Fuzzy derivations KU-ideals on KU-algebras BY

Size: px
Start display at page:

Download "Fuzzy derivations KU-ideals on KU-algebras BY"

Transcription

1 Fu ervaons KU-eals on KU-algebras BY Sam M.Mosaa, Ahme Ab-elaem 2 sammosaa@ahoo.com ahmeabelaem88@ahoo.com,2deparmen o mahemacs -Facul o Eucaon -An Shams Unvers Ro, Caro, Egp Absrac. In hs manuscrp, we nrouce a new concep, whch s calle u le rgh ervaons KU- eals n KU-algebras. We sae an prove some heorems abou unamenal properes o. Moreover, we gve he conceps o he mage an he pre-mage o u le rgh ervaons KU-eals uner homomorphsm o KU- algebras an nvesgae some s properes. Furher, we have prove ha ever he mage an he pre-mage o u le rgh ervaons KU-eals uner homomorphsm o KU- algebras are u le rgh ervaons KU-eals. Furhermore, we gve he concep o he Caresan prouc o u le rgh ervaons KU - eals n Caresan prouc o KU algebras. AMS Subjec Classcaon: 3G25, 6F35 Kewors. KU-algebras,u le rgh ervaons o KU-eals, he mage an he per- mage o u le rgh ervaons KU eals, he Caresan prouc o u le rgh ervaons KU eals. Corresponng Auhor : Sam M. Mosaa sammosaa@ahoo.com. Inroucon As s well known, BCK an BCI-algebras are wo classes o algebras o logc. The were nrouce b Ima an Isek [,,2] an have been eensvel nvesgae b man researchers. I s known ha he class o BCK-algebras s a proper sub class o he BCI-algebras.The class o all BCK-algebras s a quasvare. Is ek pose an neresng problem solve b Wro nsk [24] wheher he class o BCK-algebras s a vare. In connecon wh hs problem, Komor [5] nrouce a noon o BCC-algebras, an Duek [7] reene he noon o BCC-algebras b usng a ual orm o he ornar enon n he sense o Komor. Duek an Zhang [8] nrouce a new noon o eals n BCCalgebras an escrbe connecons beween such eals an congruences.

2 C.Prabpaak an U.Leerawa [22 ], [23 ] nrouce a new algebrac srucure whch s calle KU - algebra. The gave he concep o homomorphsms o KUalgebras an nvesgae some relae properes. Several auhors [2,3,5,6,9,4] have sue ervaons n rngs an near rngs. Jun an Xn [3] apple he noon o ervaons n rng an near-rng heor o BCI-algebras, an he also nrouce a new concep calle a regular ervaon n BCI -algebras. The nvesgae some o s properes, ene a -ervaon eal an gave conons or an eal o be -ervaon. Laer, Hama an Al-Shehr [], ene a le ervaon n BCI-algebras an nvesgae a regular le ervaon. Zhan an Lu [27 ] sue -ervaons n BCI-algebras an prove some resuls. G. Muhun el [2,2] nrouce he noon o, -ervaon n a BCIalgebra an nvesgae relae properes. The prove a conon or a, - ervaon o be regular. The also nrouce he conceps o a, - nvaran, -ervaon an α-eal, an hen he nvesgae her relaons. Furhermore, he obane some resuls on regular, - ervaons. Moreover, he sue he noon o -ervaons on BCI-algebras an obane some o s relae properes. Furher, he characere he noon o p-semsmple BCI-algebra X b usng he noon o -ervaon. Laer, Mosaa e al [8,9], nrouce he noons o, r - r, -ervaon o a KU-algebra an some relae properes are eplore. The concep o u ses was nrouce b Zaeh [26]. In 99, X [25] apple he concep o u ses o BCI, BCK, MValgebras.Snce s ncepon, he heor o u ses, eal heor an s ucaon has evelope n man recons an s nng applcaons n a we vare o els. Mosaa e al, n 2[7] nrouce he noon o u KU-eals o KU-algebras an hen he nvesgae several basc properes whch are relae o u KU-eals. In hs paper, we nrouce he noon o u le rgh ervaons KU- eals n KU - algebras. The homomorphc mage premage o u le rgh - ervaons KU- eals n KU - algebras uner homomorprhsm o a KU-algebras are scusse. Man relae resuls have been erve. 2

3 2. Prelmnares In hs secon, we recall some basc enons an resuls ha are neee or our work. Denon 2. [22,23 ] Le X be a se wh a bnar operaon an a consan. X,, s calle KU-algebra he ollowng aoms hol :,, X : KU [ ] KU 2 KU 3 KU 4 mples Dene a bnar relaon b :, we can prove ha X, s a parall orere se. Throughou hs arcle, X wll enoe a KU-algebra unless oherwse menone Corollar 2.2 [7,22] In KU-algebra he ollowng enes are rue or all,, X : I mples ha v v [ ] Denon 2.3 [22,23] A subse S o KU-algebra X s calle sub algebra o X S, whenever, S Denon 2.4 [22,23 ] Anon emp subse A o KU-algebra X s calle eal o X s sase he ollowng conons: A A, A mples A, X. 3

