Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler

Size: px
Start display at page:

Download "Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler"

Transcription

1 Mitra Nasri* Morteza Mohaqeqi Gerhard Fohler RTNS, October 2016

2 Since 1973 it is known that period ratio affects the RM Schedulability The hardest-to-schedule task set [Liu and Layland] T 2 T n T 1 T 2 T n 2T 1 1 T 2 T 1 2, 1 T 3 T 2 2, T 1 2T 1 However, the exact test is very efficient in this case! R i C i + i 1 j=1 Ri T j C j Schedulability ratio The cost of analysis Small period ratios Large period ratios NP-hard problem [Eisenbrand08] 2 of 21

3 Schedulability Ratio U = 0.8 U = 0.85 U = 0.9 U = K max (ratio between consecutive periods) Periods: T 1 uniform distribution from [1, 10] K i uniform distribution from 1, K max Utilizations: uunifast [Bini05] WCETs: C i = u i T i T i = K i T i 1 Task sets satisfy the Liu and Layland assumptions 3 of 21

4 A large number of tasks Each task might have a set of configurations Cost of schedulability analysis System designer Cost of re-configuration of the system if the previous configuration was not feasible Identifying RM-Friendly periods reduces the costs 4 of 21

5 To understand what we get in the experiments! Example: Utilizations: uunifast, U=0.9, Periods: uniform from [10, 1000], WCET: C i = u i T i What does it tell us? The exact schedulability test What does it NOT tell us? Task sets satisfy the Liu and Layland assumptions 5 of 21

6 Consecutive period ratio To understand what we get in the experiments! Example: Utilizations: uunifast, U=0.9 Periods: uniform from [10, 1000] WCET: C i = u i T i What does it NOT tell us? The effect of period ratio! Average period ratio is 1.07 Maximum per-task utilization for n=40 is of 21

7 We quantify the effect of period ratio on RM schedulability Base period ratio (integer part of period ratio) Period residual (fractional part of period ratio) and Task utilization We derive a set of design hints We present a necessary schedulability test for RM based on period ratios Read it in the paper 77of of 21 21

8 Related work System model and definitions Quantifying the effect of period ratios Evaluation Conclusion A Framework to Construct Customized Harmonic Periods for RTS 8 of 25 8 of 21

9 When the period ratio approaches to infinity, the maximum schedulable utilization reaches to 1 [Lehozcky89] If periods are harmonic, and U 1, the task set will be schedulable by RM [Han97] Davis et al., showed that if periods are selected randomly by log-uniform distribution, RM schedulability increases [Davis08, Emberson10]. Wei et al., presented an efficient schedulability bound for RM based on the ratio between the smallest and the largest periods and utilization of the tasks [Wei08]. Bini presented a utilization-based schedulability test in which the minimum value of consecutive period ratios is used too [Bini15]. 9 of 21

10 Assumptions Preemptive periodic or sporadic tasks Implicit deadline No dependency or self-suspension τ = τ 1, τ 2,, τ n τ i = (C i, T i ) Tasks are indexed by their periods Period ratio of two tasks τ i τ j T j 2T j T i Base period ratio (integer part) K i,j = T i T j = k i,j + γ i,j Period residual (fractional part) k i,j N 0 γ i,j < 1 Example τ 4 K 4,2 = 2.6 τ k 4,2 = 2 γ 4,2 = of 21

11 Related work System model and definitions Quantifying the effect of period ratios EValuation Conclusion A Framework to Construct Customized Harmonic Periods for RTS 11 of of 21

12 We start from a sufficient schedulability test for τ i t C i + i 1 j=1 t T j C j We evaluate the WCRT equation at t = T i T i C i + i 1 j=1 Ti T j C j (some arithmetic operations) i 1=j T i T j N 1 γ i,j k i,j + γ i,j u j + i j=1 u j 1 K i,j = T i T j = k i,j + γ i,j ki,j N, 0 γ i,j < 1 12 of 21

