Gröbner Bases. Applications in Cryptology

Size: px
Start display at page:

Download "Gröbner Bases. Applications in Cryptology"

Transcription

1 Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Gröbner Bases. Applications in Cryptology Jean-Charles Faugère INRIA, Université Paris 6, CNRS Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result Ecrypt Samos

2 Properties of Gröbner bases I K a eld, K[x 1,., x n ] polynomials in n variables. Gröbner - Crypto Plan J.-C. Faugère 8 < : Linear systems l 1 (x 1,., x n ) = 0 l m (x 1,., x n ) = 0 V = Vect K (l 1,., l m ) Triangular/diagonal basis of V 8 Polynomial equations < f 1 (x 1,., x n ) = 0 : f m (x 1,., x n ) = 0 Ideal generated by f i : I = Id(f 1,., f m ) Gröbner basis of I Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result De nition (Buchberger) < admissible ordering (lexicographical, total degree, DRL) G K[x 1,., x n ] is a Gröbner basis of an ideal I if 8f 2 I, exists g 2 G such that LT < (g) j LT < (f )

3 Properties of Gröbner bases II Solving algebraic systems: Computing the algebraic variety: K L (for instance L=K the algebraic closure) V L = f(z 1,., z n ) 2 L n j f i (z 1,., z n ) = 0, i = 1,., mg Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result Solutions in nite elds: We compute the Gröbner basis of G F2 of [f 1,., f m, x1 2 x 1,., xn 2 x n ], in F 2 [x 1,., x n ]. It is a description of all the solutions of V F2.

4 Properties of Gröbner bases III Theorem I V F2 = ( no solution) i G F2 = [1]. I V F2 has exactly one solution i G F2 = [x 1 a 1,., x n a n ] where (a 1,., a n ) 2 F n 2. Shape position: If m n and the number of solutions is nite ( #V K < ), then in general the shape of a lexicographical Gröbner basis: x 1 > > x n : 8 >< Shape Position >: h n (x n )(= 0) x n 1 h n 1 (x n )(= 0). x 1 h 1 (x n )(= 0) Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

5 Solving zero-dimensional system Gröbner - Crypto J.-C. Faugère Plan When dim(i ) = 0 ( nite number of solutions); in general: I It is easier to compute a Gröbner Basis of I for a total degree (< DRL ) ordering I Triangular structure of Gb valid only for a lex. ordering: 8 >< Shape Position >: h n (x n ) = 0 x n 1 = h n 1 (x n ). x 1 = h 1 (x n ) Dedicated Algorithm: e ciently change the ordering Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result FGLM, Gröbner Walk, LLL,.

6 FGLM Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Dedicated Algorithm: e ciently change the ordering FGLM = use only linear algebra. Theorem (FGLM) If dim(i ) = 0 and D=deg(I ). Assume that G a Gröbner basis of I is already computed, then G new a Gröbner basis for the same ideal I and a new ordering < new can be computed in O(n D 3 ). Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

7 Zero dim solve Gröbner - Crypto J.-C. Faugère Plan Initial System Gröbner bases: properties Zero dim solve Gröbner Basis DRL order Gröbner Basis Lexico order Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result RUR Factorization Real Roots isolation

8 Algorithms I Algorithms: for computing Gröbner bases. I Buchberger (1965,1979,1985) I F 4 using linear algebra (1999) (strategies) I F 5 no reduction to zero (2002) Linear Algebra and Matrices Trivial link: Linear Algebra $ Polynomials De nition: F = (f 1,., f m ), < ordering. A Matrix representation M F of F is such that Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result T F = M F. T X where X all the terms (sorted for <) occurring in F : M F = m 1 > m 2 > m f 1. f A f 3.

9 Algorithms II Gröbner - Crypto J.-C. Faugère Plan Linear Algebra and Matrices Trivial link: Linear Algebra $ Polynomials If Y is a vector of monomials, M a matrix then its polynomial representation is T [f 1,., f m ] = M Ṭ Y Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result Macaulay method Macaulay bound (for homogeneous polynomials): D = 1 + m i=1 (deg(f i ) 1)

10 Algorithms III We compute the matrix representation of ftf i, deg(t) D deg(f i ), i = 1,., mg, < DRL Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties M Mac = m 1 > m 2 > m 3 > > m r 0 1 t 1 f 1. t 1 0 f 1. t 0 2 f 2 B. C t 2 f A t 3 f 3. Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result Let M Mac be the result of Gaussian elimination. Theorem (Lazard 83) If F is regular then the polynomial representation of M Mac is a Gröbner basis.

11 E cient Algorithms Gröbner - Crypto J.-C. Faugère Plan F 4 (1999) linear algebra Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

12 E cient Algorithms Gröbner - Crypto J.-C. Faugère Plan F 4 (1999) linear algebra Small subset of rows: F 5 (2002) full rank matrix Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

13 E cient Algorithms Gröbner - Crypto J.-C. Faugère Plan F 4 (1999) linear algebra Small subset of rows: F 5 (2002) full rank matrix F 5 /2 (2002) full rank matrix GF(2) (includes Frobenius h 2 = h) A d = momoms degree d in x 1,., x n 0 1 monom f i1. monom f A monom f i3. Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

14 F 5 the idea I Gröbner - Crypto J.-C. Faugère Plan We consider the following example: (b parameter): S b 8 < : f 3 = x xy + 19 y xz + 5 yz + 7 z 2 f 2 = 3 x 2 + (7 + b) x y + 22 x z + 11 yz + 22 z y 2 f 1 = 6 x xy + 4 y xz + 9 yz + 7 z 2 Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result With Buchberger x > y > z: I I 5 useless reductions 5 useful pairs

15 F 5 the idea II Gröbner - Crypto J.-C. Faugère We proceed degree by degree. A 2 = x 2 x y y 2 x z y z z 2 f f f Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result fa 2 = x 2 x y y 2 x z y z z 2 f f f new polynomials f 4 = xy + 4 yz + 2 xz + 3 y 2 f 5 = y 2 11 xz 3 yz 5 z 2 z 2 and

16 F 5 the idea III Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties f 3 = x xy + 19 y xz + 5 yz + 7 z 2 f 2 = 3 x 2 + 7x y + 22 x z + 11 yz + 22 z y 2 f 1 = 6 x xy + 4 y xz + 9 yz + 7 z 2 f 4 = xy + 4 yz + 2 xz + 3 y 2 z 2 f 5 = y 2 11 xz 3 yz 5 z 2 Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result f 2! f 4 f 1! f 5

17 Degree 3 I Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties x 3 x 2 y xy2 y 3 x 2 z z f y f x f z f y f x f z f y f x f Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

18 Degree 3 II Gröbner - Crypto J.-C. Faugère Plan x 3 x 2 y xy2 y 3 x 2 z z f y f x f z f y f x f z f y f x f Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

19 Degree 3 III Gröbner - Crypto J.-C. Faugère A 3 = x 3 x 2 y xy2 y 3 x 2 z z f y f x f z f y f x f z f y f x f Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

20 Degree 3 IV f 2 f 4 f 1 f 5 x 3 x 2 y xy2 y 3 x 2 z z f y f x f z f y f x f z f y f x f Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

21 Degree 3 V x 3 x 2 y xy2 y 3 x 2 z xyz y2z xz2 yz 2 z 3 z f y f x f z f y f fa 3 = x f z f y f x f Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result We have constructed 3 new polynomials f 6 = y y 2 z + xz yz z 3 f 7 = xz yz z 3 f 8 = yz z 3 We have the linear equivalences: x f 2 $ x f 4 $ f 6 and f 4! f 2

22 Degree 4: reduction to 0! Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Zero dim solve The matrix whose rows are x 2 f i, x yf i, y 2 f i, x zf i, y zf i, z 2 f i, i = 1, 2, 3 Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result is not full rank!

23 Why? Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Zero dim solve 6 3 = 18 rows but only x 4, x 3 y,., y z 3, z 4 15 columns Simple linear algebra theorem: 3 useless row (which ones?) Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

24 Trivial relations Gröbner - Crypto J.-C. Faugère Plan f 2 f 3 f 3 f 2 = 0 Gröbner bases: properties Zero dim solve can be rewritten 3 x 2 f 3 + (7 + b) xy f y 2 f xz f 3 Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result +11 yz f z 2 f 3 x 2 f 2 18 xy f 2 19 y 2 f 2 8 xz f 2 5 yz f 2 7 z 2 f 2 = 0 We can remove the row x 2 f 2 same way f 1 f 3 f 3 f 1 = 0! remove x 2 f 1 but f 1 f 2 f 2 f 1 = 0! remove x 2 f 1!???