4 Denon 2.5 [7] A non - emp subse A o a KU-algebra X s calle an KU eal o X sases he ollowng conons : A, 2 * * A, A mples * A, or all,, X Denon 2.6[7] Le X be a KU - algebra, a u se µ n X s calle u sub-algebra sases: S µ µ, S 2 µ {µ *, µ } or all, X. Denon 2.7 [7] Le X be a KU-algebra, a u se µ n X s calle a u KU-eal o X sases he ollowng conons: F µ µ, F 2 µ * mn {µ * *, µ }. Denon 2.8 For elemens an o KU-algebra X,,, we enoe. Denon 2.9[8] Le X be a KU-algebra. A sel map : X X s a le rgh ervaon brel,, r -ervaon o X sases he en, X I sases he en, X s calle rgh-le ervaon brel, r, -ervaon o X. Moreover, s boh, r an r, ervaon hen s calle a ervaon o X. Denon 2.[8] A ervaon o KU-algebra s sa o be regular. 4

5 Lemma 2.[8] A ervaon o KU-algebra X s regular. Eample 2.2 [8] Le X = {,,2,3. 4 } be a se n whch he operaon s ene as ollows: Usng he algorhms n Appen A, we can prove ha X, *, s a KU-algebra. Dene a map : X X b 4,,2,3 4 Then s eas o show ha s boh a, r an r, -ervaon o X. Eample 2.2. Le on bnar relaon on be he se o all posve negers an. The operaon * s ene as ollows: *=,where " " he mnus operaon.dene a b :. Then,*, X s a KU-algebra. We ene a map : X X b = or all.then, X,we have *= =.I, * = = =+ an * = = =, bu * * =+ * * = [ + ]= = + II From I an II, s no, r ervaon o X. On oher han 5

6 *= =, *= = =+, bu * * = [ ** *]* *= [ ] =. III From I an III, s r, ervaon o X. Hence r, -ervaon an, r ervaon are no conce. Proposon 2.3[8] Le X be a KU-algebra wh paral orer, an le be a ervaon o X. Then he ollowng hol, X :... v. v { X } s a sub algebra o X. Denon 2.4 [8] Le X be a KU-algebra an be a ervaon o X. Denoe F X { X : }. Proposon 2.5[8] Le X be a KU-algebra an be a ervaon o X.Then F X s a sub algebra o X. 6

7 3. Fu ervaons KU- eals o KU-algebras In hs secon, we wll scuss an nvesgae a new noon calle u- le ervaons KU - eals o KU - algebras an su several basc properes whch are relae o u le ervaons KU - eals. Denon 3. Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle le ervaons KU eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X Denon 3.2 Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle rgh ervaons KU eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X. Denon 3.3 Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle ervaons KU -eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X Denon 3.4 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u le ervaons KU-ealbrel, F, -ervaon o X sases he ollowng conons: F µ µ, FL 2 µ * mn{ µ**, µ }. 7

8 Denon 3.5 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u rgh ervaons KU-ealbrel, F, r o X sases he ollowng conons: F µ µ. -ervaon FR 2 µ * mn { µ**, µ }. Denon 3.6 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u ervaons KU-eal, sases he ollowng conons F µ µ. F 2 µ * mn{ µ* *, µ }. Remark3.7 I I s e, he enons 3., 3.2,3.3 gves he enon KU-eal. II I s e, he enons 3.4,3.5, 3.6 gves he enon u KU-eal. Eample 3.8 Le X = {,,2,3. 4 } be a se n whch he operaon s ene as ollows: Usng he algorhms n Appen A, we can prove ha X, *, s a KU-algebra. * Dene a sel map : X X b 8

9 4,,2,3 4. Dene a u se µ : X [,],b µ =, µ =µ 2 =, µ 3 = µ 4 = 2, where,, 2 [,] wh > > 2.Roune calculaons gve ha µ s a u le rgh- ervaons KU- eal o KU- algebra X. Lemma 3.9 Le µ be a u le ervaons KU - eal o KU - algebra X, he nequal, * hols n X, hen µ mn {µ, µ }. Proo. Assume ha he nequal * hols n X, hen * * =, * * =, snce rom Proposon 2.3 an bfl 2, we have µ * mn{ µ**,µ }= mn{ µ, µ }= µ Pu =, we have µ * = µ mn{ µ*,µ }, bu µ * mn {µ * *, µ } = mn {µ * *, µ } =mn {µ, µ } = µ From,, we ge µ mn {µ, µ }, hs complees he proo. Lemma 3. I µ s a u le ervaons KU - eal o KU - algebra X an, hen μ μ. Proo. I,hen * =, *= snce rom Proposon 2.3 hs ogeher wh * = an μ μ,we ge µ * = µ mn {µ * *, µ } = mn {µ *, µ } = = mn {µ,µ } = µ. Proposon 3. The nersecon o an se o u le ervaons KU - eals o KU algebra X s also u le ervaons KU - eal. Proo. le be a aml o u le ervaons KU - eals o KU- algebra X, hen or an,, X, n n an 9

