh of our algorhm and obaned a se of opmum polces. We also generaed a se of N-polces usng N= 5. Fgure 4 shows he comparson of he smulaed values of perfomance and power of he wo ses. Noe ha he lefmos (rghmos) N-polcy soluon n Fgure 4 corresponds o N= (N=5). We fnd our polcy gves beer power-delay radoff han he N-polcy. In he expermens we also calculaed he funconal value of he queue lengh and energy cos (by usng he sae probably and he sae cos) and found ha he funconal value and he smulaed value are almos he same. Ths shows ha our sochasc model of he power-managed sysem maches he real suaon very well. Power (w) Power Performance Trade Off Pars N-polcy our polcy Average Number of Wang Requess Fgure 4 Comparson of our polcy and The N-polcy In he second expermen we assume ha he performance consran of he sysem s o keep he average oupu rae (hroughpu) he same as he npu rae. Tha s he average me ha each ask says n he queue (.e. average wang me) should be equal o or less han he average ner-arrval me of asks. In he algorhm he performance consran s defned n erms of he average number of wang requess. Therefore we mus conver he average wang me o he average number of wang requess. We used he approxmaaon ha he average number of wang requess equals he npu rae mes he average wang me of each reques. Table gves he smulaed values of he average wang me and he correspondng queue lengh. I shows ha he approxmaon s whn 5% error of he acual value. In he las expermen we used a se of npu asks where he npu rae vared from /8 o /3. The correspondng average nerval me of he asks vared from 8sec o 3sec. We compared he power-delay curves for our polcy wh four heursc algorhms. Among heursc approaches one s a greedy algorhm whch

7 deacvaes (acvaes) he server as soon as he queue s empy (he queue s no empy). The oher hree are me-ou polces whch deacvae he server n seconds afer becomes dle. In me-ou polcy () n s fxed o sec. In polcy () n s equal o he average ner-arrval me of he npu asks. In polcy (3) n s equal o half of he ner-arrval me of npu asks. Fgure 5 shows he smulaed value of power and he average wang me. We can see ha our algorhm gves bes power dsspaon whle sasfyng he performance consran. Table Comparson of real average queue lengh and he approxmaed average queue lengh Inpu Rae (/sec) /8 /7 /6 /5 /4 /3 Avg. Wang Tme (sec) Aprox. # of Wang Requess Acual # of Wang Requess Error of Apporxmaon(%) VI. Power (w) 3.5 Average Wang Tme (sec) Power Dsspaon a Dfferen Inpu Raes our polcy greedy polcy me-ou polcy () me-ou polcy () me-ou polcy (3) Iner-arrval Tme for Task (sec) ( Performance of Polcy a Dfferen Inpu Rae our polcy greedy polcy me-ou polcy () me-ou polcy () me-ou polcy (3) Iner-arrval Tme for Task (sec) (b) Fgure 5 Comparson of our polcy and heursc polces CONCLUSION We have proposed a new sysem model and mehod for dynamc power managemen n sysem-level. The problem of sysem-level power managemen was formulaed as he connuous-me Markov decson process based on he heores of connuous-me Markov decson process and sochasc nework. Compared o prevous work our model can represen he sysem behavor more nuvely and more accuraely by consderng he close relaonshp beween he server saus and he queue saus. By modelng he sysem as a queue n he doman of connuous-me he parameers n he model become more realsc such ha hey can be colleced easly and precsely. Expermenal resuls were presened o show ha our approach s more flexble and more effecve han heursc approaches o acheve he bes powerperformance radeoff. REFERENCES [] A. Chandrakasan R. Brodersen Low Power Dgal CMOS Desgn Kluwer Academc Publshers July 995. [] M. Horowz T. Indermaur and R. Gonzalez Low-Power Dgal Desgn IEEE Symposum on Low Power Elecroncs pp [3] A. Chandrakasan V. Gunk and T. Xanhopoulos Daa Drven Sgnal Processng: An Approach for Energy Effcen Compung 996 Inernaonal Symposum on Low Power Elecroncs and Desgn pp Aug [4] J. Rabaey and M. Pedram Low Power Desgn Mehodologes Kluwer Academc Publshers 996 [5] L. Benn and G. De Mchel Dynamc Power Managemen: Desgn Technques and CAD Tools Kluwer Academc Publshers 997. [6] Inel Mcrosof and Toshba Advanced Confguraon and Power Inerface specfcaon URL: hp:// 996 [7] U. Narayan Bha Elemens Of Appled Sochasc Processes John Wley & Sons Inc. 984 [8] B. Mller Fne Sae Connuous Tme Markov Decson Processes Wh an Fne Plannng Horzon. SIAM J. Conrol Vol. 5 No. pp [9] B. Mller Fne Sae Connuous Tme Markov Decson Processes Wh an Infne Plannng Horzon. J. Of Mahemacal Analyss and Applcaons No. pp [] R.A.Howard Dynamc Programmng and Markov Processes Wley New York 96 [] G. A. Paleologo L. Benn e.al Polcy Opmzaon for Dynamc Power Managemen Proceedngs of Desgn Auomaon Conference pp.8-87 Jun [] D. P. Heyman M. J. Sobel Sochasc Models n Operaons Research McGraw-Hll Book Company 98 [3] L. Benn A. Boglolo S. Cavallucc B. Rcco Monorng Sysem Acvy For OS-Dreced Dynamc Power Managemen Proceedngs of Inernaonal Symposum of Low Power Elecroncs and Desgn Conference pp Aug [4] L. Benn R. Hodgson P. Segel Sysem-level Esmaon And Opmzaon Proceedngs of Inernaonal Symposum of Low Power Elecroncs and Desgn Conference pp Aug [5] G. Bolch S. Grener H. D. Meer and K. S. Trved Queueng Neworks and Markov Chans John Wley & Sons Inc. 998 [6] M. Srvasava A. Chandrakasan. R. Brodersen Predcve sysem shudown and oher archecural echnques for energy effcen programmable compuaon" IEEE Transacons on VLSI Sysems Vol. 4 No. (996) pages [7] C.-H. Hwang and A. Wu A Predcve Sysem Shudown Mehod for Energy Savng of Even-Drven Compuaon Proc. of he Inl. Conference on Compuer Aded Desgn pages 8-3 November 997. [8] Q. Qu Q. Wu and M. Pedram Dynamc Power managemen: A Connuous-Tme Sochasc Approach USC EE-Sysems Dep. CENG 99-.