13 1- The effect of periods that are not-harmonic with T i i 1=j T i T j N 1 γ i,j k i,j + γ i,j u j + i j=1 u j 1 2- The contribution of task utilization 3- The contribution of period ratio 4- The contribution of period residual Design hints: 1- Only the tasks with non-harmonic period with T i have an adverse effect on the schedulability of τ i 2- If you have a highly utilized task in the system, try to force other periods to be harmonic with its period. 3- Try to have either large period ratios or low utilization for the tasks that are not harmonic with T i. 4- Force the period residual of highly utilized tasks to be large with respect to T i. Note: γ i,j shows how close is a period to be harmonic with another period.γ i,j ~0 or γ i,j ~1 are almost harmonic. Remember: K i,j = T i T j = k i,j + γ i,j k i,j N, 0 γ i,j < 1 13 of 21

14 14 of of 21

15 What is the effect of period residual? How different schedulability tests react towards an increase in The maximum value of consecutive period ratios The period residual Schedulability Tests: Linear approximation DCT [Han97] based on harmonic periods Park 2014: verify the WCRT inequality at the latest releases of the high priority tasks t C i + i 1 j=1 t T j C j 15 of 21

16 Periods: T 1 uniform distribution from [1, 10] k i,i 1 uniform distribution from {1, 2, 3} γ i,i 1 uniform distribution from 0, γ Utilizations: uunifast [Bini05] WCETs: C i = u i T i T i = k i,i 1 + γ i,i 1 T i 1 16 of 21

17 Periods: T 1 uniform distribution from [1, 10] K i uniform distribution from 1, K max Utilizations: uunifast [Bini05] WCETs: C i = u i T i T i = K i T i 1 17 of 21

18 Periods: T 1 uniform distribution from [1, 10] k i,i 1 uniform distribution from {1, 2, 3} γ i,i 1 uniform distribution from 0, γ Utilizations: uunifast [Bini05] WCETs: C i = u i T i T i = k i,i 1 + γ i,i 1 T i 1 18 of 21

19 Related work System model and definitions Quantifying the effect of period ratios A necessary schedulability test Experiments Conclusion A Framework to Construct Customized Harmonic Periods for RTS 19 of of 21

20 We quantified the effect of period ratio We have considered the effect of Base period ratio Period residual Utilization of each task It helps designers to create RM-Friendly task sets It helps us to understand the experimental results It helps us to design fair experiments Future work Designing an efficient task partitioning algorithm based on RM-Friendly tasks Considering tasks with constrained or arbitrary deadlines Using our result to build a parameter assignment tool for systems with a set of configurations 20 20of of 21 21

21 Thank you. 21 of 21

22 Now you are behind the scene! A Framework to Construct Customized Harmonic Periods for RTS 22 of of 21

23 A necessary schedulability test More interesting experiments The proof for small period residual A Framework to Construct Customized Harmonic Periods for RTS 23 of of 21

24 Example of a feasible schedule 24 of of 21

25 Exact workload that MUST be finished before T i The upper bound of the workload that MUST be finished before T i f i,4 f i,2 f i,3 f i,1 25 of of 21

26 A necessary schedulability test More interesting experiments The proof for small period residual A Framework to Construct Customized Harmonic Periods for RTS 26 of of 21

27 To understand what we get in the experiments! Another example: Utilizations: uunifast, U=0.9, Periods: log-uniform from [1, 1000], WCET: C i = u i T i Average period ratio: 1.20 Maximum per-task utilization: of 21

28 To understand what we get in the experiments! Example: Utilizations: uunifast, U=0.9 Periods: uniform from [10, 1000] WCET: C i = u i T i So how about the effect of task utilizations? Will it not help? Maximum per-task utilization: of 21

29 Recursive step Initial Value 29 of of 21

30 30 of of 21

31 31 of of 21

32 32 of of 21

33 33 of of 21

34 34 of of 21

35 A necessary schedulability test More interesting experiments The proof for small period residual A Framework to Construct Customized Harmonic Periods for RTS 35 of of 21

36 γ i,j 0 1 i j=1 u j A i,m = min A i,j 36 of of 21

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang Department of

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

2.1 Task and Scheduling Model. 2.2 Definitions and Schedulability Guarantees

2.1 Task and Scheduling Model. 2.2 Definitions and Schedulability Guarantees Fixed-Priority Scheduling of Mixed Soft and Hard Real-Time Tasks on Multiprocessors Jian-Jia Chen, Wen-Hung Huang Zheng Dong, Cong Liu TU Dortmund University, Germany The University of Texas at Dallas,