10 mn * n * nmn * *, n * *,n mn * *,. Ths complees he proo. Lemma 3.2 The nersecon o an se o u rgh ervaons KU - eals o KU algebra X s also u rgh ervaons KU - eal. proo. Clear Theorem3.3 Le µ be a u se n X hen µ s a u le ervaons KU- eal o X an onl sases : For all α [,],U μ, α φ mples Uμ,α s KU- eal o X A, where U μ, α = { X / μ α}. Proo. Assume ha µ s a u le ervaons KU- eal o X, le α [, ] be such ha U μ, α φ, an, X such ha U μ, α, hen µ α an so b FL 2, µ * = µ mn { µ * *, µ }= mn{µ *, µ } = mn {µ, µ } = α, hence U μ, α. Le * * U μ, α, U μ, α, I ollows romfl 2 ha µ * mn {µ * *, µ } = α, so ha * U µ, α. Hence U μ, α s KU - eal o X. Conversel, suppose ha µ sases A, le,, X be such ha µ * < mn {µ * *, µ },akng β = /2 {µ * + mn {µ * *, µ }, we have β [,] an µ * < β < mn {μ * *, µ }, ollows ha * * U μ, β an * U μ, β, hs s a conracon an hereore µ s a u le ervaons KU - eal o X. Theorem3.4 Le µ be a u se n X hen µ s a u rgh ervaons KU- eal o X an onl sases : For all α [,],U μ, α φ mples Uμ,α s KU- eal o X. Proposon 3.5 I µ s a u le ervaons KU - eal o X, hen µ * * µ

11 proo. Takng = * n FL2 an usng ku2 an F, we ge µ * * mn { µ * * *, µ } = mn {µ * * *, µ } = mn {µ * *, µ }= mn {µ, µ } = µ. Denon3.6 Le µ be a u le ervaons KU - eal o KU - algebra X,.he KU - eals, [,] are calle level KU - eal o µ. Corollar3.7 Le I be an KU - eal o KU - algebra X, hen or an e number n an open nerval,, here es a u le ervaons KU eal µ o X such ha = I. proo. The proo s smlar he corollar 4.4 [7]. 4 Image Pre-mage o u ervaons KU-eals uner homomorphsm In hs secon, we nrouce he conceps o he mage an he pre-mage o u le ervaons KU-eals n KU-algebras uner homomorphsm. Denon 4. Le be a mappng rom he se X o a se Y. I s a u subse o X, hen he u subse β o Y ene b sup, { X, } oherwse s sa o be he mage o uner. Smlarl β s a u subse o Y, hen he u subse µ = β n X.e he u subse ene b µ = β or all X s calle he prmage o β uner.

12 Theorem 4.2 An ono homomorphc premage o a u le ervaons KU - eal s also a u le ervaons KU - eal. Proo.Le : X X` be an ono homomorphsm o KU - algebras, β a u le ervaons KU - eal o X` an µ he premage o β uner, hen β = µ, or all X. Le X, hen µ = β β = µ. Now le,, X, hen µ * = β * mn {β *` *`, β } = mn { β * *,β }= mn {µ * *, µ }. The proo s complee. Denon 4.3 [4 ] A u subse µ o X has sup proper or an subse T o X, here es T such ha, SUP. T Theorem 4.4 Le : X Y be a homomorphsm beween KU - algebras X an Y. For ever u le ervaons KU - eal µ n X, µ s a u le ervaons KU - eal o Y. Proo. B enon sup or all Y an sup.we have o prove ha mn{, }, `, `, `Y. Le : X Y be an ono a homomorphsm o KU - algebras, µ a u le ervaons KU - eal o X wh sup proper an β he mage o μ uner, snce µ s a u le ervaons KU - eal o X, we have µ µ or all X. Noe ha `, where, ` are he ero o X an Y respecvel 2

13 3 Thus,, sup or all X, whch mples ha, sup or an Y. For an Y,,,le,, be Such ha sup, sup \ an sup } sup } {. Then sup }, mn{ =, sup mn sup \ = }, mn{. Hence β s a u le ervaons KU-eal o Y. Theorem 4.5 An ono homomorphc premage o a u rgh ervaons KU - eal s also a u rgh ervaons KU - eal Theorem 4.6 Le : X Y be a homomorphsm beween KU - algebras X an Y. For ever u rgh ervaons KU - eal µ n X, µ s a u rgh ervaons KU - eal o Y. proo. Clear

14 5. Caresan prouc o u le ervaons KU-eals Denon 5.[4] A u µ s calle a u relaon on an se S, µ s a u subse µ : S S [,]. Denon 5.2 [4] I µ s a u relaon on a se S an β s a u subse o S, hen μ s a u relaon on β μ, mn {β, β },, S. Denon 5.3 [4] Le µ an β be u subse o a se S, he Caresan prouc o μ an β s ene b μ β, = mn {μ, β },, S. Lemma 5.4[4] Le μ an β be u subse o a se S,hen s a u relaon on S. = or all [,]. Denon 5.5 I µ s a u le ervaons relaon on a se S an β s a u le ervaons subse o S, hen µ s a u le ervaons relaon on β µ, mn {β, β },, S. Denon 5.6 [4] Le µ an β be u le ervaons subse o a se S, he Caresan prouc o µ an β s ene b µ β, = mn {µ, β },, S Lemma 5.7[4] Le µ an β be u subse o a se S,hen s a u relaon on S, = or all [,]. 4

