Decoding linear codes via systems solving: complexity issues

Size: px
Start display at page:

Download "Decoding linear codes via systems solving: complexity issues"

Transcription

1 Decoding linear codes via systems solving: complexity issues Stanislav Bulygin (joint work with Ruud Pellikaan) University of Kaiserslautern June 19, 2008

2 Outline Outline of the talk Introduction: codes and decoding problem Quadratic system method Complexity issues: Macaulay matrix, extended linearization, some estimates

3 Introduction Codes recap Let F q be a field with q elements. A linear code C is a linear subspace of F n q endowed with the Hamming metric Hamming distance between x, y F n q : d(x, y) = #{i x i y i }. Hamming weight of x F n q : wt(x) = #{i x i 0}. Minimum distance of the code C : d(c) := min x,y C,x y (d(x, y)). The code C of dimension k and minimum distance d is denoted as [n, k, d]. A matrix G whose rows are the basis vectors of C is a generator matrix. A matrix H with the property c C Hc T = 0 is a check matrix.

4 Introduction Decoding problem Complete decoding: Given y F n q and a code C F n q, so that y is at distance d(y, C) from the code, find c C : d(y, c) = d(y, C). Bounded up to half the minimum distance: Additional assumption d(y, C) (d(c) 1)/2. Then a codeword with the above property is unique.

5 Introduction Decoding via systems solving One distinguishes between two concepts: Generic decoding: Solve some system S(C) and obtain some closed formulas F. Evaluating these formulas at data specific to a received word y should yield a solution to the decoding problem. For example for f F : f (syndrome(y), x) = poly(x). The roots of poly(x) = 0 yield error positions general error-locator polynomial f. Online decoding: Solve some system S(C, y). The solutions should solve the decoding problem. Computational effort Generic decoding. Preprocessing: very hard. Decoding: relatively simple. Online decoding. Preprocessing:. Decoding: hard.

6 Quadratic system method Unknown syndrome Let b 1,..., b n be a basis of F n q and let B be the n n matrix with b 1,..., b n as rows. The unknown syndrome u(b, e) of a word e w.r.t B is the column vector u(b, e) = Be T with entries u i (B, e) = b i e for i = 1,..., n. Structure constants For two vectors x, y F n q define x y = (x 1 y 1,..., x n y n ). Then b i b j is a linear combination of b 1,..., b n, so there are constants µ ij l F q such that b i b j = n l=1 µij l b l. The elements µ ij l F q are the structure constants of the basis b 1,..., b n. MDS matrix Let B s be the s n matrix with b 1,..., b s as rows (B = B n ). Then b 1,..., b n is an ordered MDS basis and B an MDS matrix if all the s s submatrices of B s have rank s for all s = 1,..., n.

7 Quadratic system method Check matrix Let C be an F q -linear code with parameters [n, k, d]. W.l.o.g n q. H is a check matrix of C. Let h 1,..., h n k be the rows of H. One can express h i = n j=1 a ijb j for some a ij F q. In other words H = AB where A is the (n k) n matrix with entries a ij. Known syndrome Let y = c + e be a received word with c C and e an error vector. The syndromes of y and e w.r.t H are equal and known: s i (y) := h i y = h i e = s i (e). They can be expressed in the unknown syndromes of e w.r.t B: s i (y) = s i (e) n j=1 a iju j (e) since h i = n j=1 a ijb j and b j e = u j (e).

8 Quadratic system method Linear forms Let B be an MDS matrix with structure constants µ ij l. Define U ij in the variables U 1,..., U n by U ij = n l=1 µij l U l. Quadratic system The ideal J(y) in F q [U 1,..., U n ] is generated by n l=1 a jlu l s j (y) for j = 1,..., r The ideal I (t, U, V ) in F q [U 1,..., U n, V 1,..., V t ] is generated by t j=1 U ijv j U it+1 for i = 1,..., n Let J(t, y) be the ideal in F q [U 1,..., U n, V 1,..., V t ] generated by J(y) and I (t, U, V ).

9 Quadratic system method Main result Let B be an MDS matrix with structure constants µ ij l. Let H be a check matrix of the code C such that H = AB as above. Let y = c + e be a received word with c C the codeword sent and e the error vector. Suppose that wt(e) 0 and wt(e) (d(c) 1)/2. Let t be the smallest positive integer such that J(t, y) has a solution (u, v) over F q. Then wt(e) = t and the solution is unique satisfying u = u(e). the reduced Gröbner basis G for the ideal J(t, y) w.r.t any monomial ordering is { Ui u i (e), i = 1,..., n, V j v j, j = 1,..., t, where (u(e), v) is the unique solution.