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment

EEL 6266 Power System Operation and Control. Chapter 5 Unit Commitment EEL 6266 Power Sysem Operaon and Conrol Chaper 5 Un Commmen Dynamc programmng chef advanage over enumeraon schemes s he reducon n he dmensonaly of he problem n a src prory order scheme, here are only N

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

Graduate Macroeconomics 2 Problem set 5. - Solutions

Graduate Macroeconomics 2 Problem set 5. - Solutions Graduae Macroeconomcs 2 Problem se. - Soluons Queson 1 To answer hs queson we need he frms frs order condons and he equaon ha deermnes he number of frms n equlbrum. The frms frs order condons are: F K

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times

Reactive Methods to Solve the Berth AllocationProblem with Stochastic Arrival and Handling Times Reacve Mehods o Solve he Berh AllocaonProblem wh Sochasc Arrval and Handlng Tmes Nsh Umang* Mchel Berlare* * TRANSP-OR, Ecole Polyechnque Fédérale de Lausanne Frs Workshop on Large Scale Opmzaon November

More information

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES EP Queung heory and eleraffc sysems 3rd lecure Marov chans Brh-deah rocess - Posson rocess Vora Fodor KTH EES Oulne for oday Marov rocesses Connuous-me Marov-chans Grah and marx reresenaon Transen and

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

CS 268: Packet Scheduling

CS 268: Packet Scheduling Pace Schedulng Decde when and wha pace o send on oupu ln - Usually mplemened a oupu nerface CS 68: Pace Schedulng flow Ion Soca March 9, 004 Classfer flow flow n Buffer managemen Scheduler soca@cs.bereley.edu

More information

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov

e-journal Reliability: Theory& Applications No 2 (Vol.2) Vyacheslav Abramov June 7 e-ournal Relably: Theory& Applcaons No (Vol. CONFIDENCE INTERVALS ASSOCIATED WITH PERFORMANCE ANALYSIS OF SYMMETRIC LARGE CLOSED CLIENT/SERVER COMPUTER NETWORKS Absrac Vyacheslav Abramov School

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluon o he Hea Equaon ME 448/548 Noes Gerald Reckenwald Porland Sae Unversy Deparmen of Mechancal Engneerng gerry@pdxedu ME 448/548: FTCS Soluon o he Hea Equaon Overvew Use he forward fne d erence