More information

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Jan Reineke Saarland University July 4, 2013 With thanks to Jian-Jia Chen! Jan Reineke July 4, 2013 1 / 58 Task Models and Scheduling

More information

Non-Work-Conserving Scheduling of Non-Preemptive Hard Real-Time Tasks Based on Fixed Priorities

Non-Work-Conserving Scheduling of Non-Preemptive Hard Real-Time Tasks Based on Fixed Priorities Non-Work-Conserving Scheduling of Non-Preemptive Hard Real-Time Tasks Based on Fixed Priorities Mitra Nasri, Gerhard Fohler Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany {nasri,

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu February 11, 2014 Amo Guangmo Tong (UTD) February 11, 2014 1 / 26 Overview 1 Techniques for Multiprocessor Global

More information

AS computer hardware technology advances, both

AS computer hardware technology advances, both 1 Best-Harmonically-Fit Periodic Task Assignment Algorithm on Multiple Periodic Resources Chunhui Guo, Student Member, IEEE, Xiayu Hua, Student Member, IEEE, Hao Wu, Student Member, IEEE, Douglas Lautner,

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

EDF Scheduling. Giuseppe Lipari CRIStAL - Université de Lille 1. October 4, 2015

EDF Scheduling. Giuseppe Lipari  CRIStAL - Université de Lille 1. October 4, 2015 EDF Scheduling Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - Université de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Earliest Deadline Scheduling October 4, 2015 1 / 61 Earliest Deadline First

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

An Efficient Method for Assigning Harmonic Periods to Hard Real-time Tasks with Period Ranges

An Efficient Method for Assigning Harmonic Periods to Hard Real-time Tasks with Period Ranges 27th Euromicro Conference on Real-Time Systems An Efficient Method for Assigning Harmonic Periods to Hard Real-time Tasks with Period Ranges Mitra Nasri and Gerhard Fohler Chair of Real-time Systems, Technische

More information

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment C. Liu and J. Layland Journal of the ACM, 20(1):46--61, January 1973. 2 Contents 1. Introduction and Background 2. The Environment

More information

A Note on Modeling Self-Suspending Time as Blocking Time in Real-Time Systems

A Note on Modeling Self-Suspending Time as Blocking Time in Real-Time Systems A Note on Modeling Self-Suspending Time as Blocking Time in Real-Time Systems Jian-Jia Chen 1, Wen-Hung Huang 1, and Geoffrey Nelissen 2 1 TU Dortmund University, Germany Email: jian-jia.chen@tu-dortmund.de,

More information

Lecture: Workload Models (Advanced Topic)

Lecture: Workload Models (Advanced Topic) Lecture: Workload Models (Advanced Topic) Real-Time Systems, HT11 Martin Stigge 28. September 2011 Martin Stigge Workload Models 28. September 2011 1 System

More information

Improved Priority Assignment for the Abort-and-Restart (AR) Model

Improved Priority Assignment for the Abort-and-Restart (AR) Model Improved Priority Assignment for the Abort-and-Restart (AR) Model H.C. Wong and A. Burns Department of Computer Science, University of York, UK. February 1, 2013 Abstract This paper addresses the scheduling

More information

Real-Time Workload Models with Efficient Analysis

Real-Time Workload Models with Efficient Analysis Real-Time Workload Models with Efficient Analysis Advanced Course, 3 Lectures, September 2014 Martin Stigge Uppsala University, Sweden Fahrplan 1 DRT Tasks in the Model Hierarchy Liu and Layland and Sporadic

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES Department for Embedded Systems/Real-Time Systems, University of Ulm {name.surname}@informatik.uni-ulm.de Abstract:

More information

Fixed Priority Scheduling

Fixed Priority Scheduling Fixed Priority Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa January 13, 2011 Outline 1 Fixed priority 2 Priority assignment 3 Scheduling analysis 4 A necessary

More information

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling I: Partitioned Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 22/23, June, 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 47 Outline Introduction to Multiprocessor

More information

MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources

MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with Shared Resources Wen-Hung Huang, Jian-Jia Chen Department of Computer Science TU Dortmund University, Germany wen-hung.huang@tu-dortmund.de