15 Denon 5.8 I β s a u le ervaons subse o a se S, he sronges u relaon on S, ha s a u ervaons relaon on β s µ β gven b µ β, = mn {β, β },, S. Lemma 5.9 For a gven u le ervaons subse S, le µ β be he sronges u le ervaons relaon on S,hen or [,], we have µ β = β β. Proposon 5. For a gven u subse β o KU - algebra X, le µ β be he sronges le u ervaons relaon on X. I µ β s a u le ervaons KU - eal o X X, hen β β = β or all X. Proo. Snce µ β s a u le ervaons KU- eal o X X, ollows rom F ha µ β, = mn {β, β } β, = mn {β, β }, where, X X hen β β = β. Remark5. Le X an Y be KU- algebras, we ene * on X Y b : For ever,, u, vx Y,, * u, v = * u, * v, hen clearl X Y, *,, s a KU- algebra. Theorem 5.2 Le µ an β be a u le ervaons KU- eals o KU - algebra X,hen µ β s a u le ervaons KU-eal o X X. Proo : or an, X X,we have, µ β, = mn {µ, β }= mn {µ, β} mn {µ, β } = µ β,. Now le, 2,, 2,, 2 X X, hen, µ β *, 2 * 2 = mn {µ,, β 2, 2 } mn{mn {µ * *, µ }}, mn {β 2 * 2 * 2, β 2 }} 5

16 = mn{mn{µ * *, µ 2 * 2 * 2 }, mn{µ, β 2 }} = mn{µ β * *, 2 * 2 * 2, µ β, 2 }. Hence µ β s a u le ervaons KU- eal o X X. Analogous o heorem 3.2 [ 6], we have a smlar resuls or u le ervaons KUeal, whch can be prove n smlar manner, we sae he resuls whou proo. Theorem 5.3 Le µ an β be a u le ervaons subse o KU-algebra X,such ha µ β s a u le ervaons KU-eal o X X, hen Eher µ µ or β β or all X, I µ µ or all X, hen eher µ β or β β, I β β or all X, hen eher µ µ or β µ, v Eher µ or β s a u le ervaons KU- eal o X. Theorem 5.4 Le β be a u subse o KU- algebra X an le µ β be he sronges u le ervaons relaon on X, hen β s a u le ervaons KU - eal o X an onl µ β s a u le ervaons KU- eal o X X. proo : Assume ha β s a u le ervaons KU- eal X, we noe rom F ha : µ β, = mn {β, β } =mn {β, β } mn {β, β } = µ β,. Now, or an, 2,, 2,, 2 X X, we have rom F 2 : µ β *, 2 * 2 = mn {β *, β 2 * 2 } mn {mn{β * *, β }, mn {β 2 * 2 * 2, β 2 }} = mn{mn{β * *, β 2 * 2 * 2 }, mn {β, β 2 }} = mn {µ β * *, 2 * 2 * 2, µ β, 2 }. 6

17 Hence µ β s a u le ervaons KU - eal o X X. Conversel. For all, X X, we have Mn {β, β } = µ β, = mn {β, β }. I ollows ha β β or all X, whch prove F. Now, le, 2,, 2,, 2 X X, hen mn {β *, β 2 * 2 } = µ β *, 2 * 2 mn {µ β, 2 *, 2 *, 2, µ β, 2 } = mn {µ β * *, 2 * 2 * 2, µ β, 2 } = mn {mn {β * *, β 2 * 2 * 2 }, mn {β, β 2 }} = mn {mn {β * *, β }, mn {β 2 * 2 * 2, β 2 }} In parcular, we ake 2 = 2 = 2 =, hen, β * mn { β * *, β } Ths prove FL 2 an complees he proo. Concluson Dervaon s a ver neresng an mporan area o research n he heor o algebrac srucures n mahemacs. In he presen paper, he noon o u le ervaons KU - eal n KU-algebra are nrouce an nvesgae he useul properes o u le ervaons KU - eals n KU-algebras. In our opnon, hese enons an man resuls can be smlarl eene o some oher algebrac ssems such as BCI-algebra, BCH-algebra,Hlber algebra,bf-algebra -Jalgebra,WS-algebra,CI-algebra, SU-algebra,BCL-algebra,BP-algebra,Coeer algebra,bo-algebra,pu- algebras an so orh. The man purpose o our uure work s o nvesgae: The nerval value, bpolar an nuonsc u le ervaons KU - eal n KUalgebra. 2 To conser he cubc srucure o le ervaons KU - eal n KU-algebra. We hope he u le ervaons KU - eals n KU-algebras, have applcaons n eren branches o heorecal phscs an compuer scence. 7

18 Algorhm or KU-algebras Inpu X : se, : bnar operaon Oupu X s a KU-algebra or no Begn I X hen go o.; En I I X hen go o.; En I Sop: =alse; : ; Whle X an no Sop o I hen Sop: = rue; En I j : Whle j X an no Sop o I hen j Sop: = rue; En I En I k : Whle k X an no Sop o I hen j j k k 8