25 Combining trivial relations Gröbner - Crypto J.-C. Faugère Plan 0 = (f 2 f 1 f 1 f 2 ) 3(f 3 f 1 f 1 f 3 ) 0 = (f 2 3f 3 )f 1 f 1 f 2 + 3f 1 f 3 0 = f 4 f 1 f 1 f 2 + 3f 1 f 3 0 = (1 b)xy + 4 yz + 2 xz + 3 y 2 z 2 f 1 (6x 2 + )f 2 + 3(6x 2 + )f 3 Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result I if b 6= 1 remove x y f 1 I if b = 1 remove y z f 1 Need some computation

26 New Criterion Any combination of the trivial relations f i f j = f j f i can always be written: u(f 2 f 1 f 1 f 2 ) + v(f 3 f 1 f 1 f 3 ) + w(f 2 f 3 f 3 f 2 ) where u, v, w are arbitrary polynomials. (u f 2 + v f 3 ) f 1 uf 1 f 2 vf 1 f 3 + wf 2 f 3 wf 3 f 2 Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result (trivial) relation hf 1 + = 0 $ h 2 Id(f 2, f 3 ) Compute a Gröbner basis of (f 2, f 3 )! G prev. Remove line h f 1 i LT(h) top reducible by G prev

27 Degree 4 I Gröbner - Crypto J.-C. Faugère Plan y 2 f 1, x zf 1, y zf 1, z 2 f 1, x yf 2, y 2 f 2, x zf 2, y zf 2, z 2 f 2, x 2 f 3, x yf 3, y 2 f 3, x zf 3, y zf 3, z 2 f 3 In order to use previous computations (degree 2 and 3): Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result xf 2! f 6 f 2! f 4 xf 1! f 8 yf 1! f 7 f 1! f 5 yf 7, zf 8, zf 7, z 2 f 5, yf 6, y 2 f 4, zf 6, y zf 4, z 2 f 4, x 2 f 3, x yf 3, y 2 f 3, x zf 3, y zf 3, z 2 f 3,

28 Degree 4 II Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

29 Degree 4 III Gröbner - Crypto J.-C. Faugère Sub matrix: xyz 2 y 2 z 2 xz 3 yz 3 z 4 z 2 f z 2 f z f z f y f Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

30 New algorithm Gröbner - Crypto J.-C. Faugère I I I Incremental algorithm (f ) + G old Incremental degree by degree Give a unique name to each row Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result Remove h f 1 + if LT(h) 2 LT(G old ) LT(h) signature/index of the row

31 F 5 matrix Gröbner - Crypto J.-C. Faugère Plan Special/Simpler version of F 5 for dense/generic polynomials. the maximal degree D is a parameter of the algorithm. degree d m = 2, deg(f i ) = 2 homogeneous quadratic polynomials, degree d: Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result We may assume that we have already computed: G i,d Gröbner basis [f 1,., f i ] up do degree d

32 In degree d Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties m 1 m 2 m 3 m 4 m 5 u 1 f 1 1 x x x x u 2 f x x x u 3 f x x v 1 f x v 2 f w 1 f w 2 f with deg(u i ) = deg(v i ) = deg(w i ) = d 2 Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

33 From degree d to d + 1 I Gröbner - Crypto J.-C. Faugère Plan Select a row in degree d: m 1 m 2 m 3 m 4 m x x x v 1 f x v 2 f Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result w 1 f w 2 f

34 From degree d to d + 1 II Gröbner - Crypto J.-C. Faugère m 1 m 2 m 3 m 4 m x x x v 1 f x v 2 f w 1 f w 2 f t 1 t 2 t 3 t 4 t 5. w 1 x j f x x x w 1 x j 1 f x x w 1 x n f x. Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result if w 1 x1 1 x j j

35 From degree d to d + 1 III Gröbner - Crypto J.-C. Faugère m 1 m 2 m 3 m 4 m x x x v 1 f x v 2 f w 1 f w 2 f t 1 t 2 t 3 t 4 t 5. w 1 x j f x x x w 1 x j 1 f x x w 1 x n f x. Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result if w 1 x1 1 x j j Keep w 1 x i f 3 iff w 1 x i LT f 1 f 2

36 From degree d to d + 1 IV Gröbner - Crypto J.-C. Faugère m 1 m 2 m 3 m 4 m x x x v 1 f x v 2 f w 1 f w 2 f t 1 t 2 t 3 t 4 t 5. w 1 x j f x x x w 1x j 1 f x x w 1 x n f x. Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result if w 1 x1 1 x j j Keep w 1 x i f 3 iff w i x i not reducible by LT G 2 d 2

37 F 5 properties Gröbner - Crypto J.-C. Faugère Plan Full version of F 5 : D the maximal degree is not given. Theorem If F = [f 1,., f m ] is a (semi) regular sequence then all the matrices are full rank. I I I I Easy to adapt for the special case of F 2 (new trivial syzygy: fi 2 = f i ). Incremental in degree/equations (swap 2 loops) Fast in general (but not always) F 5 matrix: easy to implement, used in applications (HFE). Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

38 Classi cation I Gröbner - Crypto J.-C. Faugère Plan Gröbner bases: properties Zero dim solve (with M. Bardet, B. Salvy) Theorem Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

39 Classi cation II Pour une suite semi-régulière (f 1,., f m ), il n y a pas de réduction à 0 dans l algorithme F 5 en degré inférieur à son degré de régularité d reg ; de plus d reg est le degré en z du premier coe cient négatif de la série: m i=1 1 (1 δk,f2 ) z d i 1 δk,f2 z δ K,F2 z d i 1 z n Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result où d i est le degré total de f i. Par conséquent, le nombre total d opérations arithmétiques dans K nécessaire à F 5 (voir algorithme??) est borné par Cste M dreg (n) ω with ω 3 On considère une suite semi-régulière constituée d équations (f 1,., f m ). Le tableau suivant résume le résultat de

40 Classi cation III plusieurs théorèmes donne le développement asymptotique de d reg lorsque n! en fonction de la valeur du rapport entre le nombre d équations et le nombre de variables m n. Légende des symboles utilisés dans le tableau: k est une constante (qui ne dépend pas de n). d i est le degré total de f i. H k (X ) est le k ème polynôme d Hermite; h k,1 est le plus grand zéro de H k (tous les zéros de H k (X ) sont réels). a est le plus grand zéro de la fonction d Airy (solution de 2 y z y = 0). z 2 Φ(z) = z n z (1 log z) n m (1 z d i ) 1 = z 1 z 1 n m i=1 Φ(z 0 ) > 0. i=1 d i z d i 1 z d i et z 0 est la racine de Φ 0 (z) qui minimise Gröbner - Crypto Plan J.-C. Faugère Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result

41 Classi cation IV Gröbner - Crypto J.-C. Faugère m Degré d reg m < n K, d i = 2 m + 1 (Macaulay bound) n+1 d n + 1 K i 1 2 (A. Szanto) i=1 p m n + k K, d i = 2 2 h m k,1 2 + s o(1) n+k n+k d n + k K i 1 di 2 h k, o(1) i=1 i=1 Plan Gröbner bases: properties Zero dim solve Algorithms Buchberger and Macaulay E cient Algorithms F 5 algorithm Complexity result n 2 n K, d i = n n O n 2 3 p 1 k n K, d i = 2 (k 2 k(k 1))n + a 1 n 1 2(k(k 1)) O(1) 6 1 k n K Φ(z 0 ) n a 1 2 Φ00 (z 0 )z O n 3 1 n n F 2, d i = n O(n 3 1 ) q k n F 2, d i = 2 k k(k 5) 1 + 2(k + 2) p k(k + 2)

42 Fast Gröbner algorithms overdetermined systems Jean-Charles Faugère CNRS - Université Paris 6 - INRIA SPIRAL (LIP6) SALSA Project Samos 2007 Samos 2007 p. 1

43 Why do we need efficiency? Users have problems that they want to solve. Hot topic in Cryptography (L. Perret). The goal is to evaluate the security of a cryptosystem. Should be resistant to: differential cryptanalysts linear cryptanalysis Algebraic Cryptanalysis Samos 2007 p. 2

44 Algebraic cryptanalysis Convert the crypto-system algebraic problem. Evaluate the difficulty of the corresponding algebraic system S. To solve S: V z n 2 f z compute Gröbner bases. 0 f S Samos 2007 p. 3

45 Algebraic cryptanalysis Convert the crypto-system algebraic problem. Evaluate the difficulty of the corresponding algebraic system S. To solve S: V z n 2 f z compute Gröbner bases. exaustive search!! Complexity of exaustive O n2 n 0 f S n 80 Samos 2007 p. 3

46 Specific problems V 2 z Fn 2 fi z 0 i 1 In fact we have to add the field equations : x 2 i x i. m Ideal f i z 0 i 1 m x 2 i x i i 1 n we have M Hence variables. Sometimes m n. m n equations in n Samos 2007 p. 4

47 Specific solutions For several applications (Signal Theory, Crypto,. ) we have to solve an overdertimed system of equations. Improve algorithms for overdertimed systems. Improve complexity bound (Macaulay bound). Samos 2007 p. 5

48 Specific algorithm in Crypto From outside the perception of Gröbner bases is (often) bad: d 2 n 10 complexity. Very inefficient implementation of Gröbner bases in general CAS. Results on Complexity are not well known. develop new algorithms for solving algebraic equations. Samos 2007 p. 6

49 Other algorithms: XL In crypto: develop their own algorithms! f i initial equations (of degree 2) D a parameter 1 Multiply: Generate all the d j 1 x i j f i with d D 2 2 Linearize: Consider each monomial in the x i j as a new variable and perform Gaussian elimination on the equations obtained in 1. Ordering monomials such that all the terms containing one1 variable (say x 1 ) are eliminated last. 3 Solve: Assume that step 2. yields at least one univariate equation in the powers of x 1. Solve this equation over the finite field. Samos 2007 p. 7

50 Other algorithms: XL Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations N Courtois, A Klimov, J Patarin and A Shamir Abstract. [. ] Gröbner base algorithms have large exponential and cannot solve in practice systems with n complexity 15. Kipnis and Shamir [9] have recently introduced a new algorithm called relinearization. [. ] This is a challenge for Computer Algebra! Samos 2007 p. 7

51 I Complexity f 1 x 1 xn fm x 1 xn f x 1 xn f x 1 xn h h deg f x 1 h x n h I f 1 x 1 xn h f m x 1 xn h n nb of variables, m nb of equations D maximal degree occurring dimension/degree Hilbert function/regularity Samos 2007 p. 8

52 I Complexity (well known results) f 1 x 1 fm x 1 xn and deg f i d Hypotheses none ONE Explicit example: Mayr and Meyer Complexity d 2n Samos 2007 p. 9

53 Complexity (well known results) I f 1 x 1 fm x 1 xn and deg Hypotheses set of zeros at infinity is finite dim I 0 Gröbner basis (DRL ordering) [La83, Giu84] computed in time polynomial in 2 n degree maximal 1 when m n (Macaulay) Lemma 1: For almost all systems: polynomial in 2 n n f i 2 Samos 2007 p. 9

54 Complexity (well known results) I f 1 x 1 Hypotheses x i fm GF x 1 2 xn and deg f i 2 Gröbner bases: Lemma 2 complexity is always polynomial in 2 n. Samos 2007 p. 9

55 Efficient Algorithms Buchberger (1965) Involutive bases (Gerdt) F 4 (1999) linear algebra slim Gb (2005) momoms degree d in x 1 xn A d monom monom monom f i1 f i2 f i3 Samos 2007 p. 10