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas January 24, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas January 24, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu January 24, 2014 Amo Guangmo Tong (UTD) January 24, 2014 1 / 30 Overview 1 Tardiness Bounds under Global EDF Scheduling

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors Technical Report No. 2009-7 Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors RISAT MAHMUD PATHAN JAN JONSSON Department of Computer Science and Engineering CHALMERS UNIVERSITY

More information

Exact speedup factors and sub-optimality for non-preemptive scheduling

Exact speedup factors and sub-optimality for non-preemptive scheduling Real-Time Syst (2018) 54:208 246 https://doi.org/10.1007/s11241-017-9294-3 Exact speedup factors and sub-optimality for non-preemptive scheduling Robert I. Davis 1 Abhilash Thekkilakattil 2 Oliver Gettings

More information

arxiv: v3 [cs.ds] 23 Sep 2016

arxiv: v3 [cs.ds] 23 Sep 2016 Evaluate and Compare Two Utilization-Based Schedulability-Test Framewors for Real-Time Systems arxiv:1505.02155v3 [cs.ds] 23 Sep 2016 Jian-Jia Chen and Wen-Hung Huang Department of Informatics TU Dortmund

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

arxiv: v1 [cs.os] 28 Feb 2018

arxiv: v1 [cs.os] 28 Feb 2018 Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Tas Systems Jian-Jia Chen 1, Georg von der Brüggen 2, and Nilas Ueter 3 1 TU Dortmund University, Germany jian-jian.chen@tu-dortmund.de

More information

Multi-Core Fixed-Priority Scheduling of Real-Time Tasks with Statistical Deadline Guarantee

Multi-Core Fixed-Priority Scheduling of Real-Time Tasks with Statistical Deadline Guarantee Multi-Core Fixed-Priority Scheduling of Real-Time Tasks with Statistical Deadline Guarantee Tianyi Wang 1, Linwei Niu 2, Shaolei Ren 1, and Gang Quan 1 1 Department of Electrical&Computer Engineering,

More information

CEC 450 Real-Time Systems

CEC 450 Real-Time Systems CEC 450 Real-Time Systems Lecture 3 Real-Time Services Part 2 (Rate Monotonic Theory - Policy and Feasibility for RT Services) September 7, 2018 Sam Siewert Quick Review Service Utility RM Policy, Feasibility,

More information

Deadline-driven scheduling

Deadline-driven scheduling Deadline-driven scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks

Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat Mälardalen Real-Time Research Center, Mälardalen University,

More information

A New Task Model and Utilization Bound for Uniform Multiprocessors

A New Task Model and Utilization Bound for Uniform Multiprocessors A New Task Model and Utilization Bound for Uniform Multiprocessors Shelby Funk Department of Computer Science, The University of Georgia Email: shelby@cs.uga.edu Abstract This paper introduces a new model

More information

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs cs.unc.edu Steve Goddard Computer Science & Engineering University of Nebraska Ð Lincoln goddard@cse cse.unl.edu

More information

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators Sandeep D souza and Ragunathan (Raj) Rajkumar Carnegie Mellon University High (Energy) Cost of Accelerators Modern-day

More information

Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling

Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling Gang Yao, Giorgio Buttazzo and Marko Bertogna Scuola Superiore Sant Anna, Pisa, Italy {g.yao, g.buttazzo, m.bertogna}@sssup.it

More information

arxiv: v1 [cs.os] 21 May 2008

arxiv: v1 [cs.os] 21 May 2008 Integrating job parallelism in real-time scheduling theory Sébastien Collette Liliana Cucu Joël Goossens arxiv:0805.3237v1 [cs.os] 21 May 2008 Abstract We investigate the global scheduling of sporadic,

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions Common approaches 3 3. Scheduling issues Priority-driven (event-driven) scheduling This class of algorithms is greedy They never leave available processing resources unutilized An available resource may

More information

Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems

Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems Online Scheduling Switch for Maintaining Data Freshness in Flexible Real-Time Systems Song Han 1 Deji Chen 2 Ming Xiong 3 Aloysius K. Mok 1 1 The University of Texas at Austin 2 Emerson Process Management

More information

Bursty-Interference Analysis Techniques for. Analyzing Complex Real-Time Task Models