10 Quadratic system method Features No field equations. The same result holds for the complete decoding. The solution lies in the field F q. The equations are at most quadratic. After solving J(t, y) decoding is simple: B 1 u(b, e) = B 1 Be T = e T.

11 Quadratic system method Analysis From J(y) one can express some n k U-variables via k others. Substitution of those in I (t, U, V ) yields a systems of n quadratic equations in k + t variables, thus obtaining overdetermined system. Easier to solve when With constant k and t, n increases. With constant n and t, k decreases. Simulations For example for random binary codes with n = 120 and k = 10,..., 40 one can correct 5 20 errors in 1000 sec. via computing the reduced Gröbner basis in SINGULAR or MAGMA.

12 Diagonal representation (joint with S.Ovsienko) Our system is equivalent to HX T = s X i Y i = 0, i = 1,..., n Ĥ t Y T = ŝ t, where H is a check matrix of the code C, s a known syndrome, X = (X 1,..., X n ) and Y = (Y 1,..., Y n ) are new variables, Ĥ t is a check matrix of a code with the generator matrix B t, ŝ t is a syndrome of the vector b t+1 w.r.t to Ĥ t.

13 Macaulay matrix Like above one can obtain a system Sys with n quadratic equations and k + t variables, w.l.o.g X 1,..., X k, Y 1,..., Y t. The monomials that appear in the system are X i Y j, 1 i k, 1 j t, X 1,..., X k, Y 1,..., Y t. The total number of monomials appearing in the system is kt + k + t = (k + 1)(t + 1) 1. One can consider the Macaulay matrix of Sys: rows are indexed by the equations, columns by the monomials. Denote the matrix by M(Sys). Linearization If n kt + k + t and M(Sys) is full-rank, one can find X i s by applying Gaussian elimination to M(Sys).

14 Macaulay matrix is full-rank Let C be a random [n, k] code over F q, defined e.g. by a random full-rank (n k) n check matrix H and let e be a random error vector over F q of weight t. Let Sys = Sys(n, k, t) be the corresponding system as above. Then the probability of the fact that M(Sys) has full-rank tends to 1 as n tends to infinity. Experiments suggest that already for small values of n (e.g ) the statement also holds with quite high probability. Idea of the proof Degeneracy of M(Sys) is reduced to the fact that e l + C l ( B t+1 ). Here e l and C l are the vector e and the code C resp. restricted to some l positions from {1,..., n} and B t+1 is a code equivalent to the code B t+1 restricted to the same l positions as before.

15 Extended linearization One can try to go further and apply extended linearization. Consider binary case, so Xi 2 = X i for all i. Multiply the system Sys with all monomials in X 1,..., X k of degree s < k. A system, call it Sys s, obtained in this way has n(1 + ( ( k 1) + + k s) ) equations and C s := C s 1 + ( k s+1) (t + 1) monomials. Denote ( k ) ( 0 + k ) ( k ) s =: f (k, s). If we assume that M(Syss ) is full-rank, then if ( ( ) ( ) k k ) n = nf (k, s) C s 1 = (t+1)f (k, s+1) 1, 1 s then successfull application of Gaussian elimination to M(Sys) is possible.

16 Complexity coefficient If an algorithm A has complexity O(2 αn ) in the length of input n, then we say that α is a complexity coefficient of algorithm A. Denote CC A. Minimum distance of a random binary code Let C be a binary random code with parameters [n, Rn, n], where 0 < R < 1 is given. If n, then almost all codes have = H 1 (1 R), where H( ) is a binary entropy function: H(x) = x log 2 x (1 x) log 2 (1 x), 0 < x < 1.

17 Estimating degree of extended linearization If k = Rn, t = δn, s = λn, 0 < R, δ, λ < 1, then it is sufficient to take λ = δr for extended linearization to work. Upper bound for complexity The upper bound on the complexity coefficient with the extended linearization as above is CC QED (R) = ωrh 2 (δ), where ω is the exponent of Gaussian elimination and δ δ e = H 1 (1 R)/2 such that t = δn is the number of errors occurred.

18 Comparing complexities Let t = δ e n so the full error-correcting capacity is used. x axis is information rate R, y-axis is the complexity coefficient

19 Comparing complexities II Relax requirement on t a little. Take t = δn for δ = δ e /

20 Comparing complexities III Relax a little more. Take t = δn for δ = δ e /

21 Highest degree in GB computation I In the table below we compare highest degrees when computing GB w.r.t degrevlex with std command in SINGULAR. For every code the left column shows degree for the diagonal system, and the right one for the initial system. no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

22 Highest degree in GB computation I no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

23 Highest degree in GB computation II In the next table we show degrees that appear during GB computation with F4 implementation of MAGMA (GroebnerBasis command) no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

24 Highest degree in GB computation II no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

25 Highest degree in GB computation III We also present degree estimate with extended linearization as above. no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

26 Highest degree in GB computation III no. of err. [120,40] [120,30] [120,20] [120,10] [150,10]

27 Highest degree in GB computation IV Although highest degree of polynomials occurring during GB computations is an important parameter for complexity, it is not the only one. For example in our experiments with slimgb we never obtained degree larger than 3, and still running time was much worse than the ones of std or F4.