19 Sop: = rue; En I En Whle En Whle En Whle I Sop hen. Oupu X s no a KU-algebra Else Oupu X s a KU-algebra En I En. Reerences [] H. A. S. Abujabal an N. O. Al-Shehr, On le ervaons o BCI-algebras, Soochow Journal o Mahemacs, vol. 33, no. 3, pp , 27. [2] H. E. Bell an L.-C. Kappe, Rngs n whch ervaons sas ceran algebrac conons, Aca Mahemaca Hungarca, vol. 53, no. 3-4, pp , 989. [3] H. E. Bell an G. Mason, On ervaons n near-rngs, near-rngs an Near-els, Norh-Hollan Mahemacs Sues, vol. 37, pp. 3 35, 987. [4] P.Bhaachare an N.P.Mukheree, Fu relaons an u group norm, sc,36985, [5] M. Breˇsar an J. Vukman, On le ervaons an relae mappngs, Proceengs o he Amercan Mahemacal Soce, vol., no., pp. 7 6, 99. [6] M. Breˇsar, On he sance o he composon o wo ervaons o he generale ervaons, Glasgow Mahemacal Journal, vol. 33, no., pp , 99. [7] W. A. Duek, The number o subalgebras o ne BCC-algebras, Bull. Ins. Mah. Aca. Snca, 2 992, [8] W. A. Duek an X. H. Zhang, On eals an congruences n BCCalgebras, Cechoslovak Mah. J., , [9] B. Hvala, Generale ervaons n rngs, Communcaons n Algebra, vol. 26, no. 4, pp , 998 9

20 [] Y.Ima an Isek K: On aom ssems o Proposonal calcul, XIV, Proc. Japan Aca. Ser A, Mah Sc., 42966,9-22. [] k.isek: An algebra relae wh a proposonal calcul, Proc. Japan Aca. Ser A Mah. Sc., , [2] K Isek an Tanaka S: An nroucon o heor o BCK-algebras, Mah. Japo., [3] Y. B. Jun an X. L. Xn, On ervaons o BCI-algebras, Inormaon Scences, vol. 59, no. 3-4, pp , 24. [4]A. A. M. Kamal, σ-ervaons on prme near-rngs, Tamkang Journal o Mahemacs, vol. 32, no. 2, pp , 2 [5]Y. Komor, The class o BCC-algebras s no a vare, Mah. Japonca, , [6 ] D.S.Malk an J.N.Moreson, Fu relaon on rngs an groups, u ses an ssems, 4399,7-23. [ 7] S. M. Mosaa M. A. Ab-Elnab- M.M. Youse, Fu eals o KU algebra Inernaonal Mahemacal Forum, Vol. 6, 2.no. 63, [8] S. M.Mosaa, R. A. K. Omar, A. Ab-elaem, Properes o ervaons on KUalgebras,gournal o avances n mahemacs Vol.9, No. [9]S. M. Mosaa, F. F.Kareem, Le e maps an α-ervaons o KU-algebra, gournal o avances n mahemacs Vol.9, No 7 [2] G. Muhun an Abullah M. Al-Roq On, -Dervaons n BCI-Algebras.Dscree Dnamcs n Naure an Soce Volume 22. [2] G. Muhun an Abullah M. Al-roq,On -Dervaons o BCI-Algebras Absrac an Apple Analss Volume 22, Arcle ID , 2 pages [22] C.Prabpaak an U.Leerawa, On eals an congruence n KU-algebras, scena Magna n- ernaonal book seres, Vol. 529, No., [23] C.Prabpaak an U.Leerawa, On somorphsms o KU-algebras, scena Magna nernaonal book seres, 529, no.3, [24] A. Wronsk, BCK-algebras o no orm a vare, Mah. Japonca, , [25] O.G.X, u BCK-algebras, Mah. Japan,

21 [26] L.A.Zaeh, Fu ses, norm. an conrol,8965, [27] J. Zhan an Y. L. Lu, On -ervaons o BCI-algebras, Inernaonal Journal o Mahemacs an Mahemacal Scences, no., pp , 25. Sam M. Mosaa sammosaa@ahoo.com Deparmen o Mahemacs, Facul o Eucaon, An Shams Unvers, Ro, Caro, Egp. Ahme Ab-elaem ahmeabelaem88@ahoo.com Deparmen o Mahemacs, Facul o Eucaon, An Shams Unvers, Ro, Caro, Egp. 2

TERNARY SEMIHYPERGROUPS IN TERMS OF BIPOLAR-VALUED FUZZY SETS

TERNARY SEMIHYPERGROUPS IN TERMS OF BIPOLAR-VALUED FUZZY SETS IJRR 6 Jul wwwarpapresscom/volumes/vol6issue/ijrr_6 6pf TERNRY EMIHYPERGROUP IN TERM OF IPOLR-VLUED FUZZY ET Ibsam Masmal Deparmen of Mahemacs College of cence Jaan Unvers Jaan Kngom of aua raba E-mal:

More information

Relative controllability of nonlinear systems with delays in control

Relative controllability of nonlinear systems with delays in control Relave conrollably o nonlnear sysems wh delays n conrol Jerzy Klamka Insue o Conrol Engneerng, Slesan Techncal Unversy, 44- Glwce, Poland. phone/ax : 48 32 37227, {jklamka}@a.polsl.glwce.pl Keywor: Conrollably.