Bursty-Interference Analysis Techniques for. Analyzing Complex Real-Time Task Models Bursty-Interference Analysis Techniques for lemma 3 Analyzing Complex Real- Task Models Cong Liu Department of Computer Science The University of Texas at Dallas Abstract Due to the recent trend towards

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Schedulability Analysis for the Abort-and-Restart Model

Schedulability Analysis for the Abort-and-Restart Model Schedulability Analysis for the Abort-and-Restart Model Hing Choi Wong Doctor of Philosophy University of York Computer Science December 2014 Abstract In real-time systems, a schedulable task-set guarantees

More information

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous Kecheng Yang and James H. Anderson Department of Computer Science, University of North Carolina

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Complexity of Uniprocessor Scheduling Analysis

Complexity of Uniprocessor Scheduling Analysis Complexity of Uniprocessor Scheduling Analysis Pontus Ekberg and Wang Yi Abstract When designing a real-time system, a schedulability problem must be solved in order to show that it will meet all timing

More information

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni Real Time Operating Systems and Middleware Luca Abeni luca.abeni@unitn.it Definitions Algorithm logical procedure used to solve a problem Program formal description of an algorithm, using a programming

More information

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling Real-Time Systems Lecture 4 Scheduling basics Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling 1 Last lecture (3) Real-time kernels The task states States and transition

More information

Schedulability Analysis for the Abort-and-Restart (AR) Model

Schedulability Analysis for the Abort-and-Restart (AR) Model Schedulability Analysis for the Abort-and-Restart (AR) Model ABSTRACT H.C. Wong Real-Time Systems Research Group, Department of Computer Science, University of York, UK. hw638@york.ac.uk This paper addresses

More information

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems

The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems The Concurrent Consideration of Uncertainty in WCETs and Processor Speeds in Mixed Criticality Systems Zhishan Guo and Sanjoy Baruah Department of Computer Science University of North Carolina at Chapel

More information

Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Multi-core Real-Time Scheduling for Generalized Parallel Task Models Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-011-45 011 Multi-core Real-Time

More information

Real-time scheduling of sporadic task systems when the number of distinct task types is small

Real-time scheduling of sporadic task systems when the number of distinct task types is small Real-time scheduling of sporadic task systems when the number of distinct task types is small Sanjoy Baruah Nathan Fisher Abstract In some real-time application systems, there are only a few distinct kinds

More information

Non-preemptive Scheduling of Distance Constrained Tasks Subject to Minimizing Processor Load

Non-preemptive Scheduling of Distance Constrained Tasks Subject to Minimizing Processor Load Non-preemptive Scheduling of Distance Constrained Tasks Subject to Minimizing Processor Load Klaus H. Ecker Ohio University, Athens, OH, USA, ecker@ohio.edu Alexander Hasenfuss Clausthal University of

More information

Rate-monotonic scheduling on uniform multiprocessors

Rate-monotonic scheduling on uniform multiprocessors Rate-monotonic scheduling on uniform multiprocessors Sanjoy K. Baruah The University of North Carolina at Chapel Hill Email: baruah@cs.unc.edu Joël Goossens Université Libre de Bruxelles Email: joel.goossens@ulb.ac.be

More information

arxiv: v1 [cs.os] 25 May 2011

arxiv: v1 [cs.os] 25 May 2011 Scheduling of Hard Real-Time Multi-Thread Periodic Tasks arxiv:1105.5080v1 [cs.os] 25 May 2011 Irina Lupu Joël Goossens PARTS Research Center Université libre de Bruxelles (U.L.B.) CP 212, 50 av. F.D.

More information

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate

Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Uniprocessor Mixed-Criticality Scheduling with Graceful Degradation by Completion Rate Zhishan Guo 1, Kecheng Yang 2, Sudharsan Vaidhun 1, Samsil Arefin 3, Sajal K. Das 3, Haoyi Xiong 4 1 Department of

More information

PASS: Priority Assignment of Real-Time Tasks with Dynamic Suspending Behavior under Fixed-Priority Scheduling

PASS: Priority Assignment of Real-Time Tasks with Dynamic Suspending Behavior under Fixed-Priority Scheduling T E C H N I C A L R E P O RT S I N C O M P U T E R S C I E N C E Technische Universität Dortmund PASS: Priority Assignment of Real-Time Tasks with Dynamic Suspending Behavior under Fixed-Priority Scheduling