56 Efficient Algorithms F 5 (2002)full rank matrix momoms degree d in x 1 xn A d monom monom monom f i1 f i2 f i3 Samos 2007 p. 10

57 F 5 matrix Special/Simpler version of F 5 for dense/generic polynomials. the maximal degree D is a parameter of the degree d m algorithm. 2, deg f i 2 homogeneous quadratic polynomials, degree d: Samos 2007 p. 11

58 F 5 matrix m 2, deg f i 2 homogeneous quadratic polynomials, degree d: m 1 m 2 m 3 m 4 m 5 u 1 f 1 x x x x x u 2 f 1 x x x x x u 3 f 1 x x x x x v 1 f 2 x x x x x v 2 f 2 x x x x x deg u i deg v i d 2 Samos 2007 p. 11

59 Gauss Gauss reduction: m 1 m 2 m 3 m 4 m 5 u 1 f 1 1 x x x x u 2 f x x x u 3 f x x v 1 f x v 2 f Samos 2007 p. 12

60 Samos 2007 p. 13 d 1 d m1 m2 m3 m4 m5 u1 f1 1 x x x x u2 f1 0 1 x x x u3 f x x v1 f x v2 f

61 Samos 2007 p. 13 t1 t2 t3 t4 t5 v1x j f2 f2 0 1 x x x v1x j x x v1xn f x d 1 d m1 m2 m3 m4 m5 u1 f1 1 x x x x u2 f1 0 1 x x x u3 f x x v1 f x v2 f xα j j if v1 x α 1 1

62 t1 t2 t3 t4 t5 v1x j f2 f2 0 1 x x x v1x j x x v1xn f x f1 Keep v1xi f2 iff vixi LT Samos 2007 p. 13 d 1 d m1 m2 m3 m4 m5 u1 f1 1 x x x x u2 f1 0 1 x x x u3 f x x v1 f x v2 f xα j j if v1 x α 1 1

63 Specific algorithms Nothing to do! more equations computation more efficient Gb Samos 2007 p. 14

64 f j fi f 2 Specific algorithms x 2 i Easy part: we can handle efficiently that all the monomials are squarefree (Boolean Gröbner bases) and to develop specific linear algebra packages (over 2). Moreover, we have new trivial syzygies: x i f i f j f F 5 2 (2003/2005) specific version for 2. Samos 2007 p. 14

65 Specific Complexity (with B. Salvy, M. Bardet, 2005) Goal: estimate d n maximal degree occurring Gröbner comput. Idea: we construct A d following step by step F 5 A d full rank number of rows. momoms degree d in x 1 xn A d monom d monom d monom d f i1 f i2 f i3 Samos 2007 p. 15

66 F 5 criterion Criterion: t f j is in the matrix if t Id where G j 1 is the Gröbner basis of LT f 1 G j f j 1,. 1 U d i n nb of rows when computing degree d. f 1 fi in Samos 2007 p. 16

67 For d 2 : Recurrence relation U d i n i n d d 2 2 i 1 U d j 1 2 j n number of monomials criterion of degree d 2 Samos 2007 p. 17

68 End of the computation col row degree d h[d,i]= row col h d m n 0 end of the Gröbner computation Compute biggest real root N d of h d m n. Samos 2007 p. 18

69 Theorem 1.1 fi degree di, i 2, GF(2) n nyd Generating series q: 1 m finite field H m d hd myd y q y n m i 1 1 y d i y d i q 1 y d i q 1 1 particular case: d i m eqs h d d 0 1 y 1 y 2 n Samos 2007 p. 19

70 Asymptotic expansion biggest real root of h d n 1 1 y 2iπ C 1 y 2 n dy y d 1 Samos 2007 p. 20

71 Asymptotic expansion 1 d n n λ0 n d n λ 1 n 1 λ 4 3 O n n 13 O where λ and λ 1 is expressed in term of the biggest zero of the Airy function (solution 2 y 0) Almost exact formula when n 3! z2 zy 1 n 1 3 Samos 2007 p. 20

72 Maximal Degree (F 2 ) degree n Samos 2007 p. 21

73 m Conclusion Classification: m number of polynomials, n variables cste n exponential complexity cstenlog n sub exponential complexity m csten 2 polynomial complexity Samos 2007 p. 22

74 HFE HFE = Hidden Fields Equations public key cryptosystem using polynomial operations over finite fields proposed by Jacques Patarin (96) very promising cryptosystem: signatures as short as 128, 100 and even 80 bits. Samos 2007 p. 23

75 HFE secret key P x x 2i c16 2 j c17x17 c16x16 c17 GF 2 n univariate polynomial structure is hidden Samos 2007 p. 23

76 x HFE secret key P x x 2i j 2 c17x17 c16x16 n i 1 0 x iw i GF 2 n, x i GF 2, w GF 2 n g 1 g n x 0 x 0 xn xn where g i coeff of w i in P n i 1 0 x iw i (degree 2) Samos 2007 p. 23

77 HFE secret key P x x 2i j 2 c17x17 c16x16 x n 1 i 0 x iw i GF 2 n, x i GF 2, w (Random) Change of coordinates GF 2 n x i n 1 a i j 0 jy j (Random) Mix of equations f i n j 1 b i jg jsamos 2007 p. 23

78 HFE secret key P x x 2i j 2 c17x17 c16x16 x n 1 i 0 x iw i Public key: GF 2 n, x i GF 2, w GF 2 n f 1 f n y 0 y 0 yn yn 1 1 Samos 2007 p. 23

79 HFE encryption Initial x 1 xn Samos 2007 p. 24

80 HFE encryption Initial Encryption z i x 1 f i x 1 xn xn Samos 2007 p. 24

81 HFE encryption Initial Encryption Send z i x 1 f i z 1 x 1 xn zn xn Samos 2007 p. 24

82 HFE decryption Initial Decryption Send z i x 1 f i z 1 x 1 xn zn xn secret Initial z 1 Decryption Solve P zn x z Samos 2007 p. 25

83 HFE decryption Initial Decryption Send z i x 1 f i z 1 x 1 xn zn xn secret Initial z 1 Decryption Solve P zn x z Enemy Initial Decryption z 1 f 1 z 1 f m z m zn Samos 2007 p. 25

84 HFE decryption Initial Decryption Send z i x 1 f i z 1 x 1 xn zn xn secret Initial z 1 Decryption Solve P zn x z Enemy Initial Decryption z 1 zn f 1 z 1 f m z m Hence, solving algebraic system. Samos 2007 p. 25

85 Degree of univariate polynomial Time to solve the univariate polynomial of degree d: O d log d operations in 2 n (MCA Gathen/Gerhard) M d n (80,129) (80,257) (80,513) NTL (CPU time) 0.6 sec 2.5 sec 6.4 sec n d (128,129) (128,257) (128,513) NTL (CPU time) 1.25 sec 3.1 sec 9.05 sec (NTL/Shoup PC Pentium III 1000 Mhz) d cannot be too big! Samos 2007 p. 26

86 Experiments Buchberger Maple slimgb Macaulay 2 Singular F 4 F 5 after 10m Samos 2007 p. 27

87 Experiments Buchberger Maple slimgb Macaulay 2 Singular F 4 F 5 after 10m after 2h Samos 2007 p. 27

88 Experiments Challenge 1 broken Recover Experimentally the complexity of HFE wrt degree of hidden polynomial Let D d n be the maximum degree occuring in the Gröbner computation of HFE polynomial degree d, 2 n. Samos 2007 p. 28

89 Challenge 1 Proposed by J. Patarin 80 equations in degree 2 Random? Average nb of terms: n n 1 2 n Samos 2007 p. 29

90 Challenge 1 But after F 5 2: 6.4 H can be detected that it is not random! After sec ( 2 days ) find 4 solutions (one proc Alpha 1000 Mhz + 4 Go RAM) Samos 2007 p. 29

91 X X X X X Challenge 1 (solutions) 80 x i 2 i i Samos 2007 p. 30

92 Maximal degree Maximal Degree in the Gröbner basis computation random system HFE 128<d<513 HFE 16<d<129 HFE 3<d< Samos 2007 p. 31 n

93 HFE Conclusion d D Exp comp d 17 3 n 6 17 d n d n 10 Complexity of HFE Samos 2007 p. 32

94 Conclusion Applications: Challenging problem for Computer Algebra. Need very powerful algorithm/implementation. Samos 2007 p. 33

95 F 4 An efficient algorithm for computing Gröbner using linear algebra Jean-Charles Faugère CNRS - INRIA - Université Paris 6 SALSA Project Samos 2007 Samos 2007 F 4 p. 1

96 Plan of the talk Goal of F 4 Description of the algorithm. Step by step example. Samos 2007 F 4 p. 2

97 Goal of F 4 Among other things 3 big difficulties: A crucial issue to be faced in implementing the Buchberger algorithm is the choice of a Strategy. An apparent difficulty is the growth of the coefficients when computing with big integers. It is difficult to parallelize this algorithm: f n depends strongly on f n 1, f n 2, (if you remove zero!). Samos 2007 F 4 p. 3

98 Goal of F 4 There are a lot of choices: select a critical pair in the list of critical pairs. choose one reductor among a list of reductors Buchberger theorem not important for the correctness of the algorithm Samos 2007 F 4 p. 3

99 P Notations R x 1 xn T the set of all terms. F T F f 1 fm the support of F. a critical pair Pair is the polynomial ring. algebraic equations f g τ t f f tg g t f tg T 2 tg LT g t f LT f τ lcm LT f the two projections Le ft Right Pair fg g t g Pair f g t f f, Samos 2007 F 4 p. 4

100 Linear Algebra and Matrices Trivial link: Linear Algebra Polynomials Definition: F f 1 fm, ordering. A Matrix representation M F of F is such that T F M F T X where X the monomials (sorted for ) T F : m 1 m2 m3 M F f 1 f 2 f 3 Samos 2007 F 4 p. 5