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair TECHNI Inernaonal Journal of Compung Scence Communcaon Technologes VOL.5 NO. July 22 (ISSN 974-3375 erformance nalyss for a Nework havng Sby edundan Un wh ang n epar Jendra Sngh 2 abns orwal 2 Deparmen

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model

Outline. Probabilistic Model Learning. Probabilistic Model Learning. Probabilistic Model for Time-series Data: Hidden Markov Model Probablsc Model for Tme-seres Daa: Hdden Markov Model Hrosh Mamsuka Bonformacs Cener Kyoo Unversy Oulne Three Problems for probablsc models n machne learnng. Compung lkelhood 2. Learnng 3. Parsng (predcon

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

Advanced Macroeconomics II: Exchange economy

Advanced Macroeconomics II: Exchange economy Advanced Macroeconomcs II: Exchange economy Krzyszof Makarsk 1 Smple deermnsc dynamc model. 1.1 Inroducon Inroducon Smple deermnsc dynamc model. Defnons of equlbrum: Arrow-Debreu Sequenal Recursve Equvalence

More information

Let s treat the problem of the response of a system to an applied external force. Again,

Let s treat the problem of the response of a system to an applied external force. Again, Page 33 QUANTUM LNEAR RESPONSE FUNCTON Le s rea he problem of he response of a sysem o an appled exernal force. Agan, H() H f () A H + V () Exernal agen acng on nernal varable Hamlonan for equlbrum sysem

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

Part II CONTINUOUS TIME STOCHASTIC PROCESSES

Part II CONTINUOUS TIME STOCHASTIC PROCESSES Par II CONTINUOUS TIME STOCHASTIC PROCESSES 4 Chaper 4 For an advanced analyss of he properes of he Wener process, see: Revus D and Yor M: Connuous marngales and Brownan Moon Karazas I and Shreve S E:

More information

Robustness Experiments with Two Variance Components

Robustness Experiments with Two Variance Components Naonal Insue of Sandards and Technology (NIST) Informaon Technology Laboraory (ITL) Sascal Engneerng Dvson (SED) Robusness Expermens wh Two Varance Componens by Ana Ivelsse Avlés avles@ns.gov Conference

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

An introduction to Support Vector Machine

An introduction to Support Vector Machine An nroducon o Suppor Vecor Machne 報告者 : 黃立德 References: Smon Haykn, "Neural Neworks: a comprehensve foundaon, second edon, 999, Chaper 2,6 Nello Chrsann, John Shawe-Tayer, An Inroducon o Suppor Vecor Machnes,

More information

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current : . A. IUITS Synopss : GOWTH OF UNT IN IUIT : d. When swch S s closed a =; = d. A me, curren = e 3. The consan / has dmensons of me and s called he nducve me consan ( τ ) of he crcu. 4. = τ; =.63, n one

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Ths documen s downloaded from DR-NTU, Nanyang Technologcal Unversy Lbrary, Sngapore. Tle A smplfed verb machng algorhm for word paron n vsual speech processng( Acceped verson ) Auhor(s) Foo, Say We; Yong,

More information

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method

Single-loop System Reliability-Based Design & Topology Optimization (SRBDO/SRBTO): A Matrix-based System Reliability (MSR) Method 10 h US Naonal Congress on Compuaonal Mechancs Columbus, Oho 16-19, 2009 Sngle-loop Sysem Relably-Based Desgn & Topology Opmzaon (SRBDO/SRBTO): A Marx-based Sysem Relably (MSR) Mehod Tam Nguyen, Junho

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

WiH Wei He

WiH Wei He Sysem Idenfcaon of onlnear Sae-Space Space Baery odels WH We He wehe@calce.umd.edu Advsor: Dr. Chaochao Chen Deparmen of echancal Engneerng Unversy of aryland, College Par 1 Unversy of aryland Bacground

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

Modeling and Solving of Multi-Product Inventory Lot-Sizing with Supplier Selection under Quantity Discounts

Modeling and Solving of Multi-Product Inventory Lot-Sizing with Supplier Selection under Quantity Discounts nernaonal ournal of Appled Engneerng Research SSN 0973-4562 Volume 13, Number 10 (2018) pp. 8708-8713 Modelng and Solvng of Mul-Produc nvenory Lo-Szng wh Suppler Selecon under Quany Dscouns Naapa anchanaruangrong

More information

Planar truss bridge optimization by dynamic programming and linear programming

Planar truss bridge optimization by dynamic programming and linear programming IABSE-JSCE Jon Conference on Advances n Brdge Engneerng-III, Augus 1-, 015, Dhaka, Bangladesh. ISBN: 978-984-33-9313-5 Amn, Oku, Bhuyan, Ueda (eds.) www.abse-bd.org Planar russ brdge opmzaon by dynamc

More information

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019.