28 Comparing with different random systems Consider different types of random systems: R 1 is a system of n quadratic equations that has the same monomials as Sys, but the corresponding coefficients are randomly taken from F q. Require that R 1 has a unique solution in F q. R 2 is a system that has the same properties as R 1, but the requirement on uniqueness of a solution is dropped out. R 3 is a fully random system of n quadratic equations, i.e. it has all possible monomials of degree 2 and the corresponding coefficients are random from F q Note that R 2 and R 3 do not have solutions in general.

29 Experiments Using some experimental evidence we conjecture that there are following relations between the complexities for solving Sys, R 1, R 2, and R 3 with general methods Compl(Sys) Compl(R 1 ) Compl(R 2 ) Compl(R 3 ). Semi-regular sequences Solving R 3 -systems has to do with the semi-regular sequences introduced by M.Bardet et.al. Complexity estimates for the F5 algorithm are available. These results are not applicable for our situation, since the quadratic homogeneous part in our systems has positive dimension, whereas the results there are valid only for zero-dimensional case.

30 Further research Further research The possible directions of research: Complexity analysis of solving, e.g. via the analysis of R 2 systems. In the complexity analysis take into account a special form of the Macaulay matrix. Algorithmic questions connected with the existence of Generalized Newton identities for arbitrary linear codes. Decoding algorithms of polynomial complexity for some classes of codes that follow the idea of cyclic codes.

Decoding linear codes via systems solving: complexity issues and generalized Newton identities

Decoding linear codes via systems solving: complexity issues and generalized Newton identities Decoding linear codes via systems solving: complexity issues and generalized Newton identities Stanislav Bulygin (joint work with Ruud Pellikaan) University of Valladolid Valladolid, Spain March 14, 2008

More information

Decoding error-correcting codes with Gröbner bases

Decoding error-correcting codes with Gröbner bases Decoding error-correcting codes with Gröbner bases Stanislav Bulygin Technical University of Kaiserslautern Department of Mathematics P.O. Box 3049, 67653 Kaiserslautern Germany bulygin@mathematik.uni-kl.de

More information

Arrangements, matroids and codes

Arrangements, matroids and codes Arrangements, matroids and codes first lecture Ruud Pellikaan joint work with Relinde Jurrius ACAGM summer school Leuven Belgium, 18 July 2011 References 2/43 1. Codes, arrangements and matroids by Relinde

More information

The extended coset leader weight enumerator

The extended coset leader weight enumerator The extended coset leader weight enumerator Relinde Jurrius Ruud Pellikaan Eindhoven University of Technology, The Netherlands Symposium on Information Theory in the Benelux, 2009 1/14 Outline Codes, weights

More information

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16

Solutions of Exam Coding Theory (2MMC30), 23 June (1.a) Consider the 4 4 matrices as words in F 16 Solutions of Exam Coding Theory (2MMC30), 23 June 2016 (1.a) Consider the 4 4 matrices as words in F 16 2, the binary vector space of dimension 16. C is the code of all binary 4 4 matrices such that the

More information

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems

On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems On the Complexity of Gröbner Basis Computation for Regular and Semi-Regular Systems Bruno.Salvy@inria.fr Algorithms Project, Inria Joint work with Magali Bardet & Jean-Charles Faugère September 21st, 2006

More information

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class

Error Correcting Codes: Combinatorics, Algorithms and Applications Spring Homework Due Monday March 23, 2009 in class Error Correcting Codes: Combinatorics, Algorithms and Applications Spring 2009 Homework Due Monday March 23, 2009 in class You can collaborate in groups of up to 3. However, the write-ups must be done

More information

Error-correcting Pairs for a Public-key Cryptosystem

Error-correcting Pairs for a Public-key Cryptosystem Error-correcting Pairs for a Public-key Cryptosystem Ruud Pellikaan g.r.pellikaan@tue.nl joint work with Irene Márquez-Corbella Code-based Cryptography Workshop 2012 Lyngby, 9 May 2012 Introduction and

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

Lecture 2 Linear Codes

Lecture 2 Linear Codes Lecture 2 Linear Codes 2.1. Linear Codes From now on we want to identify the alphabet Σ with a finite field F q. For general codes, introduced in the last section, the description is hard. For a code of

More information

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups.

MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. MATH 433 Applied Algebra Lecture 21: Linear codes (continued). Classification of groups. Binary codes Let us assume that a message to be transmitted is in binary form. That is, it is a word in the alphabet

More information

Definition 2.1. Let w be a word. Then the coset C + w of w is the set {c + w : c C}.

Definition 2.1. Let w be a word. Then the coset C + w of w is the set {c + w : c C}. 2.4. Coset Decoding i 2.4 Coset Decoding To apply MLD decoding, what we must do, given a received word w, is search through all the codewords to find the codeword c closest to w. This can be a slow and

More information

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics. The Basics of Linear Algebra

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics. The Basics of Linear Algebra Lecture Notes in Mathematics Arkansas Tech University Department of Mathematics The Basics of Linear Algebra Marcel B. Finan c All Rights Reserved Last Updated November 30, 2015 2 Preface Linear algebra

More information

A variant of the F4 algorithm

A variant of the F4 algorithm A variant of the F4 algorithm Vanessa VITSE - Antoine JOUX Université de Versailles Saint-Quentin, Laboratoire PRISM CT-RSA, February 18, 2011 Motivation Motivation An example of algebraic cryptanalysis

More information

Chapter 2. Error Correcting Codes. 2.1 Basic Notions

Chapter 2. Error Correcting Codes. 2.1 Basic Notions Chapter 2 Error Correcting Codes The identification number schemes we discussed in the previous chapter give us the ability to determine if an error has been made in recording or transmitting information.

More information

MATH32031: Coding Theory Part 15: Summary

MATH32031: Coding Theory Part 15: Summary MATH32031: Coding Theory Part 15: Summary 1 The initial problem The main goal of coding theory is to develop techniques which permit the detection of errors in the transmission of information and, if necessary,

More information

Gröbner Bases. Applications in Cryptology

Gröbner Bases. Applications in Cryptology Gröbner Bases. Applications in Cryptology Jean-Charles Faugère INRIA, Université Paris 6, CNRS with partial support of Celar/DGA FSE 20007 - Luxembourg E cient Goal: how Gröbner bases can be used to break

More information

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016

MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 MATH/MTHE 406 Homework Assignment 2 due date: October 17, 2016 Notation: We will use the notations x 1 x 2 x n and also (x 1, x 2,, x n ) to denote a vector x F n where F is a finite field. 1. [20=6+5+9]

More information

Liouvillian solutions of third order differential equations

Liouvillian solutions of third order differential equations Article Submitted to Journal of Symbolic Computation Liouvillian solutions of third order differential equations Felix Ulmer IRMAR, Université de Rennes, 0 Rennes Cedex, France felix.ulmer@univ-rennes.fr

More information

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei COMPSCI 650 Applied Information Theory Apr 5, 2016 Lecture 18 Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei 1 Correcting Errors in Linear Codes Suppose someone is to send

More information

Extended Subspace Error Localization for Rate-Adaptive Distributed Source Coding

Extended Subspace Error Localization for Rate-Adaptive Distributed Source Coding Introduction Error Correction Extended Subspace Simulation Extended Subspace Error Localization for Rate-Adaptive Distributed Source Coding Mojtaba Vaezi and Fabrice Labeau McGill University International

More information

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x].

Know the meaning of the basic concepts: ring, field, characteristic of a ring, the ring of polynomials R[x]. The second exam will be on Friday, October 28, 2. It will cover Sections.7,.8, 3., 3.2, 3.4 (except 3.4.), 4. and 4.2 plus the handout on calculation of high powers of an integer modulo n via successive

More information

New algebraic decoding method for the (41, 21,9) quadratic residue code

New algebraic decoding method for the (41, 21,9) quadratic residue code New algebraic decoding method for the (41, 21,9) quadratic residue code Mohammed M. Al-Ashker a, Ramez Al.Shorbassi b a Department of Mathematics Islamic University of Gaza, Palestine b Ministry of education,

More information

Improving the Performance of the SYND Stream Cipher

Improving the Performance of the SYND Stream Cipher Improving the Performance of the SYND Stream Cipher Mohammed Meziani, Gerhard Hoffmann and Pierre-Louis Cayrel AfricaCrypt 2012, July 10-12, Ifrane Morocco Backgrounds Previous Works XSYND Conclusion and

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

And for polynomials with coefficients in F 2 = Z/2 Euclidean algorithm for gcd s Concept of equality mod M(x) Extended Euclid for inverses mod M(x)

And for polynomials with coefficients in F 2 = Z/2 Euclidean algorithm for gcd s Concept of equality mod M(x) Extended Euclid for inverses mod M(x) Outline Recall: For integers Euclidean algorithm for finding gcd s Extended Euclid for finding multiplicative inverses Extended Euclid for computing Sun-Ze Test for primitive roots And for polynomials