101 Linear Algebra and Matrices Trivial link: Linear Algebra Polynomials If Y is a vector of monomials, M a matrix then its polynomial representation is T f 1 fm M T Y Samos 2007 F 4 p. 6

102 Buchberger algorithm Can be rewritten using linear algebra (simultating Spoly and reductions) m 1 m 2 m 3 m 4 M F f 1 f 2 f 3 0 f f Samos 2007 F 4 p. 7

103 Macaulay method Macaulay bound (for homogeneous polynomials): D 1 m i 1 deg f i 1 We compute the matrix representation of t f i deg t D deg i 1 f i m, DRL Samos 2007 F 4 p. 8

104 Macaulay method m 1 m2 m3 mr M Mac t 1 f 1 t1 f 1 t2 f 2 t 2 f 2 t 3 f 3 Let M Mac the result of Gaussian elimination. Theorem: If F is regular then the polynomial representation of M Mac is a Gröbner basis. Samos 2007 F 4 p. 8

105 F 4 : The algorithm Algorithm F4 Input: F f 1 S el List fm Pairs G : F, d : 0, P : Pair while P /0 do d : d 1 P d : S el P, P : P P d F d : Reduction Le ft P d for h F d do P : P Pair h g g G : G h List f i f j Pairs i Right G j P d S el G l Samos 2007 F 4 p. 9

106 Reduction Input: Reduction L a finite subset of T P G a finite subset of P Output: a finite subset of P (possibly an empty set). F : Symbolic Preprocessing L G M the matrix representation of F. M : Gaussian elimination M F the polynomial representation of M. return f F HT f HT F Samos 2007 F 4 p. 10

107 Symbolic Symbolic Preprocessing Input: L T P G P F : t f tf L Done : LT F while T F Done do m an element of T F Done Done : Done if m top reducible modulo G then m m LT f for some f G and some m T F : F f Samos 2007 F return F 4 p. 11 m m

108 F 4 : Example G f 1 f 4 x 1 2x 2 2x 3 2x 4 1 f 3 x 2 2 2x 1 x 3 2x 2 x 4 x 3 f 2 2x 1 x 2 2x 2 x 3 2x 3 x 4 x 2 f 1 x 2 1 2x 2 2 2x 2 3 2x 2 4 x 1 f4 and two critical pairs of degree 2 x f1 x1 f4 x 1 x 2 1 f2 x2 f4 Samos 2007 F 4 p. 12

109 F 4 : Example f 4 x 1 2x 2 2x 3 2x 4 1 f 3 x 2 2 2x 1 x 3 2x 2 x 4 x 3 f 2 2x 1 x 2 2x 2 x 3 2x 3 x 4 x 2 f 1 x 2 1 2x 2 2 2x 2 3 2x 2 4 x 1 x f1 x1 f4 x 1 x 2 L 2 1 f1 x 1 f4 1 f2 x 2 symbolic reduction: L 2 and G: 1 f2 f4 x2 f4 F f 1 x1 f4 f2 x2 f4 Samos 2007 F 4 p. 12

110 Cont Done x 2 1 x1 x2 T(F)= x 2 1 x2 2 x2 3 x 2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 4 : cannot be reduced by G Samos 2007 F 4 p. 13

111 Cont Done x 2 1 x1 x2 T(F)= x 2 1 x2 2 x2 3 x 2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 4 : cannot be reduced by G T(F)= x 2 1 x2 2 x 2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 3 : cannot be reduced by G Samos 2007 F 4 p. 14

112 Cont Done x 2 1 x1 x2 T(F)= x 2 1 x2 2 x2 3 x 2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 4 : cannot be reduced by G T(F)= x 2 1 x2 2 x 2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 3 : cannot be reduced by G. T(F)= x 2 1 x2 2 x2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 x Select 1 : cannot be reduced by G Samos 2007 F 4 p. 15

113 Cont Done x 2 1 x1 x2 T(F)= x 2 1 x2 2 x2 3 x 2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x 2 4 : cannot be reduced by G T(F)= x 2 1 x2 2 x 2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select x3 2 : cannot be reduced by G. T(F)= x 2 1 x2 2 x2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 Select 1 : cannot be reduced by G T(F)= x 2 1 x 2 2 x2 3 x2 4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 x Select x 2 : reducible by 1 f Samos 2007 F 4 p. 16

114 Cont T(F)= Select x 1 x 3 : reducible by x 3 f 4 x 2 1 x2 2 x2 3 x2 4 x1 x1 x2 x1 x3 x1x4 x2x3 x3x4 x2 F f 1 x1 f4 f2 x2 f4 f3 x3 f4 Samos 2007 F 4 p. 17

115 Cont T(F)= Select x 1 x 3 : reducible by x 3 f 4 x 2 1 x2 2 x2 3 x2 4 x1 x1 x2 x1 x3 x1x4 x2x3 x3x4 x2 F f 1 x1 f4 f2 x2 f4 f3 x3 f4. T(F)= 1 x1 2x2 2 x2 3 x2 4 x3 x4 x1 x1 x2 x1x3 x1x4 x2x3 x3x4 x2 x F f 1 x1 f4 f2 x2 f4 f3 x3 f4 x4 f4 f4 Samos 2007 F 4 p. 18

116 Matrice The symbolic reduction returns: x 2 1 x 1 x 2 x 2 2 x 1 x 3 x 2 x 3 x 2 3 x 1 x 4 x 2 x 4 x 3 x 4 x 2 4 x 1 x 2 x 3 x 4 1 f x 4 f x 3 f f f x 2 f f x 1 f Samos 2007 F 4 p. 19

117 Matrice then the matrix is reduced to row echelon form: x 2 1 x 1 x 2 x 2 2 x 1 x 3 x 2 x 3 x 2 3 x 1 x 4 x 1 x 2 x 4 x 3 x 4 x 2 4 x 2 x 3 x 4 1 f x 4 f x 1 f x 2 f x 3 f f f f Samos 2007 F 4 p. 19

118 Degree 3 Let f i 3 be the polynomial corresponding to the i th row of this matrix (i 2 3 8). (for instance f 5 x 1 x 4 2x 2 x 4 ). The next degree is d 3 and L 3 x 2 f2 x 1 f3 x 3 f3 x 2 f6 x 2 f5 x 3 f6 Samos 2007 F 4 p. 20

119 F 4 : some matrices Samos 2007 F 4 p. 21

120 Matrix Samos 2007 F 4 p. 22

121 F 4 : some remarks Theorem 1 The algorithm F 4 computes a Gröbner basis G in P such that F G and Id G Id F. The algorithm computes successive truncated Gröbner bases. Designed for degree ordering. Replaces the classical Buchberger reduction by the simultaneous reduction of several polynomials. Samos 2007 F 4 p. 23

122 F 4 : some remarks The new reduction mechanism is achieved by means of a symbolic precomputation and by extensive used of sparse linear algebra methods. Even though the new algorithm does not improve the worst case complexity it is several times faster than the other algorithms/mplementations (both for integers and modulo p computations). symbolic reduction efficient complexity depends on the #the support the number Samos 2007 F of (non zero) elements in the final matrix A. 4 p. 23

123 Conclusion We have transformed the degree of freedom in the Buchberger algorithm into strategies for efficiently solving linear algebra systems. This is easier because we have constructed the matrix A and we can decide to begin the reduction of one row before another with a good reason. For integer coefficients it is a major advantage to be able to apply an iterative algorithm on the whole matrix. Samos 2007 F 4 p. 24

124 Conclusion Bad point: the matrix A is singular see F 5 Bad point: A is often huge. compression divide the size of A by Not efficient for monomials or binomials (Mayr/Meyer example). Difficult to implement (but. ) 10 Samos 2007 F 4 p. 24

125 F 5 An efficient algorithm for computing Gröbner bases without reduction to zero Jean-Charles Faugère CNRS - INRIA - Université Paris 6 SALSA Project Samos 2007 Samos 2007 F 5 p. 1

126 Plan of the talk Goal The idea Theorem Description of the algorithm Simple description for dense polynomials Experimental efficiency Number of useless critical pairs Samos 2007 F 5 p. 2

127 Goal of F 5 Computing Gröbner bases: Buchberger algorithm or F 4 with Buchberger Criteria 90% of the time is spent in computing zero Open issue remove useless computations. a more powerful criterion to remove useless critical pairs. Goal of F 5 : theoretical and practical answer. Samos 2007 F 5 p. 3

128 Goal of F 5 Goal of F 5 : theoretical and practical answer. Gröbner basis of f 1 fm what is a reduction to zero? m g i f i i 1 0 g 1 gm is a syzygy. Samos 2007 F 5 p. 3

129 Previous Work Buchberger 1979: A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Basis. (two criteria remove 90% of useless critical pairs.) Gebauer and Moller 1986: Buchberger s Algorithm and Staggered Linear Bases. Möller, Mora and Traverso 1992 : Gröbner Bases Computation Using Syzygies Gerdt Blinkov 1998 Involutive Bases of Polynomial Ideals some reductions are forbidden Samos 2007 F 5 p. 4

130 Previous Work Buchberger 1979: A Criterion for Detecting Unnecessary Reductions in the Construction of Gröbner Basis. The efficiency of those algorithms is not yet satisfactory in theory and practice because a lot of useless critical pairs are not removed. Samos 2007 F 5 p. 4

131 The Idea S b f 3 f 2 f 1 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7 b xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 Samos 2007 F 5 p. 5

132 The Idea S 0 f 3 f 2 f 1 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 With Buchberger x y z: 5 useless reductions 5 useful pairs We proceed degree by degree. Samos 2007 F 5 p. 5

133 The Idea S 0 f 3 f 2 f 1 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 A 2 x 2 xy y 2 xz yz z 2 f f f Samos 2007 F 5 p. 5

134 The Idea S 0 B 2 f 3 f 2 f 1 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 x 2 xy y 2 xz yz z 2 f f f Samos 2007 F 5 p. 5

135 The Idea S 0 B 2 f 3 f 2 f 1 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 x 2 xy y 2 xz yz z 2 f f f new polynomials f 4 and f 5 y 2 11xz 3yz xy 4yz 2xz 3y 2 z 2 5z 2 Samos 2007 F5 p. 5