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019. Polcal Economy of Insuons and Developmen: 14.773 Problem Se 2 Due Dae: Thursday, March 15, 2019. Please answer Quesons 1, 2 and 3. Queson 1 Consder an nfne-horzon dynamc game beween wo groups, an ele and

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

Implementation of Quantized State Systems in MATLAB/Simulink

Implementation of Quantized State Systems in MATLAB/Simulink SNE T ECHNICAL N OTE Implemenaon of Quanzed Sae Sysems n MATLAB/Smulnk Parck Grabher, Mahas Rößler 2*, Bernhard Henzl 3 Ins. of Analyss and Scenfc Compung, Venna Unversy of Technology, Wedner Haupsraße

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Dual Approximate Dynamic Programming for Large Scale Hydro Valleys Dual Approxmae Dynamc Programmng for Large Scale Hydro Valleys Perre Carpener and Jean-Phlppe Chanceler 1 ENSTA ParsTech and ENPC ParsTech CMM Workshop, January 2016 1 Jon work wh J.-C. Alas, suppored

More information

P R = P 0. The system is shown on the next figure:

P R = P 0. The system is shown on the next figure: TPG460 Reservor Smulaon 08 page of INTRODUCTION TO RESERVOIR SIMULATION Analycal and numercal soluons of smple one-dmensonal, one-phase flow equaons As an nroducon o reservor smulaon, we wll revew he smples

More information

On computing differential transform of nonlinear non-autonomous functions and its applications

On computing differential transform of nonlinear non-autonomous functions and its applications On compung dfferenal ransform of nonlnear non-auonomous funcons and s applcaons Essam. R. El-Zahar, and Abdelhalm Ebad Deparmen of Mahemacs, Faculy of Scences and Humanes, Prnce Saam Bn Abdulazz Unversy,

More information

Time-interval analysis of β decay. V. Horvat and J. C. Hardy

Time-interval analysis of β decay. V. Horvat and J. C. Hardy Tme-nerval analyss of β decay V. Horva and J. C. Hardy Work on he even analyss of β decay [1] connued and resuled n he developmen of a novel mehod of bea-decay me-nerval analyss ha produces hghly accurae

More information

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes.

J i-1 i. J i i+1. Numerical integration of the diffusion equation (I) Finite difference method. Spatial Discretization. Internal nodes. umercal negraon of he dffuson equaon (I) Fne dfference mehod. Spaal screaon. Inernal nodes. R L V For hermal conducon le s dscree he spaal doman no small fne spans, =,,: Balance of parcles for an nernal

More information

Fall 2010 Graduate Course on Dynamic Learning

Fall 2010 Graduate Course on Dynamic Learning Fall 200 Graduae Course on Dynamc Learnng Chaper 4: Parcle Flers Sepember 27, 200 Byoung-Tak Zhang School of Compuer Scence and Engneerng & Cognve Scence and Bran Scence Programs Seoul aonal Unversy hp://b.snu.ac.kr/~bzhang/

More information

Volatility Interpolation

Volatility Interpolation Volaly Inerpolaon Prelmnary Verson March 00 Jesper Andreasen and Bran Huge Danse Mares, Copenhagen wan.daddy@danseban.com brno@danseban.com Elecronc copy avalable a: hp://ssrn.com/absrac=69497 Inro Local

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

ISSN MIT Publications

ISSN MIT Publications MIT Inernaonal Journal of Elecrcal and Insrumenaon Engneerng Vol. 1, No. 2, Aug 2011, pp 93-98 93 ISSN 2230-7656 MIT Publcaons A New Approach for Solvng Economc Load Dspach Problem Ansh Ahmad Dep. of Elecrcal

More information

arxiv: v1 [cs.sy] 2 Sep 2014

arxiv: v1 [cs.sy] 2 Sep 2014 Noname manuscrp No. wll be nsered by he edor Sgnalng for Decenralzed Roung n a Queueng Nework Y Ouyang Demoshens Tenekezs Receved: dae / Acceped: dae arxv:409.0887v [cs.sy] Sep 04 Absrac A dscree-me decenralzed

More information

How about the more general "linear" scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )?