More information

The Golay codes. Mario de Boer and Ruud Pellikaan

The Golay codes. Mario de Boer and Ruud Pellikaan The Golay codes Mario de Boer and Ruud Pellikaan Appeared in Some tapas of computer algebra (A.M. Cohen, H. Cuypers and H. Sterk eds.), Project 7, The Golay codes, pp. 338-347, Springer, Berlin 1999, after

More information

A 2-error Correcting Code

A 2-error Correcting Code A 2-error Correcting Code Basic Idea We will now try to generalize the idea used in Hamming decoding to obtain a linear code that is 2-error correcting. In the Hamming decoding scheme, the parity check

More information

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014

Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Anna Dovzhik 1 Coding Theory: Linear-Error Correcting Codes Anna Dovzhik Math 420: Advanced Linear Algebra Spring 2014 Sharing data across channels, such as satellite, television, or compact disc, often

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

11 Minimal Distance and the Parity Check Matrix

11 Minimal Distance and the Parity Check Matrix MATH32031: Coding Theory Part 12: Hamming Codes 11 Minimal Distance and the Parity Check Matrix Theorem 23 (Distance Theorem for Linear Codes) Let C be an [n, k] F q -code with parity check matrix H. Then

More information

Algebraic Decoding of Rank Metric Codes

Algebraic Decoding of Rank Metric Codes Algebraic Decoding of Rank Metric Codes Françoise Levy-dit-Vehel ENSTA Paris, France levy@ensta.fr joint work with Ludovic Perret (UCL Louvain) Special Semester on Gröbner Bases - Workshop D1 Outline The

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Spring 2009 Instructor : Stefaan Delcroix Chapter 1 Introduction to Error-Correcting Codes It happens quite often that a message becomes corrupt

More information

Linear, Quadratic, and Cubic Forms over the Binary Field

Linear, Quadratic, and Cubic Forms over the Binary Field Linear, Quadratic, and Cubic Forms over the Binary Field Akihiro Munemasa 1 1 Graduate School of Information Sciences Tohoku University October 28, 2009 POSTECH Linear, Quadratic, and Cubic Forms over

More information

Coding Theory. Ruud Pellikaan MasterMath 2MMC30. Lecture 11.1 May

Coding Theory. Ruud Pellikaan MasterMath 2MMC30. Lecture 11.1 May Coding Theory Ruud Pellikaan g.r.pellikaan@tue.nl MasterMath 2MMC30 /k Lecture 11.1 May 12-2016 Content lecture 11 2/31 In Lecture 8.2 we introduced the Key equation Now we introduce two algorithms which

More information

Localization. Introduction. Markus Lange-Hegermann

Localization. Introduction. Markus Lange-Hegermann Localization Markus Lange-Hegermann Introduction This talk deals with localisation of holonomic Weyl algebra modules and their localisation. Consider left modules an d left ideals for this talk. Instead

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes

Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes Polynomial interpolation over finite fields and applications to list decoding of Reed-Solomon codes Roberta Barbi December 17, 2015 Roberta Barbi List decoding December 17, 2015 1 / 13 Codes Let F q be

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

Lecture 12: November 6, 2017

Lecture 12: November 6, 2017 Information and Coding Theory Autumn 017 Lecturer: Madhur Tulsiani Lecture 1: November 6, 017 Recall: We were looking at codes of the form C : F k p F n p, where p is prime, k is the message length, and

More information

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q

MATH Examination for the Module MATH-3152 (May 2009) Coding Theory. Time allowed: 2 hours. S = q MATH-315201 This question paper consists of 6 printed pages, each of which is identified by the reference MATH-3152 Only approved basic scientific calculators may be used. c UNIVERSITY OF LEEDS Examination

More information

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

Owen (Chia-Hsin) Chen, National Taiwan University

Owen (Chia-Hsin) Chen, National Taiwan University Analysis of QUAD Owen (Chia-Hsin) Chen, National Taiwan University March 27, FSE 2007, Luxembourg Work at Academia Sinica supervised by Dr. Bo-Yin Yang Jointly with Drs. Dan Bernstein and Jiun-Ming Chen

More information

Orthogonal Arrays & Codes

Orthogonal Arrays & Codes Orthogonal Arrays & Codes Orthogonal Arrays - Redux An orthogonal array of strength t, a t-(v,k,λ)-oa, is a λv t x k array of v symbols, such that in any t columns of the array every one of the possible

More information

Linear Block Codes. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay

Linear Block Codes. Saravanan Vijayakumaran Department of Electrical Engineering Indian Institute of Technology Bombay 1 / 26 Linear Block Codes Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 28, 2014 Binary Block Codes 3 / 26 Let F 2 be the set

More information

MATH3302. Coding and Cryptography. Coding Theory

MATH3302. Coding and Cryptography. Coding Theory MATH3302 Coding and Cryptography Coding Theory 2010 Contents 1 Introduction to coding theory 2 1.1 Introduction.......................................... 2 1.2 Basic definitions and assumptions..............................