136 Degree 3 f 3 f 2 f 1 f 4 f 5 x 2 18xy 19y 2 8xz 5yz 7z 2 3x 2 7xy 22xz 11yz 22z 2 8y 2 6x 2 12xy 4y 2 14xz 9yz 7z 2 xy 4yz 2xz 3y 2 z 2 y 2 11xz 3yz 5z 2 and f 2 f 4 f 1 f 5 Samos 2007 F5 p. 6

137 Samos 2007 F 5 p. 6 Degree 3 x 3 x 2 y xy 2 y 3 x 2 z z f y f x f z f y f x f z f y f x f

138 Samos 2007 F 5 p. 6 Degree 3 x 3 x 2 y xy 2 y 3 x 2 z z f y f x f z f y f x f z f y f x f

139 Samos 2007 F 5 p. 6 Degree 3 x 3 x 2 y xy 2 y 3 x 2 z z f y f x f z f y f x f z f y f x f

140 Degree 3 f 2 f 4 f 1 f 5 x 3 x 2 y xy 2 y 3 x 2 z z f y f x f z f y f x f z f y f x f Samos 2007 F 5 p. 6

141 Degree 3 x 3 x 2 y xy 2 y 3 x 2 z xyz y 2 z xz 2 yz 2 z 3 z f y f x f z f y f x f z f y f x f Samos 2007 F 5 p. 7

142 Degree 3 x 3 x 2 y xy 2 y 3 x 2 z xyz y 2 z xz 2 yz 2 z 3 x f y f y f xf z f z f z f yf xf Samos 2007 F 5 p. 7

143 Degree 3 We have constructed 3 new polynomials f 6 f 7 f 8 y 3 8y 2 z xz 2 18yz 2 15z 3 xz 2 11yz 2 13z 3 yz 2 18z 3 We have the linear equivalences: x f 2 x f 4 f 6 f 4 f 2 Samos 2007 F 5 p. 7

144 Degree 4 The matrix whose rows are x 2 f i xy fi y2 fi xz fi yz fi z2 fi i is not full rank! Samos 2007 F 5 p. 8

145 Why? (1) x 4 x3 y rows yz3 z4 15 columns Samos 2007 F 5 p. 9

146 Why? (1) x 4 x3 y rows yz3 z4 15 columns Simple linear algebra theorem: 3 useless row (which ones?) Samos 2007 F 5 p. 9

147 Why (2) can be rewritten f 2 f 3 f 3 f 2 0 3x 2 f 3 7 b xy f 3 8y 2 f 3 22xz f 3 11yz f 3 22z 2 f 3 x 2 f 2 18xy f 2 19y 2 f 2 8xz f 2 5yz f 2 7z 2 f 2 0 Samos 2007 F 5 p. 10

148 Why (2) can be rewritten f 2 f 3 f 3 f 2 0 3x 2 f 3 7 b xy f 3 8y 2 f 3 22xz f 3 11yz f 3 22z 2 f 3 x 2 f 2 18xy f 2 19y 2 f 2 8xz f 2 5yz f 2 7z 2 f 2 0 We can remove the row x 2 f 2 Samos 2007 F 5 p. 10

149 Why (2) same way f 1 f 3 f 3 f 1 but f 1 f 2 f 2 f remove x 2 f 1 remove x 2 f 1! Samos 2007 F 5 p. 10

150 if b if b Why (2) x2 3 6x2 f2 f 2 f 1 f 1 f 2 3 f 3 f 1 f 1 f 3 f 2 3 f 3 f 1 f 1 f 2 3 f 1 f 3 f 4 f 1 f 1 f 2 3 f 1 f 3 1 b xy 4yz 2xz 3y 2 f 3 z 2 f 1 1 remove xy f 1 1 remove yz f 1 Need some computation Samos 2007 F 5 p. 10

151 Criterion Any combination of the trivial relations f i f j can always be written: f j f i u f 2 f 1 f 1 f 2 v f 3 f 1 f 1 f 3 w f 2 f 3 f 3 f 2 where u v w are arbitrary polynomials. Samos 2007 F 5 p. 11

152 Criterion Any combination of the trivial relations f i f j can always be written: f j f i u f 2 v f 3 f 1 u f 1 f 2 v f 1 f 3 w f 2 f 3 w f 3 f 2 Samos 2007 F 5 p. 11

153 Criterion Any combination of the trivial relations f i f j can always be written: f j f i u f 2 v f 3 f 1 u f 1 f 2 v f 1 f 3 w f 2 f 3 w f 3 f 2 (trivial) relation h f 1 0 h Id f 2 f3 Compute a Gröbner basis of f 2 Remove line h f 1 iff LT h f3 Gprev. top reducible by Gprev Samos 2007 F 5 p. 11

154 Degree 4 y 2 f 1 xz f1 yz f1 z2 f1 xy f 2 y2 f2 xz f2 yz f2 z2 f2 x 2 f 3 xy f3 y2 f3 xz f3 yz f3 z2 f3 Samos 2007 F 5 p. 12

155 Degree 4 y 2 f 1 xz f1 yz f1 xy f y2 2 f2 xz f2 x 2 f 3 xy f3 y2 f3 z2 f1 yz f2 z2 f2 xz f3 yz f3 z2 f3 In order to use previous computations (degree 2 and 3): x f 2 f 6 f 2 f 4 x f 1 f 8 y f 1 f 7 f 1 f 5 Samos 2007 F 5 p. 12

Gröbner Bases. Applications in Cryptology

Gröbner Bases. Applications in Cryptology Gröbner Bases. Applications in Cryptology Jean-Charles Faugère INRIA, Université Paris 6, CNRS with partial support of Celar/DGA FSE 20007 - Luxembourg E cient Goal: how Gröbner bases can be used to break

More information

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems Bruno.Salvy@inria.fr Algorithms Project, Inria Joint work with Magali Bardet & Jean-Charles Faugère September 21st, 2006

More information

Comparison between XL and Gröbner Basis Algorithms

Comparison between XL and Gröbner Basis Algorithms Comparison between XL and Gröbner Basis Algorithms Gwénolé Ars 1, Jean-Charles Faugère 2, Hideki Imai 3, Mitsuru Kawazoe 4, and Makoto Sugita 5 1 IRMAR, University of Rennes 1 Campus de Beaulieu 35042

More information

Hybrid Approach : a Tool for Multivariate Cryptography

Hybrid Approach : a Tool for Multivariate Cryptography Hybrid Approach : a Tool for Multivariate Cryptography Luk Bettale, Jean-Charles Faugère and Ludovic Perret INRIA, Centre Paris-Rocquencourt, SALSA Project UPMC, Univ. Paris 06, LIP6 CNRS, UMR 7606, LIP6

More information

Gröbner Bases in Public-Key Cryptography

Gröbner Bases in Public-Key Cryptography Gröbner Bases in Public-Key Cryptography Ludovic Perret SPIRAL/SALSA LIP6, Université Paris 6 INRIA ludovic.perret@lip6.fr ECRYPT PhD SUMMER SCHOOL Emerging Topics in Cryptographic Design and Cryptanalysis

More information

Algebraic Aspects of Symmetric-key Cryptography

Algebraic Aspects of Symmetric-key Cryptography Algebraic Aspects of Symmetric-key Cryptography Carlos Cid (carlos.cid@rhul.ac.uk) Information Security Group Royal Holloway, University of London 04.May.2007 ECRYPT Summer School 1 Algebraic Techniques

More information

Résolution de systèmes polynomiaux structurés et applications en Cryptologie

Résolution de systèmes polynomiaux structurés et applications en Cryptologie Résolution de systèmes polynomiaux structurés et applications en Cryptologie Pierre-Jean Spaenlehauer University of Western Ontario Ontario Research Center for Computer Algebra Magali Bardet, Jean-Charles

More information

Analysis of Hidden Field Equations Cryptosystem over Odd-Characteristic Fields

Analysis of Hidden Field Equations Cryptosystem over Odd-Characteristic Fields Nonlinear Phenomena in Complex Systems, vol. 17, no. 3 (2014), pp. 278-283 Analysis of Hidden Field Equations Cryptosystem over Odd-Characteristic Fields N. G. Kuzmina and E. B. Makhovenko Saint-Petersburg

More information

A variant of the F4 algorithm

A variant of the F4 algorithm A variant of the F4 algorithm Vanessa VITSE - Antoine JOUX Université de Versailles Saint-Quentin, Laboratoire PRISM CT-RSA, February 18, 2011 Motivation Motivation An example of algebraic cryptanalysis

More information

Simple Matrix Scheme for Encryption (ABC)

Simple Matrix Scheme for Encryption (ABC) Simple Matrix Scheme for Encryption (ABC) Adama Diene, Chengdong Tao, Jintai Ding April 26, 2013 dama Diene, Chengdong Tao, Jintai Ding ()Simple Matrix Scheme for Encryption (ABC) April 26, 2013 1 / 31

More information

Algebraic Cryptanalysis of Curry and Flurry using Correlated Messages

Algebraic Cryptanalysis of Curry and Flurry using Correlated Messages Algebraic Cryptanalysis of Curry and Flurry using Correlated Messages Jean-Charles Faugère and Ludovic Perret SALSA Project INRIA, Centre Paris-Rocquencourt UPMC, Univ Paris 06, LIP6 CNRS, UMR 7606, LIP6

More information

Jean-Charles Faugère

Jean-Charles Faugère ECC 2011 The 15th workshop on Elliptic Curve Cryptography INRIA, Nancy, France Solving efficiently structured polynomial systems and Applications in Cryptology Jean-Charles Faugère Joint work with: L Huot

More information

Understanding and Implementing F5

Understanding and Implementing F5 Understanding and Implementing F5 John Perry john.perry@usm.edu University of Southern Mississippi Understanding and Implementing F5 p.1 Overview Understanding F5 Description Criteria Proofs Implementing