How about the more general linear scalar functions of scalars (i.e., a 1st degree polynomial of the following form with a constant term )? lmcd Lnear ransformaon of a vecor he deas presened here are que general hey go beyond he radonal mar-vecor ype seen n lnear algebra Furhermore, hey do no deal wh bass and are equally vald for any se of

More information

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective

Forecasting customer behaviour in a multi-service financial organisation: a profitability perspective Forecasng cusomer behavour n a mul-servce fnancal organsaon: a profably perspecve A. Audzeyeva, Unversy of Leeds & Naonal Ausrala Group Europe, UK B. Summers, Unversy of Leeds, UK K.R. Schenk-Hoppé, Unversy

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours

NATIONAL UNIVERSITY OF SINGAPORE PC5202 ADVANCED STATISTICAL MECHANICS. (Semester II: AY ) Time Allowed: 2 Hours NATONAL UNVERSTY OF SNGAPORE PC5 ADVANCED STATSTCAL MECHANCS (Semeser : AY 1-13) Tme Allowed: Hours NSTRUCTONS TO CANDDATES 1. Ths examnaon paper conans 5 quesons and comprses 4 prned pages.. Answer all

More information

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University

Hidden Markov Models Following a lecture by Andrew W. Moore Carnegie Mellon University Hdden Markov Models Followng a lecure by Andrew W. Moore Carnege Mellon Unversy www.cs.cmu.edu/~awm/uorals A Markov Sysem Has N saes, called s, s 2.. s N s 2 There are dscree meseps, 0,, s s 3 N 3 0 Hdden

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Multi-priority Online Scheduling with Cancellations

Multi-priority Online Scheduling with Cancellations Submed o Operaons Research manuscrp (Please, provde he manuscrp number!) Auhors are encouraged o subm new papers o INFORMS journals by means of a syle fle emplae, whch ncludes he journal le. However, use

More information

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) 5h Inernaonal onference on Advanced Desgn and Manufacurng Engneerng (IADME 5 The Falure Rae Expermenal Sudy of Specal N Machne Tool hunshan He, a, *, La Pan,b and Bng Hu 3,c,,3 ollege of Mechancal and

More information

Digital Variable Frequency Control for Zero Voltage Switching and Interleaving of Synchronous Buck Converters

Digital Variable Frequency Control for Zero Voltage Switching and Interleaving of Synchronous Buck Converters Dgal Varable Frequency Conrol for Zero Volage Swchng and Inerleavng of Synchronous Buck Converers Pål Andreassen, Guseppe Gud, Tore M. Undeland Norwegan Unversy of Scence and Technology, Trondhem, Norway

More information

Sampling Procedure of the Sum of two Binary Markov Process Realizations

Sampling Procedure of the Sum of two Binary Markov Process Realizations Samplng Procedure of he Sum of wo Bnary Markov Process Realzaons YURY GORITSKIY Dep. of Mahemacal Modelng of Moscow Power Insue (Techncal Unversy), Moscow, RUSSIA, E-mal: gorsky@yandex.ru VLADIMIR KAZAKOV

More information

2.1 Constitutive Theory

2.1 Constitutive Theory Secon.. Consuve Theory.. Consuve Equaons Governng Equaons The equaons governng he behavour of maerals are (n he spaal form) dρ v & ρ + ρdv v = + ρ = Conservaon of Mass (..a) d x σ j dv dvσ + b = ρ v& +

More information

Lecture 6: Learning for Control (Generalised Linear Regression)

Lecture 6: Learning for Control (Generalised Linear Regression) Lecure 6: Learnng for Conrol (Generalsed Lnear Regresson) Conens: Lnear Mehods for Regresson Leas Squares, Gauss Markov heorem Recursve Leas Squares Lecure 6: RLSC - Prof. Sehu Vjayakumar Lnear Regresson