More information

Comparison of Differences between Power Means 1

Comparison of Differences between Power Means 1 In. Journal of Mah. Analyss, Vol. 7, 203, no., 5-55 Comparson of Dfferences beween Power Means Chang-An Tan, Guanghua Sh and Fe Zuo College of Mahemacs and Informaon Scence Henan Normal Unversy, 453007,

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS ON THE WEA LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS FENGBO HANG Absrac. We denfy all he weak sequenal lms of smooh maps n W (M N). In parcular, hs mples a necessary su cen opologcal

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

Cubic Bezier Homotopy Function for Solving Exponential Equations

Cubic Bezier Homotopy Function for Solving Exponential Equations Penerb Journal of Advanced Research n Compung and Applcaons ISSN (onlne: 46-97 Vol. 4, No.. Pages -8, 6 omoopy Funcon for Solvng Eponenal Equaons S. S. Raml *,,. Mohamad Nor,a, N. S. Saharzan,b and M.

More information

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β SARAJEVO JOURNAL OF MATHEMATICS Vol.3 (15) (2007), 137 143 SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β M. A. K. BAIG AND RAYEES AHMAD DAR Absrac. In hs paper, we propose

More information

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy Arcle Inernaonal Journal of Modern Mahemacal Scences, 4, (): - Inernaonal Journal of Modern Mahemacal Scences Journal homepage: www.modernscenfcpress.com/journals/jmms.aspx ISSN: 66-86X Florda, USA Approxmae

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Notes on the stability of dynamic systems and the use of Eigen Values.

Notes on the stability of dynamic systems and the use of Eigen Values. Noes on he sabl of dnamc ssems and he use of Egen Values. Source: Macro II course noes, Dr. Davd Bessler s Tme Seres course noes, zarads (999) Ineremporal Macroeconomcs chaper 4 & Techncal ppend, and Hamlon

More information

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua Comuer Vson 27 Lecure 3 Mul-vew Geomer I Amnon Shashua Maeral We Wll Cover oa he srucure of 3D->2D rojecon mar omograh Marces A rmer on rojecve geomer of he lane Eolar Geomer an Funamenal Mar ebrew Unvers

More information

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS THE PREICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS INTROUCTION The wo dmensonal paral dfferenal equaons of second order can be used for he smulaon of compeve envronmen n busness The arcle presens he

More information

A Deza Frankl type theorem for set partitions

A Deza Frankl type theorem for set partitions A Deza Frankl ype heorem for se parons Cheng Yeaw Ku Deparmen of Mahemacs Naonal Unversy of Sngapore Sngapore 117543 makcy@nus.edu.sg Kok Bn Wong Insue of Mahemacal Scences Unversy of Malaya 50603 Kuala

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

The Shapley value for fuzzy games on vague sets

The Shapley value for fuzzy games on vague sets WEA TRANACTIN on INFRMATIN CIENCE APPLICATIN The hapley value or uzzy games on vague ses Fan-Yong Meng* (Correspondng Auhor chool o Managemen Qngdao Technologcal nversy Qngdao 266520 hong Provnce P R Chna

More information

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,

More information

Suyash Narayan Mishra, Piyush Kumar Tripathi & Alok Agrawal

Suyash Narayan Mishra, Piyush Kumar Tripathi & Alok Agrawal IOSR Journal o Mahemaics IOSR-JM e-issn: 78-578 -ISSN: 39-765X. Volume Issue Ver. VI Mar - Ar. 5 PP 43-5 www.iosrjournals.org A auberian heorem or C α β- Convergence o Cesaro Means o Orer o Funcions Suash

More information

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Displacement, Velocity, and Acceleration. (WHERE and WHEN?) Dsplacemen, Velocy, and Acceleraon (WHERE and WHEN?) Mah resources Append A n your book! Symbols and meanng Algebra Geomery (olumes, ec.) Trgonomery Append A Logarhms Remnder You wll do well n hs class

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

Track Properities of Normal Chain

Track Properities of Normal Chain In. J. Conemp. Mah. Scences, Vol. 8, 213, no. 4, 163-171 HIKARI Ld, www.m-har.com rac Propes of Normal Chan L Chen School of Mahemacs and Sascs, Zhengzhou Normal Unversy Zhengzhou Cy, Hennan Provnce, 4544,

More information

On Convergence Rate of Concave-Convex Procedure

On Convergence Rate of Concave-Convex Procedure On Converence Rae o Concave-Conve Proceure Ian E.H. Yen Nanun Pen Po-We Wan an Shou-De Ln Naonal awan Unvers OP 202 Oulne Derence o Conve Funcons.c. Prora Applcaons n SVM leraure Concave-Conve Proceure

More information

On elements with index of the form 2 a 3 b in a parametric family of biquadratic elds