More information

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling CSCE 990: Real-Time Systems Static-Priority Scheduling Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtimesystems Static-priority Scheduling Real-Time Systems Static-Priority

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems Abstract A polynomial-time algorithm is presented for partitioning a collection of sporadic tasks among the processors of an identical

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling II: Global Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 28, June, 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 42 Global Scheduling We will only focus on identical

More information

DESH: overhead reduction algorithms for deferrable scheduling

DESH: overhead reduction algorithms for deferrable scheduling DOI 10.1007/s11241-009-9087-4 DESH: overhead reduction algorithms for deferrable scheduling Ming Xiong Song Han Deji Chen Kam-Yiu Lam Shan Feng Springer Science+Business Media, LLC 2009 Abstract Although

More information

Partitioned scheduling of sporadic task systems: an ILP-based approach

Partitioned scheduling of sporadic task systems: an ILP-based approach Partitioned scheduling of sporadic task systems: an ILP-based approach Sanjoy K. Baruah The University of North Carolina Chapel Hill, NC. USA Enrico Bini Scuola Superiore Santa Anna Pisa, Italy. Abstract

More information

On-line scheduling of periodic tasks in RT OS

On-line scheduling of periodic tasks in RT OS On-line scheduling of periodic tasks in RT OS Even if RT OS is used, it is needed to set up the task priority. The scheduling problem is solved on two levels: fixed priority assignment by RMS dynamic scheduling

More information

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Alex F. Mills Department of Statistics and Operations Research University of North

More information

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities Sanjoy Baruah The University of North Carolina baruah@cs.unc.edu Björn Brandenburg Max Planck Institute

More information

Schedulability analysis of global Deadline-Monotonic scheduling

Schedulability analysis of global Deadline-Monotonic scheduling Schedulability analysis of global Deadline-Monotonic scheduling Sanjoy Baruah Abstract The multiprocessor Deadline-Monotonic (DM) scheduling of sporadic task systems is studied. A new sufficient schedulability

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Dependency Graph Approach for Multiprocessor Real-Time Synchronization. TU Dortmund, Germany

Dependency Graph Approach for Multiprocessor Real-Time Synchronization. TU Dortmund, Germany Dependency Graph Approach for Multiprocessor Real-Time Synchronization Jian-Jia Chen, Georg von der Bru ggen, Junjie Shi, and Niklas Ueter TU Dortmund, Germany 14,12,2018 at RTSS Jian-Jia Chen 1 / 21 Multiprocessor

More information

Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors

Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors Consistent * Complete * Well Documented * Easy to Reuse * Scheduling mixed-criticality systems to guarantee some service under all non-erroneous behaviors Artifact * AE * Evaluated * ECRTS * Sanjoy Baruah

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

2 Lecture Defining Optimization with Equality Constraints

2 Lecture Defining Optimization with Equality Constraints 2 Lecture 2 2.1 Defining Optimization with Equality Constraints So far we have been concentrating on an arbitrary set. Because of this, we could of course incorporate constrains directly into the set.

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources

Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Design and Analysis of Time-Critical Systems Response-time Analysis with a Focus on Shared Resources Jan Reineke @ saarland university ACACES Summer School 2017 Fiuggi, Italy computer science Fixed-Priority

More information

The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities

The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities The Partitioned Scheduling of Sporadic Tasks According to Static-Priorities Nathan Fisher Sanjoy Baruah The University of North Carolina at Chapel Hill Department of Computer Science, CB-3175 Chapel Hill,

More information

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts.

TDDI04, K. Arvidsson, IDA, Linköpings universitet CPU Scheduling. Overview: CPU Scheduling. [SGG7] Chapter 5. Basic Concepts. TDDI4 Concurrent Programming, Operating Systems, and Real-time Operating Systems CPU Scheduling Overview: CPU Scheduling CPU bursts and I/O bursts Scheduling Criteria Scheduling Algorithms Multiprocessor

More information

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption

Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption 12 Supplement of Improvement of Real-Time Multi-Core Schedulability with Forced Non- Preemption Jinkyu Lee, Department of Computer Science and Engineering, Sungkyunkwan University, South Korea. Kang G.