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

Robust and Accurate Cancer Classification with Gene Expression Profiling

Robust and Accurate Cancer Classification with Gene Expression Profiling Robus and Accurae Cancer Classfcaon wh Gene Expresson Proflng (Compuaonal ysems Bology, 2005) Auhor: Hafeng L, Keshu Zhang, ao Jang Oulne Background LDA (lnear dscrmnan analyss) and small sample sze problem

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

Math 128b Project. Jude Yuen

Math 128b Project. Jude Yuen Mah 8b Proec Jude Yuen . Inroducon Le { Z } be a sequence of observed ndependen vecor varables. If he elemens of Z have a on normal dsrbuon hen { Z } has a mean vecor Z and a varancecovarance marx z. Geomercally

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Optimal environmental charges under imperfect compliance

Optimal environmental charges under imperfect compliance ISSN 1 746-7233, England, UK World Journal of Modellng and Smulaon Vol. 4 (28) No. 2, pp. 131-139 Opmal envronmenal charges under mperfec complance Dajn Lu 1, Ya Wang 2 Tazhou Insue of Scence and Technology,

More information

2/20/2013. EE 101 Midterm 2 Review

2/20/2013. EE 101 Midterm 2 Review //3 EE Mderm eew //3 Volage-mplfer Model The npu ressance s he equalen ressance see when lookng no he npu ermnals of he amplfer. o s he oupu ressance. I causes he oupu olage o decrease as he load ressance

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

The Dynamic Programming Models for Inventory Control System with Time-varying Demand

The Dynamic Programming Models for Inventory Control System with Time-varying Demand The Dynamc Programmng Models for Invenory Conrol Sysem wh Tme-varyng Demand Truong Hong Trnh (Correspondng auhor) The Unversy of Danang, Unversy of Economcs, Venam Tel: 84-236-352-5459 E-mal: rnh.h@due.edu.vn

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

First-order piecewise-linear dynamic circuits

First-order piecewise-linear dynamic circuits Frs-order pecewse-lnear dynamc crcus. Fndng he soluon We wll sudy rs-order dynamc crcus composed o a nonlnear resse one-por, ermnaed eher by a lnear capacor or a lnear nducor (see Fg.. Nonlnear resse one-por

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC CH.3. COMPATIBILITY EQUATIONS Connuum Mechancs Course (MMC) - ETSECCPB - UPC Overvew Compably Condons Compably Equaons of a Poenal Vecor Feld Compably Condons for Infnesmal Srans Inegraon of he Infnesmal

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

APOC #232 Capacity Planning for Fault-Tolerant All-Optical Network

APOC #232 Capacity Planning for Fault-Tolerant All-Optical Network APOC #232 Capacy Plannng for Faul-Toleran All-Opcal Nework Mchael Kwok-Shng Ho and Kwok-wa Cheung Deparmen of Informaon ngneerng The Chnese Unversy of Hong Kong Shan, N.T., Hong Kong SAR, Chna -mal: kwcheung@e.cuhk.edu.hk

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Computing Relevance, Similarity: The Vector Space Model

Computing Relevance, Similarity: The Vector Space Model Compung Relevance, Smlary: The Vecor Space Model Based on Larson and Hears s sldes a UC-Bereley hp://.sms.bereley.edu/courses/s0/f00/ aabase Managemen Sysems, R. Ramarshnan ocumen Vecors v ocumens are

More information

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth Should Exac Index umbers have Sandard Errors? Theory and Applcaon o Asan Growh Rober C. Feensra Marshall B. Rensdorf ovember 003 Proof of Proposon APPEDIX () Frs, we wll derve he convenonal Sao-Vara prce

More information

Solving the multi-period fixed cost transportation problem using LINGO solver

Solving the multi-period fixed cost transportation problem using LINGO solver Inernaonal Journal of Pure and Appled Mahemacs Volume 119 No. 12 2018, 2151-2157 ISSN: 1314-3395 (on-lne verson) url: hp://www.pam.eu Specal Issue pam.eu Solvng he mul-perod fxed cos ransporaon problem

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Prakkum Polymer Scence/Polymersaonsechnk Versuch Resdence Tme Dsrbuon Polymerzaon Technology Laboraory Course Resdence Tme Dsrbuon of Chemcal Reacors If molecules or elemens of a flud are akng dfferen

More information

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations. Soluons o Ordnary Derenal Equaons An ordnary derenal equaon has only one ndependen varable. A sysem o ordnary derenal equaons consss o several derenal equaons each wh he same ndependen varable. An eample

More information