More information

On the relation of the Mutant strategy and the Normal Selection strategy

On the relation of the Mutant strategy and the Normal Selection strategy On the relation of the Mutant strategy and the Normal Selection strategy Martin Albrecht 1 Carlos Cid 2 Jean-Charles Faugère 1 Ludovic Perret 1 1 SALSA Project -INRIA, UPMC, Univ Paris 06 2 Information

More information

MutantXL: Solving Multivariate Polynomial Equations for Cryptanalysis

MutantXL: Solving Multivariate Polynomial Equations for Cryptanalysis MutantXL: Solving Multivariate Polynomial Equations for Cryptanalysis Johannes Buchmann 1, Jintai Ding 2, Mohamed Saied Emam Mohamed 1, and Wael Said Abd Elmageed Mohamed 1 1 TU Darmstadt, FB Informatik

More information

Cryptanalysis of the Tractable Rational Map Cryptosystem

Cryptanalysis of the Tractable Rational Map Cryptosystem Cryptanalysis of the Tractable Rational Map Cryptosystem Antoine Joux 1, Sébastien Kunz-Jacques 2, Frédéric Muller 2, and Pierre-Michel Ricordel 2 1 SPOTI Antoine.Joux@m4x.org 2 DCSSI Crypto Lab 51, Boulevard

More information

New Directions in Multivariate Public Key Cryptography

New Directions in Multivariate Public Key Cryptography New Directions in Shuhong Gao Joint with Ray Heindl Clemson University The 4th International Workshop on Finite Fields and Applications Beijing University, May 28-30, 2010. 1 Public Key Cryptography in

More information

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 217 228 Computing Minimal Polynomial of Matrices over Algebraic Extension Fields by Amir Hashemi and Benyamin M.-Alizadeh Abstract In this

More information

Algebraic Cryptanalysis of a Quantum Money Scheme The Noise-Free Case

Algebraic Cryptanalysis of a Quantum Money Scheme The Noise-Free Case 1 / 27 Algebraic Cryptanalysis of a Quantum Money Scheme The Noise-Free Case Marta Conde Pena 1 Jean-Charles Faugère 2,3,4 Ludovic Perret 3,2,4 1 Spanish National Research Council (CSIC) 2 Sorbonne Universités,

More information

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems

A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems A Polynomial-Time Key-Recovery Attack on MQQ Cryptosystems Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, Simona Samardjiska, Enrico Thomae PKC 2015, March 30 - April 1, Maryland, USA 2 Summary

More information

Hidden Field Equations

Hidden Field Equations Security of Hidden Field Equations (HFE) 1 The security of Hidden Field Equations ( H F E ) Nicolas T. Courtois INRIA, Paris 6 and Toulon University courtois@minrank.org Permanent HFE web page : hfe.minrank.org

More information

Algebraic Cryptanalysis of MQQ Public Key Cryptosystem by MutantXL

Algebraic Cryptanalysis of MQQ Public Key Cryptosystem by MutantXL Algebraic Cryptanalysis of MQQ Public Key Cryptosystem by MutantXL Mohamed Saied Emam Mohamed 1, Jintai Ding 2, and Johannes Buchmann 1 1 TU Darmstadt, FB Informatik Hochschulstrasse 10, 64289 Darmstadt,

More information

The F 4 Algorithm. Dylan Peifer. 9 May Cornell University

The F 4 Algorithm. Dylan Peifer. 9 May Cornell University The F 4 Algorithm Dylan Peifer Cornell University 9 May 2017 Gröbner Bases History Gröbner bases were introduced in 1965 in the PhD thesis of Bruno Buchberger under Wolfgang Gröbner. Buchberger s algorithm

More information

WORKING WITH MULTIVARIATE POLYNOMIALS IN MAPLE

WORKING WITH MULTIVARIATE POLYNOMIALS IN MAPLE WORKING WITH MULTIVARIATE POLYNOMIALS IN MAPLE JEFFREY B. FARR AND ROMAN PEARCE Abstract. We comment on the implementation of various algorithms in multivariate polynomial theory. Specifically, we describe

More information

Almost polynomial Complexity for Zero-dimensional Gröbner Bases p.1/17

Almost polynomial Complexity for Zero-dimensional Gröbner Bases p.1/17 Almost polynomial Complexity for Zero-dimensional Gröbner Bases Amir Hashemi co-author: Daniel Lazard INRIA SALSA-project/ LIP6 CALFOR-team http://www-calfor.lip6.fr/ hashemi/ Special semester on Gröbner

More information

On Implementing the Symbolic Preprocessing Function over Boolean Polynomial Rings in Gröbner Basis Algorithms Using Linear Algebra

On Implementing the Symbolic Preprocessing Function over Boolean Polynomial Rings in Gröbner Basis Algorithms Using Linear Algebra On Implementing the Symbolic Preprocessing Function over Boolean Polynomial Rings in Gröbner Basis Algorithms Using Linear Algebra Yao Sun a, Zhenyu Huang a, Dongdai Lin a, Dingkang Wang b a SKLOIS, Institute

More information

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used:

QR Decomposition. When solving an overdetermined system by projection (or a least squares solution) often the following method is used: (In practice not Gram-Schmidt, but another process Householder Transformations are used.) QR Decomposition When solving an overdetermined system by projection (or a least squares solution) often the following

More information

New candidates for multivariate trapdoor functions

New candidates for multivariate trapdoor functions New candidates for multivariate trapdoor functions Jaiberth Porras 1, John B. Baena 1, Jintai Ding 2,B 1 Universidad Nacional de Colombia, Medellín, Colombia 2 University of Cincinnati, Cincinnati, OH,

More information

On the Complexity of the Hybrid Approach on HFEv-

On the Complexity of the Hybrid Approach on HFEv- On the Complexity of the Hybrid Approach on HFEv- Albrecht Petzoldt National Institute of Standards and Technology, Gaithersburg, Maryland, USA albrecht.petzoldt@gmail.com Abstract. The HFEv- signature

More information

Computational and Algebraic Aspects of the Advanced Encryption Standard

Computational and Algebraic Aspects of the Advanced Encryption Standard Computational and Algebraic Aspects of the Advanced Encryption Standard Carlos Cid, Sean Murphy and Matthew Robshaw Information Security Group, Royal Holloway, University of London, Egham, Surrey, TW20

More information

Current Advances. Open Source Gröbner Basis Algorithms

Current Advances. Open Source Gröbner Basis Algorithms Current Advances in Open Source Gröbner Basis Algorithms My name is Christian Eder I am from the University of Kaiserslautern 3 years ago Christian Eder, Jean-Charles Faugère A survey on signature-based

More information

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem Elliptic Curve Discrete Logarithm Problem Vanessa VITSE Université de Versailles Saint-Quentin, Laboratoire PRISM October 19, 2009 Vanessa VITSE (UVSQ) Elliptic Curve Discrete Logarithm Problem October

More information

Algebraic attack on stream ciphers Master s Thesis

Algebraic attack on stream ciphers Master s Thesis Comenius University Faculty of Mathematics, Physics and Informatics Department of Computer Science Algebraic attack on stream ciphers Master s Thesis Martin Vörös Bratislava, 2007 Comenius University Faculty

More information

From Gauss. to Gröbner Bases. John Perry. The University of Southern Mississippi. From Gauss to Gröbner Bases p.

From Gauss. to Gröbner Bases. John Perry. The University of Southern Mississippi. From Gauss to Gröbner Bases p. From Gauss to Gröbner Bases p. From Gauss to Gröbner Bases John Perry The University of Southern Mississippi From Gauss to Gröbner Bases p. Overview Questions: Common zeroes? Tool: Gaussian elimination

More information

Owen (Chia-Hsin) Chen, National Taiwan University

Owen (Chia-Hsin) Chen, National Taiwan University Analysis of QUAD Owen (Chia-Hsin) Chen, National Taiwan University March 27, FSE 2007, Luxembourg Work at Academia Sinica supervised by Dr. Bo-Yin Yang Jointly with Drs. Dan Bernstein and Jiun-Ming Chen

More information

CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S. Ant nine J aux

CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S. Ant nine J aux CHAPMAN & HALL/CRC CRYPTOGRAPHY AND NETWORK SECURITY ALGORITHMIC CR YPTAN ALY51S Ant nine J aux (g) CRC Press Taylor 8* Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor &

More information

Gröbner Bases Techniques in Post-Quantum Cryptography

Gröbner Bases Techniques in Post-Quantum Cryptography Gröbner Bases Techniques in Post-Quantum Cryptography Ludovic Perret Sorbonne Universités, UPMC Univ Paris 06, INRIA Paris LIP6, PolSyS Project, Paris, France Post-Quantum Cryptography Winter School, Fukuoka,

More information

A (short) survey on signature-based Gröbner Basis Algorithms

A (short) survey on signature-based Gröbner Basis Algorithms A (short) survey on signature-based Gröbner Basis Algorithms Christian Eder, Jean-Charles Faugère, John Perry and Bjarke Hammersholt Roune ACA 2014, New York, US July 10, 2014 1 / 16 How to detect zero

More information

A survey of algebraic attacks against stream ciphers

A survey of algebraic attacks against stream ciphers A survey of algebraic attacks against stream ciphers Frederik Armknecht NEC Europe Ltd. Network Laboratories frederik.armknecht@netlab.nec.de Special semester on Gröbner bases and related methods, May

More information

Little Dragon Two: An efficient Multivariate Public Key Cryptosystem

Little Dragon Two: An efficient Multivariate Public Key Cryptosystem Little Dragon Two: An efficient Multivariate Public Key Cryptosystem Rajesh P Singh, A.Saikia, B.K.Sarma Department of Mathematics Indian Institute of Technology Guwahati Guwahati -781039, India October

More information

Poly Dragon: An efficient Multivariate Public Key Cryptosystem

Poly Dragon: An efficient Multivariate Public Key Cryptosystem Poly Dragon: An efficient Multivariate Public Key Cryptosystem Rajesh P Singh, A.Saikia, B.K.Sarma Department of Mathematics Indian Institute of Technology Guwahati Guwahati -781039, India May 19, 2010