More information

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 217 228 Computing Minimal Polynomial of Matrices over Algebraic Extension Fields by Amir Hashemi and Benyamin M.-Alizadeh Abstract In this

More information

Elliptic Curve Discrete Logarithm Problem

Elliptic Curve Discrete Logarithm Problem Elliptic Curve Discrete Logarithm Problem Vanessa VITSE Université de Versailles Saint-Quentin, Laboratoire PRISM October 19, 2009 Vanessa VITSE (UVSQ) Elliptic Curve Discrete Logarithm Problem October

More information

Finite Mathematics. Nik Ruškuc and Colva M. Roney-Dougal

Finite Mathematics. Nik Ruškuc and Colva M. Roney-Dougal Finite Mathematics Nik Ruškuc and Colva M. Roney-Dougal September 19, 2011 Contents 1 Introduction 3 1 About the course............................. 3 2 A review of some algebraic structures.................

More information

3 (Maths) Linear Algebra

3 (Maths) Linear Algebra 3 (Maths) Linear Algebra References: Simon and Blume, chapters 6 to 11, 16 and 23; Pemberton and Rau, chapters 11 to 13 and 25; Sundaram, sections 1.3 and 1.5. The methods and concepts of linear algebra

More information

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation.

Algebra II Vocabulary Alphabetical Listing. Absolute Maximum: The highest point over the entire domain of a function or relation. Algebra II Vocabulary Alphabetical Listing Absolute Maximum: The highest point over the entire domain of a function or relation. Absolute Minimum: The lowest point over the entire domain of a function

More information

Non-Standard Coding Theory

Non-Standard Coding Theory Non-Standard Coding Theory Steven T. Dougherty July 3, 2013 Rosenbloom-Tsfasman Metric Codes with the Rosenbloom-Tsfasman Metric Rosenbloom-Tsfasman Metric Mat n,s (F q ) denotes the linear space of all

More information

MATH 291T CODING THEORY

MATH 291T CODING THEORY California State University, Fresno MATH 291T CODING THEORY Fall 2011 Instructor : Stefaan Delcroix Contents 1 Introduction to Error-Correcting Codes 3 2 Basic Concepts and Properties 6 2.1 Definitions....................................

More information

New Gröbner Bases for formal verification and cryptography

New Gröbner Bases for formal verification and cryptography New Gröbner Bases for formal verification and cryptography Gert-Martin Greuel Diamant/Eidma Symposium November 29th - November 30th November 29th, 2007 Introduction Focus of this talk New developements

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

Quasi-cyclic Low Density Parity Check codes with high girth

Quasi-cyclic Low Density Parity Check codes with high girth Quasi-cyclic Low Density Parity Check codes with high girth, a work with Marta Rossi, Richard Bresnan, Massimilliano Sala Summer Doctoral School 2009 Groebner bases, Geometric codes and Order Domains Dept

More information

Lecture 4: Proof of Shannon s theorem and an explicit code

Lecture 4: Proof of Shannon s theorem and an explicit code CSE 533: Error-Correcting Codes (Autumn 006 Lecture 4: Proof of Shannon s theorem and an explicit code October 11, 006 Lecturer: Venkatesan Guruswami Scribe: Atri Rudra 1 Overview Last lecture we stated

More information

Chapter 1: Systems of Linear Equations and Matrices

Chapter 1: Systems of Linear Equations and Matrices : Systems of Linear Equations and Matrices Multiple Choice Questions. Which of the following equations is linear? (A) x + 3x 3 + 4x 4 3 = 5 (B) 3x x + x 3 = 5 (C) 5x + 5 x x 3 = x + cos (x ) + 4x 3 = 7.

More information

Unit 13: Polynomials and Exponents

Unit 13: Polynomials and Exponents Section 13.1: Polynomials Section 13.2: Operations on Polynomials Section 13.3: Properties of Exponents Section 13.4: Multiplication of Polynomials Section 13.5: Applications from Geometry Section 13.6:

More information

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005 Chapter 7 Error Control Coding Mikael Olofsson 2005 We have seen in Chapters 4 through 6 how digital modulation can be used to control error probabilities. This gives us a digital channel that in each

More information

3.2 Gaussian Elimination (and triangular matrices)

3.2 Gaussian Elimination (and triangular matrices) (1/19) Solving Linear Systems 3.2 Gaussian Elimination (and triangular matrices) MA385/MA530 Numerical Analysis 1 November 2018 Gaussian Elimination (2/19) Gaussian Elimination is an exact method for solving