On elements with index of the form 2 a 3 b in a parametric family of biquadratic elds On elemens wh ndex of he form a 3 b n a paramerc famly of bquadrac elds Bora JadrevĆ Absrac In hs paper we gve some resuls abou prmve negral elemens p(c p n he famly of bcyclc bquadrac elds L c = Q ) c;

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL Sco Wsdom, John Hershey 2, Jonahan Le Roux 2, and Shnj Waanabe 2 Deparmen o Elecrcal Engneerng, Unversy o Washngon, Seale, WA, USA

More information

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair TECHNI Inernaonal Journal of Compung Scence Communcaon Technologes VOL.5 NO. July 22 (ISSN 974-3375 erformance nalyss for a Nework havng Sby edundan Un wh ang n epar Jendra Sngh 2 abns orwal 2 Deparmen

More information

Key words: Fractional difference equation, oscillatory solutions,

Key words: Fractional difference equation, oscillatory solutions, OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS Musafa BAYRAM * ad Ayd SECER * Deparme of Compuer Egeerg, Isabul Gelsm Uversy Deparme of Mahemacal Egeerg, Yldz Techcal Uversy * Correspodg

More information

Testing a new idea to solve the P = NP problem with mathematical induction

Testing a new idea to solve the P = NP problem with mathematical induction Tesng a new dea o solve he P = NP problem wh mahemacal nducon Bacground P and NP are wo classes (ses) of languages n Compuer Scence An open problem s wheher P = NP Ths paper ess a new dea o compare he

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

@FMI c Kyung Moon Sa Co.

@FMI c Kyung Moon Sa Co. Annals of Fuzzy Mahemacs and Informacs Volume 8, No. 2, (Augus 2014), pp. 245 257 ISSN: 2093 9310 (prn verson) ISSN: 2287 6235 (elecronc verson) hp://www.afm.or.kr @FMI c Kyung Moon Sa Co. hp://www.kyungmoon.com

More information

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Yugoslav Journal of Operaons Research Vol 9 (009) Number 0- DOI:0.98/YUJOR0900C GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Danel CIUIU Facul of Cvl Indusral and Agrculural Buldngs Techncal Unvers

More information

PHYS 1443 Section 001 Lecture #4

PHYS 1443 Section 001 Lecture #4 PHYS 1443 Secon 001 Lecure #4 Monda, June 5, 006 Moon n Two Dmensons Moon under consan acceleraon Projecle Moon Mamum ranges and heghs Reerence Frames and relae moon Newon s Laws o Moon Force Newon s Law

More information

Faα-Irresolute Mappings

Faα-Irresolute Mappings BULLETIN o he Bull. Malaysian Mah. Sc. Soc. (Second Series) 24 (2001) 193-199 MLYSIN MTHEMTICL SCIENCES SOCIETY Faα-Irresolue Mappings 1 R.K. SRF, 2 M. CLDS ND 3 SEEM MISHR 1 Deparmen o Mahemaics, Governmen

More information

)-interval valued fuzzy ideals in BF-algebras. Some properties of (, ) -interval valued fuzzy ideals in BF-algebra, where

)-interval valued fuzzy ideals in BF-algebras. Some properties of (, ) -interval valued fuzzy ideals in BF-algebra, where Inernaonal Journal of Engneerng Advaned Researh Tehnology (IJEART) ISSN: 454-990, Volume-, Issue-4, Oober 05 Some properes of (, )-nerval valued fuzzy deals n BF-algebras M. Idrees, A. Rehman, M. Zulfqar,

More information

A New Generalisation of Sam-Solai s Multivariate symmetric Arcsine Distribution of Kind-1*

A New Generalisation of Sam-Solai s Multivariate symmetric Arcsine Distribution of Kind-1* IOSR Journal o Mahemacs IOSRJM ISSN: 78-578 Volume, Issue May-June 0, PP 4-48 www.osrournals.org A New Generalsaon o Sam-Sola s Mulvarae symmerc Arcsne Dsrbuon o Knd-* Dr. G.S. Davd Sam Jayaumar. Dr.A.Solarau.

More information

ON THE ADDITION OF UNITS AND NON-UNITS IN FINITE COMMUTATIVE RINGS

ON THE ADDITION OF UNITS AND NON-UNITS IN FINITE COMMUTATIVE RINGS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 45, Number 6, 2015 ON THE ADDITION OF UNITS AND NON-UNITS IN FINITE COMMUTATIVE RINGS DARIUSH KIANI AND MOHSEN MOLLAHAJIAGHAEI ABSTRACT. Le R be a fne commuave

More information

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2 COMPUTE SCIENCE 49A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PATS, PAT.. a Dene he erm ll-ondoned problem. b Gve an eample o a polynomal ha has ll-ondoned zeros.. Consder evaluaon o anh, where e e anh. e e

More information

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue. Lnear Algebra Lecure # Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons

More information

DIFFERENTIAL SCHEMES

DIFFERENTIAL SCHEMES DIFFERENTIAL SCHEMES RAYMOND T. HOOBLER Dedcated to the memory o Jerry Kovacc 1. schemes All rngs contan Q and are commutatve. We x a d erental rng A throughout ths secton. 1.1. The topologcal space. Let