More information

M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY REVISION SOLUTIONS

M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY REVISION SOLUTIONS M3P23, M4P23, M5P23: COMPUTATIONAL ALGEBRA & GEOMETRY REVISION SOLUTIONS (1) (a) Fix a monomial order. A finite subset G = {g 1,..., g m } of an ideal I k[x 1,..., x n ] is called a Gröbner basis if (LT(g

More information

Isomorphism of Polynomials : New Results

Isomorphism of Polynomials : New Results Isomorphism of Polynomials : New Results Charles Bouillaguet, Jean-Charles Faugère 2,3, Pierre-Alain Fouque and Ludovic Perret 3,2 Ecole Normale Supérieure {charles.bouillaguet, pierre-alain.fouque}@ens.fr

More information

Quadratic Equations from APN Power Functions

Quadratic Equations from APN Power Functions IEICE TRANS. FUNDAMENTALS, VOL.E89 A, NO.1 JANUARY 2006 1 PAPER Special Section on Cryptography and Information Security Quadratic Equations from APN Power Functions Jung Hee CHEON, Member and Dong Hoon

More information

Signature-based algorithms to compute Gröbner bases

Signature-based algorithms to compute Gröbner bases Signature-based algorithms to compute Gröbner bases Christian Eder (joint work with John Perry) University of Kaiserslautern June 09, 2011 1/37 What is this talk all about? 1. Efficient computations of

More information

Slimgb. Gröbner bases with slim polynomials

Slimgb. Gröbner bases with slim polynomials Slimgb Gröbner bases with slim polynomials The Aim avoid intermediate expression swell Classical Buchberger algorithm with parallel reductions guided by new weighted length functions Often: big computations

More information

Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes

Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes Roberta Barbi December 17, 2015 Roberta Barbi List decoding December 17, 2015 1 / 13 Codes Let F q be

More information

Calcul d indice et courbes algébriques : de meilleures récoltes

Calcul d indice et courbes algébriques : de meilleures récoltes Calcul d indice et courbes algébriques : de meilleures récoltes Alexandre Wallet ENS de Lyon, Laboratoire LIP, Equipe AriC Alexandre Wallet De meilleures récoltes dans le calcul d indice 1 / 35 Today:

More information

Gröbner Bases. eliminating the leading term Buchberger s criterion and algorithm. construct wavelet filters

Gröbner Bases. eliminating the leading term Buchberger s criterion and algorithm. construct wavelet filters Gröbner Bases 1 S-polynomials eliminating the leading term Buchberger s criterion and algorithm 2 Wavelet Design construct wavelet filters 3 Proof of the Buchberger Criterion two lemmas proof of the Buchberger

More information

Multivariate Public Key Cryptography or Why is there a rainbow hidden behind fields full of oil and vinegar?

Multivariate Public Key Cryptography or Why is there a rainbow hidden behind fields full of oil and vinegar? Multivariate Public Key Cryptography or Why is there a rainbow hidden behind fields full of oil and vinegar? Christian Eder, Jean-Charles Faugère and Ludovic Perret Seminar on Fundamental Algorithms, University

More information

Stream Ciphers: Cryptanalytic Techniques

Stream Ciphers: Cryptanalytic Techniques Stream Ciphers: Cryptanalytic Techniques Thomas Johansson Department of Electrical and Information Technology. Lund University, Sweden ECRYPT Summer school 2007 (Lund University) Stream Ciphers: Cryptanalytic

More information

Lecture 15: Algebraic Geometry II

Lecture 15: Algebraic Geometry II 6.859/15.083 Integer Programming and Combinatorial Optimization Fall 009 Today... Ideals in k[x] Properties of Gröbner bases Buchberger s algorithm Elimination theory The Weak Nullstellensatz 0/1-Integer

More information

Problem Set 1 Solutions

Problem Set 1 Solutions Math 918 The Power of Monomial Ideals Problem Set 1 Solutions Due: Tuesday, February 16 (1) Let S = k[x 1,..., x n ] where k is a field. Fix a monomial order > σ on Z n 0. (a) Show that multideg(fg) =

More information

The XL and XSL attacks on Baby Rijndael. Elizabeth Kleiman. A thesis submitted to the graduate faculty

The XL and XSL attacks on Baby Rijndael. Elizabeth Kleiman. A thesis submitted to the graduate faculty The XL and XSL attacks on Baby Rijndael by Elizabeth Kleiman A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mathematics

More information

Key Recovery on Hidden Monomial Multivariate Schemes

Key Recovery on Hidden Monomial Multivariate Schemes Key Recovery on Hidden Monomial Multivariate Schemes Pierre-Alain Fouque 1, Gilles Macario-Rat 2, and Jacques Stern 1 1 École normale supérieure, 45 rue d Ulm, 75005 Paris, France {Pierre-Alain.Fouque,

More information

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 27 January. Gröbner bases

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 27 January. Gröbner bases Gröbner bases In this lecture we introduce Buchberger s algorithm to compute a Gröbner basis for an ideal, following [2]. We sketch an application in filter design. Showing the termination of Buchberger

More information

Anatomy of SINGULAR talk at p. 1

Anatomy of SINGULAR talk at p. 1 Anatomy of SINGULAR talk at MaGiX@LIX 2011- p. 1 Anatomy of SINGULAR talk at MaGiX@LIX 2011 - Hans Schönemann hannes@mathematik.uni-kl.de Department of Mathematics University of Kaiserslautern Anatomy

More information

Polynomials, Ideals, and Gröbner Bases

Polynomials, Ideals, and Gröbner Bases Polynomials, Ideals, and Gröbner Bases Notes by Bernd Sturmfels for the lecture on April 10, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra We fix a field K. Some examples of fields

More information

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010

Math 4370 Exam 1. Handed out March 9th 2010 Due March 18th 2010 Math 4370 Exam 1 Handed out March 9th 2010 Due March 18th 2010 Problem 1. Recall from problem 1.4.6.e in the book, that a generating set {f 1,..., f s } of I is minimal if I is not the ideal generated

More information

Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization

Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization Aviad Kipnis 1 and Adi Shamir 2 1 NDS Technologies, Israel 2 Computer Science Dept., The Weizmann Institute, Israel Abstract. The RSA

More information

Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics. Tan Tran Junior Major-Economics& Mathematics

Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics. Tan Tran Junior Major-Economics& Mathematics Groebner Bases, Toric Ideals and Integer Programming: An Application to Economics Tan Tran Junior Major-Economics& Mathematics History Groebner bases were developed by Buchberger in 1965, who later named

More information

arxiv: v1 [math.ac] 14 Sep 2016

arxiv: v1 [math.ac] 14 Sep 2016 NEW STRATEGIES FOR STANDARD BASES OVER Z arxiv:1609.04257v1 [math.ac] 14 Sep 2016 CHRISTIAN EDER, GERHARD PFISTER, AND ADRIAN POPESCU Abstract. Experiences with the implementation of strong Gröbner bases

More information

A variant of the F4 algorithm

A variant of the F4 algorithm A variant of the F4 algorithm Antoine Joux 1,2 and Vanessa Vitse 2 1 Direction Générale de l Armement (DGA) 2 Université de Versailles Saint-Quentin, Laboratoire PRISM, 45 av. des États-Unis, 78035 Versailles

More information

The XL-Algorithm and a Conjecture from Commutative Algebra

The XL-Algorithm and a Conjecture from Commutative Algebra The XL-Algorithm and a Conjecture from Commutative Algebra Claus Diem Institute for Experimental Mathematics, University of Duisburg-Essen Essen, Germany Abstract. The XL-algorithm is a computational method

More information

HFERP - A New Multivariate Encryption Scheme

HFERP - A New Multivariate Encryption Scheme - A New Multivariate Encryption Scheme Yasuhiko Ikematsu (Kyushu University) Ray Perlner (NIST) Daniel Smith-Tone (NIST, University of Louisville) Tsuyoshi Takagi (Kyushi University) Jeremy Vates (University

More information

Decoding linear codes via systems solving: complexity issues

Decoding linear codes via systems solving: complexity issues Decoding linear codes via systems solving: complexity issues Stanislav Bulygin (joint work with Ruud Pellikaan) University of Kaiserslautern June 19, 2008 Outline Outline of the talk Introduction: codes

More information

GRÖBNER BASES AND POLYNOMIAL EQUATIONS. 1. Introduction and preliminaries on Gróbner bases

GRÖBNER BASES AND POLYNOMIAL EQUATIONS. 1. Introduction and preliminaries on Gróbner bases GRÖBNER BASES AND POLYNOMIAL EQUATIONS J. K. VERMA 1. Introduction and preliminaries on Gróbner bases Let S = k[x 1, x 2,..., x n ] denote a polynomial ring over a field k where x 1, x 2,..., x n are indeterminates.