More information

Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm

Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm Failure Tolerance of Multicore Real-Time Systems scheduled by a Pfair Algorithm Yves MOUAFO Supervisors A. CHOQUET-GENIET, G. LARGETEAU-SKAPIN OUTLINES 2 1. Context and Problematic 2. State of the art

More information

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a Multiprocessor Tardiness ounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract This paper

More information

Exact Scheduling Analysis of Non-Accumulatively Monotonic Multiframe Tasks

Exact Scheduling Analysis of Non-Accumulatively Monotonic Multiframe Tasks Exact Scheduling Analysis of Non-Accumulatively Monotonic Multiframe Tasks A. Zuhily, Alan Burns To cite this version: A. Zuhily, Alan Burns. Exact Scheduling Analysis of Non-Accumulatively Monotonic Multiframe

More information

Lecture 2: Scheduling on Parallel Machines

Lecture 2: Scheduling on Parallel Machines Lecture 2: Scheduling on Parallel Machines Loris Marchal October 17, 2012 Parallel environment alpha in Graham s notation): P parallel identical Q uniform machines: each machine has a given speed speed

More information

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Lecture Outline The rate monotonic algorithm (cont d) Maximum utilisation test The deadline monotonic algorithm The earliest

More information

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 Koen Langendoen Marco Zuniga Question: 1 2 3 4 5 Total Points:

More information

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy Real-Time systems System Model Giuseppe Lipari Scuola Superiore Sant Anna Pisa -Italy Corso di Sistemi in tempo reale Laurea Specialistica in Ingegneria dell Informazione Università di Pisa p. 1/?? Task

More information

Tardiness Bounds for FIFO Scheduling on Multiprocessors

Tardiness Bounds for FIFO Scheduling on Multiprocessors Tardiness Bounds for FIFO Scheduling on Multiprocessors Hennadiy Leontyev and James H. Anderson Department of Computer Science, University of North Carolina at Chapel Hill leontyev@cs.unc.edu, anderson@cs.unc.edu

More information

A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation

A PTAS for Static Priority Real-Time Scheduling with Resource Augmentation A PAS for Static Priority Real-ime Scheduling with Resource Augmentation echnical Report Friedrich Eisenbrand and homas Rothvoß Institute of Mathematics EPFL, Lausanne, Switzerland {friedrich.eisenbrand,thomas.rothvoss}@epfl.ch

More information

Lec. 7: Real-Time Scheduling

Lec. 7: Real-Time Scheduling Lec. 7: Real-Time Scheduling Part 1: Fixed Priority Assignment Vijay Raghunathan ECE568/CS590/ECE495/CS490 Spring 2011 Reading List: RM Scheduling 2 [Balarin98] F. Balarin, L. Lavagno, P. Murthy, and A.

More information

Feasibility of Periodic Scan Schedules

Feasibility of Periodic Scan Schedules Feasibility of Periodic Scan Schedules Ants PI Meeting, Seattle, May 2000 Bruno Dutertre System Design Laboratory SRI International e-mail: bruno@sdl.sri.com 1 Scan Scheduling Scan scheduling: Given n

More information

Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling

Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling Dorin Maxim LORIA - University of Lorraine, Nancy, France dorin.maxim@loria.fr Liliana Cucu-Grosjean Inria,

More information

Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling

Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling Probabilistic Analysis for Mixed Criticality Systems using Fixed Priority Preemptive Scheduling Dorin Maxim LORIA - University of Lorraine, Nancy, France dorin.maxim@loria.fr Liliana Cucu-Grosjean Inria,

More information

1 Ordinary Load Balancing

1 Ordinary Load Balancing Comp 260: Advanced Algorithms Prof. Lenore Cowen Tufts University, Spring 208 Scribe: Emily Davis Lecture 8: Scheduling Ordinary Load Balancing Suppose we have a set of jobs each with their own finite

More information

A Response-Time Analysis for Non-preemptive Job Sets under Global Scheduling

A Response-Time Analysis for Non-preemptive Job Sets under Global Scheduling A Response-Time Analysis for Non-preemptive Job Sets under Global Scheduling Mitra Nasri 1, Geoffrey Nelissen 2, and Björn B. Brandenburg 1 1 Max Planck Institute for Software Systems (MPI-SWS), Germany

More information