More information

Current Advances. Open Source Gröbner Basis Algorithms

Current Advances. Open Source Gröbner Basis Algorithms Current Advances in Open Source Gröbner Basis Algorithms My name is Christian Eder I am from the University of Kaiserslautern 3 years ago Christian Eder, Jean-Charles Faugère A survey on signature-based

More information

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations:

Math 1060 Linear Algebra Homework Exercises 1 1. Find the complete solutions (if any!) to each of the following systems of simultaneous equations: Homework Exercises 1 1 Find the complete solutions (if any!) to each of the following systems of simultaneous equations: (i) x 4y + 3z = 2 3x 11y + 13z = 3 2x 9y + 2z = 7 x 2y + 6z = 2 (ii) x 4y + 3z =

More information

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini DM559 Linear and Integer Programming Lecture Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Outline 1. 3 A Motivating Example You are organizing

More information

1 Solutions to selected problems

1 Solutions to selected problems Solutions to selected problems Section., #a,c,d. a. p x = n for i = n : 0 p x = xp x + i end b. z = x, y = x for i = : n y = y + x i z = zy end c. y = (t x ), p t = a for i = : n y = y(t x i ) p t = p

More information

FUNDAMENTALS OF ERROR-CORRECTING CODES - NOTES. Presenting: Wednesday, June 8. Section 1.6 Problem Set: 35, 40, 41, 43

FUNDAMENTALS OF ERROR-CORRECTING CODES - NOTES. Presenting: Wednesday, June 8. Section 1.6 Problem Set: 35, 40, 41, 43 FUNDAMENTALS OF ERROR-CORRECTING CODES - NOTES BRIAN BOCKELMAN Monday, June 6 2005 Presenter: J. Walker. Material: 1.1-1.4 For Lecture: 1,4,5,8 Problem Set: 6, 10, 14, 17, 19. 1. Basic concepts of linear

More information

ECEN 5682 Theory and Practice of Error Control Codes

ECEN 5682 Theory and Practice of Error Control Codes ECEN 5682 Theory and Practice of Error Control Codes Introduction to Algebra University of Colorado Spring 2007 Motivation and For convolutional codes it was convenient to express the datawords and the

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9

MATH3302 Coding Theory Problem Set The following ISBN was received with a smudge. What is the missing digit? x9139 9 Problem Set 1 These questions are based on the material in Section 1: Introduction to coding theory. You do not need to submit your answers to any of these questions. 1. The following ISBN was received

More information

Distances & Similarities

Distances & Similarities Introduction to Data Mining Distances & Similarities CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Distances & Similarities Yale - Fall 2016 1 / 22 Outline

More information

Section 9.2: Matrices.. a m1 a m2 a mn

Section 9.2: Matrices.. a m1 a m2 a mn Section 9.2: Matrices Definition: A matrix is a rectangular array of numbers: a 11 a 12 a 1n a 21 a 22 a 2n A =...... a m1 a m2 a mn In general, a ij denotes the (i, j) entry of A. That is, the entry in

More information

Math 215 HW #9 Solutions

Math 215 HW #9 Solutions Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

More information

Computability and Complexity Theory: An Introduction

Computability and Complexity Theory: An Introduction Computability and Complexity Theory: An Introduction meena@imsc.res.in http://www.imsc.res.in/ meena IMI-IISc, 20 July 2006 p. 1 Understanding Computation Kinds of questions we seek answers to: Is a given

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 2 Based in part on slides from textbook, slides of Susan Holmes. October 3, / 1 Week 2 Based in part on slides from textbook, slides of Susan Holmes October 3, 2012 1 / 1 Part I Other datatypes, preprocessing 2 / 1 Other datatypes Document data You might start with a collection of

More information

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley ALGEBRA: From Linear to Non-Linear Bernd Sturmfels University of California at Berkeley John von Neumann Lecture, SIAM Annual Meeting, Pittsburgh, July 13, 2010 Undergraduate Linear Algebra All undergraduate

More information

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation

ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation ECEN 615 Methods of Electric Power Systems Analysis Lecture 18: Least Squares, State Estimation Prof. om Overbye Dept. of Electrical and Computer Engineering exas A&M University overbye@tamu.edu Announcements

More information

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes

Part I. Other datatypes, preprocessing. Other datatypes. Other datatypes. Week 2 Based in part on slides from textbook, slides of Susan Holmes Week 2 Based in part on slides from textbook, slides of Susan Holmes Part I Other datatypes, preprocessing October 3, 2012 1 / 1 2 / 1 Other datatypes Other datatypes Document data You might start with

More information

Product of P-polynomial association schemes

Product of P-polynomial association schemes Product of P-polynomial association schemes Ziqing Xiang Shanghai Jiao Tong University Nov 19, 2013 1 / 20 P-polynomial association scheme Definition 1 P-polynomial association scheme A = (X, {A i } 0