More information

Algebraic Cryptanalysis of Symmetric Primitives

Algebraic Cryptanalysis of Symmetric Primitives Algebraic Cryptanalysis of Symmetric Primitives Editor Carlos Cid (RHUL) Contributors Martin Albrecht (RHUL), Daniel Augot (INRIA), Anne Canteaut (INRIA), Ralf-Philipp Weinmann (TU Darmstadt) 18 July 2008

More information

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada THE TEACHING OF MATHEMATICS 2013, Vol. XVI, 1, pp. 22 28 POLYNOMIAL DIVISION AND GRÖBNER BASES Samira Zeada Abstract. Division in the ring of multivariate polynomials is usually not a part of the standard

More information

Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R)

Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R) Cryptanalysis of Patarin s 2-Round Public Key System with S Boxes (2R) Eli Biham Computer Science Department Technion Israel Institute of Technology Haifa 32000, Israel biham@cs.technion.ac.il http://www.cs.technion.ac.il/~biham/

More information

ALGORITHM FAUGÈRE'S F 5

ALGORITHM FAUGÈRE'S F 5 FAUGÈRE'S F 5 ALGORITHM JOHN PERRY Abstract. This report gives pseucode for an implementation the F 5 algorithm, noting errors found both in Faugère's seminal 2002 paper and Stegers' 2006 undergraduate

More information

MXL2 : Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy

MXL2 : Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy MXL2 : Solving Polynomial Equations over GF(2) Using an Improved Mutant Strategy Mohamed Saied Emam Mohamed 1, Wael Said Abd Elmageed Mohamed 1, Jintai Ding 2, and Johannes Buchmann 1 1 TU Darmstadt, FB

More information

Diophantine equations via weighted LLL algorithm

Diophantine equations via weighted LLL algorithm Cryptanalysis of a public key cryptosystem based on Diophantine equations via weighted LLL algorithm Momonari Kudo Graduate School of Mathematics, Kyushu University, JAPAN Kyushu University Number Theory

More information

Cryptanalysis of the TTM Cryptosystem

Cryptanalysis of the TTM Cryptosystem Cryptanalysis of the TTM Cryptosystem Louis Goubin and Nicolas T Courtois SchlumbergerSema - CP8 36-38 rue de la Princesse BP45 78430 Louveciennes Cedex France LouisGoubin@bullnet,courtois@minrankorg Abstract

More information

The point decomposition problem in Jacobian varieties

The point decomposition problem in Jacobian varieties The point decomposition problem in Jacobian varieties Jean-Charles Faugère2, Alexandre Wallet1,2 1 2 ENS Lyon, Laboratoire LIP, Equipe AriC UPMC Univ Paris 96, CNRS, INRIA, LIP6, Equipe PolSys 1 / 19 1

More information

A variant of the F4 algorithm

A variant of the F4 algorithm A variant of the F4 algorithm Antoine Joux 1,2 and Vanessa Vitse 2 1 Direction Générale de l Armement (DGA) 2 Université de Versailles Saint-Quentin, Laboratoire PRISM, 45 av. des États-Unis, 78035 Versailles

More information

On the Existence of Semi-Regular Sequences

On the Existence of Semi-Regular Sequences On the Existence of Semi-Regular Sequences Sergio Molina 1 joint work with T. J. Hodges 1 J. Schlather 1 Department of Mathematics University of Cincinnati DIMACS, January 2015 Sergio Molina (UC) Semi-Regular

More information

A gentle introduction to Elimination Theory. March METU. Zafeirakis Zafeirakopoulos

A gentle introduction to Elimination Theory. March METU. Zafeirakis Zafeirakopoulos A gentle introduction to Elimination Theory March 2018 @ METU Zafeirakis Zafeirakopoulos Disclaimer Elimination theory is a very wide area of research. Z.Zafeirakopoulos 2 Disclaimer Elimination theory

More information

Bounding the number of affine roots

Bounding the number of affine roots with applications in reliable and secure communication Inaugural Lecture, Aalborg University, August 11110, 11111100000 with applications in reliable and secure communication Polynomials: F (X ) = 2X 2

More information

Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97

Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97 Cryptanalysis of a Fast Public Key Cryptosystem Presented at SAC 97 Phong Nguyen and Jacques Stern École Normale Supérieure, Laboratoire d Informatique 45, rue d Ulm, F 75230 Paris Cedex 05 {Phong.Nguyen,Jacques.Stern}@ens.fr

More information

On the Security and Key Generation of the ZHFE Encryption Scheme

On the Security and Key Generation of the ZHFE Encryption Scheme On the Security and Key Generation of the ZHFE Encryption Scheme Wenbin Zhang and Chik How Tan Temasek Laboratories National University of Singapore tslzw@nus.edu.sg and tsltch@nus.edu.sg Abstract. At

More information

Inoculating Multivariate Schemes Against Differential Attacks

Inoculating Multivariate Schemes Against Differential Attacks Inoculating Multivariate Schemes Against Differential Attacks Jintai Ding and Jason E. Gower Department of Mathematical Sciences University of Cincinnati Cincinnati, OH 45221-0025 USA Email: ding@math.uc.edu,

More information

Block ciphers sensitive to Gröbner Basis Attacks

Block ciphers sensitive to Gröbner Basis Attacks Block ciphers sensitive to Gröbner Basis Attacks Johannes Buchmann, Andrei Pychkine, Ralf-Philipp Weinmann {buchmann,pychkine,weinmann}@cdc.informatik.tu-darmstadt.de Technische Universität Darmstadt Abstract.

More information

Reconstructing Chemical Reaction Networks by Solving Boolean Polynomial Systems

Reconstructing Chemical Reaction Networks by Solving Boolean Polynomial Systems Reconstructing Chemical Reaction Networks by Solving Boolean Polynomial Systems Chenqi Mou Wei Niu LMIB-School of Mathematics École Centrale Pékin and Systems Science Beihang University, Beijing 100191,

More information

Institutionen för matematik, KTH.

Institutionen för matematik, KTH. Institutionen för matematik, KTH. Contents 7 Affine Varieties 1 7.1 The polynomial ring....................... 1 7.2 Hypersurfaces........................... 1 7.3 Ideals...............................

More information

David Eklund. May 12, 2017

David Eklund. May 12, 2017 KTH Stockholm May 12, 2017 1 / 44 Isolated roots of polynomial systems Let f 1,..., f n C[x 0,..., x n ] be homogeneous and consider the subscheme X P n defined by the ideal (f 1,..., f n ). 2 / 44 Isolated

More information

4 Hilbert s Basis Theorem and Gröbner basis

4 Hilbert s Basis Theorem and Gröbner basis 4 Hilbert s Basis Theorem and Gröbner basis We define Gröbner bases of ideals in multivariate polynomial rings and see how they work in tandem with the division algorithm. We look again at the standard

More information

Grobner Bases: Degree Bounds and Generic Ideals

Grobner Bases: Degree Bounds and Generic Ideals Clemson University TigerPrints All Dissertations Dissertations 8-2014 Grobner Bases: Degree Bounds and Generic Ideals Juliane Golubinski Capaverde Clemson University, julianegc@gmail.com Follow this and

More information

Sparse Polynomial Multiplication and Division in Maple 14

Sparse Polynomial Multiplication and Division in Maple 14 Sparse Polynomial Multiplication and Division in Maple 4 Michael Monagan and Roman Pearce Department of Mathematics, Simon Fraser University Burnaby B.C. V5A S6, Canada October 5, 9 Abstract We report

More information

Multivariate Public Key Cryptography

Multivariate Public Key Cryptography Winter School, PQC 2016, Fukuoka Multivariate Public Key Cryptography Jintai Ding University of Cincinnati Feb. 22 2016 Outline Outline What is a MPKC? Multivariate Public Key Cryptosystems - Cryptosystems,

More information

On solving sparse algebraic equations over finite

On solving sparse algebraic equations over finite On solving sparse algebraic equations over finite fields II Igor Semaev Department of Informatics, University of Bergen, Norway Abstract. A system of algebraic equations over a finite field is called sparse

More information

I. Duality. Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Univ. Press (1916);

I. Duality. Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Univ. Press (1916); I. Duality Macaulay F. S., On the Resolution of a given Modular System into Primary Systems including some Properties of Hilbert Numbers, Math. Ann. 74 (1913), 66 121; Macaulay F. S., The Algebraic Theory

More information

On Fulton s Algorithm for Computing Intersection Multiplicities

On Fulton s Algorithm for Computing Intersection Multiplicities On Fulton s Algorithm for Computing Intersection Multiplicities Steffen Marcus 1 Marc Moreno Maza 2 Paul Vrbik 2 1 University of Utah 2 University of Western Ontario March 9, 2012 1/35 Overview Let f 1,...,f

More information

Möller s Algorithm. the algorithm developed in [14] was improved in [18] and applied in order to solve the FGLM-problem;

Möller s Algorithm. the algorithm developed in [14] was improved in [18] and applied in order to solve the FGLM-problem; Möller s Algorithm Teo Mora (theomora@disi.unige.it) Duality was introduced in Commutative Algebra in 1982 by the seminal paper [14] but the relevance of this result became clear after the same duality

More information

On the BMS Algorithm

On the BMS Algorithm On the BMS Algorithm Shojiro Sakata The University of Electro-Communications Department of Information and Communication Engineering Chofu-shi, Tokyo 182-8585, JAPAN Abstract I will present a sketch of

More information

SIMPLIFICATION/COMPLICATION OF THE BASIS OF PRIME BOOLEAN IDEAL

SIMPLIFICATION/COMPLICATION OF THE BASIS OF PRIME BOOLEAN IDEAL Alexander Rostovtsev 1 and Anna Shustrova 2 St. Petersburg state polytechnic university, Russia, St. Petersburg 1 alexander.rostovtsev@ibks.ftk.spbstu.ru, 2 luminescenta@gmail.com SIMPLIFICATION/COMPLICATION

More information

Improved Cryptanalysis of HFEv- via Projection

Improved Cryptanalysis of HFEv- via Projection Improved Cryptanalysis of HFEv- via Projection Jintai Ding 1, Ray Perlner 2, Albrecht Petzoldt 2, and Daniel Smith-Tone 2,3 1 Department of Mathematical Sciences, University of Cincinnati, Cincinnati,

More information

Cryptanalysis of the Oil & Vinegar Signature Scheme

Cryptanalysis of the Oil & Vinegar Signature Scheme Cryptanalysis of the Oil & Vinegar Signature Scheme Aviad Kipnis 1 and Adi Shamir 2 1 NDS Technologies, Israel 2 Dept. of Applied Math, Weizmann Institute, Israel Abstract. Several multivariate algebraic

More information

A new attack on RSA with a composed decryption exponent

A new attack on RSA with a composed decryption exponent A new attack on RSA with a composed decryption exponent Abderrahmane Nitaj and Mohamed Ould Douh,2 Laboratoire de Mathématiques Nicolas Oresme Université de Caen, Basse Normandie, France abderrahmane.nitaj@unicaen.fr

More information

Algebraic Attack Against Trivium

Algebraic Attack Against Trivium Algebraic Attack Against Trivium Ilaria Simonetti, Ludovic Perret and Jean Charles Faugère Abstract. Trivium is a synchronous stream cipher designed to provide a flexible trade-off between speed and gate

More information