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Berlekamp-Massey decoding of RS code

Berlekamp-Massey decoding of RS code IERG60 Coding for Distributed Storage Systems Lecture - 05//06 Berlekamp-Massey decoding of RS code Lecturer: Kenneth Shum Scribe: Bowen Zhang Berlekamp-Massey algorithm We recall some notations from lecture

More information

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved

Fundamentals of Linear Algebra. Marcel B. Finan Arkansas Tech University c All Rights Reserved Fundamentals of Linear Algebra Marcel B. Finan Arkansas Tech University c All Rights Reserved 2 PREFACE Linear algebra has evolved as a branch of mathematics with wide range of applications to the natural

More information

On Extremal Codes With Automorphisms

On Extremal Codes With Automorphisms On Extremal Codes With Automorphisms Anton Malevich Magdeburg, 20 April 2010 joint work with S. Bouyuklieva and W. Willems 1/ 33 1. Linear codes 2. Self-dual and extremal codes 3. Quadratic residue codes

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Vector spaces. EE 387, Notes 8, Handout #12

Vector spaces. EE 387, Notes 8, Handout #12 Vector spaces EE 387, Notes 8, Handout #12 A vector space V of vectors over a field F of scalars is a set with a binary operator + on V and a scalar-vector product satisfying these axioms: 1. (V, +) is

More information

Lesson 3: Polynomials and Exponents, Part 1

Lesson 3: Polynomials and Exponents, Part 1 Lesson 2: Introduction to Variables Assessment Lesson 3: Polynomials and Exponents, Part 1 When working with algebraic expressions, variables raised to a power play a major role. In this lesson, we look

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

A distinguisher for high-rate McEliece Cryptosystems

A distinguisher for high-rate McEliece Cryptosystems A distinguisher for high-rate McEliece Cryptosystems JC Faugère (INRIA, SALSA project), A Otmani (Université Caen- INRIA, SECRET project), L Perret (INRIA, SALSA project), J-P Tillich (INRIA, SECRET project)

More information

Lecture 12: Reed-Solomon Codes

Lecture 12: Reed-Solomon Codes Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 007) Lecture 1: Reed-Solomon Codes September 8, 007 Lecturer: Atri Rudra Scribe: Michel Kulhandjian Last lecture we saw the proof

More information

TOPOLOGICAL COMPLEXITY OF 2-TORSION LENS SPACES AND ku-(co)homology

TOPOLOGICAL COMPLEXITY OF 2-TORSION LENS SPACES AND ku-(co)homology TOPOLOGICAL COMPLEXITY OF 2-TORSION LENS SPACES AND ku-(co)homology DONALD M. DAVIS Abstract. We use ku-cohomology to determine lower bounds for the topological complexity of mod-2 e lens spaces. In the

More information

5.0 BCH and Reed-Solomon Codes 5.1 Introduction

5.0 BCH and Reed-Solomon Codes 5.1 Introduction 5.0 BCH and Reed-Solomon Codes 5.1 Introduction A. Hocquenghem (1959), Codes correcteur d erreurs; Bose and Ray-Chaudhuri (1960), Error Correcting Binary Group Codes; First general family of algebraic

More information

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology)

On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product. Lijie Chen (Massachusetts Institute of Technology) On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner Product Max a,b A B a b Lijie Chen (Massachusetts Institute of Technology) Max-IP and Z-Max-IP (Boolean) Max-IP: Given sets A and B

More information

An Interpolation Algorithm for List Decoding of Reed-Solomon Codes

An Interpolation Algorithm for List Decoding of Reed-Solomon Codes An Interpolation Algorithm for List Decoding of Reed-Solomon Codes Kwankyu Lee Department of Mathematics San Diego State University San Diego, USA Email: kwankyu@sogangackr Michael E O Sullivan Department

More information

Journal of Algebra 226, (2000) doi: /jabr , available online at on. Artin Level Modules.

Journal of Algebra 226, (2000) doi: /jabr , available online at   on. Artin Level Modules. Journal of Algebra 226, 361 374 (2000) doi:10.1006/jabr.1999.8185, available online at http://www.idealibrary.com on Artin Level Modules Mats Boij Department of Mathematics, KTH, S 100 44 Stockholm, Sweden

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013

Coding Theory and Applications. Solved Exercises and Problems of Cyclic Codes. Enes Pasalic University of Primorska Koper, 2013 Coding Theory and Applications Solved Exercises and Problems of Cyclic Codes Enes Pasalic University of Primorska Koper, 2013 Contents 1 Preface 3 2 Problems 4 2 1 Preface This is a collection of solved

More information