More information

On Derivations of BCC-algebras

On Derivations of BCC-algebras International Journal of Algebra, Vol. 6, 2012, no. 32, 1491-1498 On Derivations of BCC-algebras N. O. Alshehri Department of Mathematics, Faculty of Sciences(Girls) King Abdulaziz University, Jeddah,

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

Advanced time-series analysis (University of Lund, Economic History Department)

Advanced time-series analysis (University of Lund, Economic History Department) Advanced me-seres analss (Unvers of Lund, Economc Hsor Dearmen) 3 Jan-3 Februar and 6-3 March Lecure 4 Economerc echnues for saonar seres : Unvarae sochasc models wh Box- Jenns mehodolog, smle forecasng

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue. Mah E-b Lecure #0 Noes We connue wh he dscusson of egenvalues, egenvecors, and dagonalzably of marces We wan o know, n parcular wha condons wll assure ha a marx can be dagonalzed and wha he obsrucons are

More information

On One Analytic Method of. Constructing Program Controls

On One Analytic Method of. Constructing Program Controls Appled Mahemacal Scences, Vol. 9, 05, no. 8, 409-407 HIKARI Ld, www.m-hkar.com hp://dx.do.org/0.988/ams.05.54349 On One Analyc Mehod of Consrucng Program Conrols A. N. Kvko, S. V. Chsyakov and Yu. E. Balyna

More information

Li An-Ping. Beijing , P.R.China

Li An-Ping. Beijing , P.R.China A New Type of Cpher: DICING_csb L An-Png Bejng 100085, P.R.Chna apl0001@sna.com Absrac: In hs paper, we wll propose a new ype of cpher named DICING_csb, whch s derved from our prevous sream cpher DICING.

More information

On computing differential transform of nonlinear non-autonomous functions and its applications

On computing differential transform of nonlinear non-autonomous functions and its applications On compung dfferenal ransform of nonlnear non-auonomous funcons and s applcaons Essam. R. El-Zahar, and Abdelhalm Ebad Deparmen of Mahemacs, Faculy of Scences and Humanes, Prnce Saam Bn Abdulazz Unversy,

More information

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables Joural of Sceces Islamc epublc of Ira 6(: 63-67 (005 Uvers of ehra ISSN 06-04 hp://scecesuacr Some Probabl Iequales for Quadrac Forms of Negavel Depede Subgaussa adom Varables M Am A ozorga ad H Zare 3

More information

Continuous Indexed Variable Systems

Continuous Indexed Variable Systems Ieraoal Joural o Compuaoal cece ad Mahemacs. IN 0974-389 Volume 3, Number 4 (20), pp. 40-409 Ieraoal Research Publcao House hp://www.rphouse.com Couous Idexed Varable ysems. Pouhassa ad F. Mohammad ghjeh

More information

NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IMPULSIVE q k INTEGRODIFFERENCE EQUATION

NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IMPULSIVE q k INTEGRODIFFERENCE EQUATION Euroean Journal of ahemac an Comuer Scence Vol No 7 ISSN 59-995 NONLOCAL BOUNDARY VALUE PROBLE FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IPULSIVE - INTEGRODIFFERENCE EQUATION Hao Wang Yuhang Zhang ngyang

More information

Fuzzy Set Theory in Modeling Uncertainty Data. via Interpolation Rational Bezier Surface Function

Fuzzy Set Theory in Modeling Uncertainty Data. via Interpolation Rational Bezier Surface Function Appled Mahemacal Scences, Vol. 7, 013, no. 45, 9 38 HIKARI Ld, www.m-hkar.com Fuzzy Se Theory n Modelng Uncerany Daa va Inerpolaon Raonal Bezer Surface Funcon Rozam Zakara Deparmen of Mahemacs, Faculy

More information

Delay-Range-Dependent Stability Analysis for Continuous Linear System with Interval Delay

Delay-Range-Dependent Stability Analysis for Continuous Linear System with Interval Delay Inernaonal Journal of Emergng Engneerng esearch an echnology Volume 3, Issue 8, Augus 05, PP 70-76 ISSN 349-4395 (Prn) & ISSN 349-4409 (Onlne) Delay-ange-Depenen Sably Analyss for Connuous Lnear Sysem

More information

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

Method of upper lower solutions for nonlinear system of fractional differential equations and applications Malaya Journal of Maemak, Vol. 6, No. 3, 467-472, 218 hps://do.org/1.26637/mjm63/1 Mehod of upper lower soluons for nonlnear sysem of fraconal dfferenal equaons and applcaons D.B. Dhagude1 *, N.B. Jadhav2

More information

CHAPTER 5: MULTIVARIATE METHODS

CHAPTER 5: MULTIVARIATE METHODS CHAPER 5: MULIVARIAE MEHODS Mulvarae Daa 3 Mulple measuremens (sensors) npus/feaures/arbues: -varae N nsances/observaons/eamples Each row s an eample Each column represens a feaure X a b correspons o he

More information

By HENRY H. KIM and KYU-HWAN LEE

By HENRY H. KIM and KYU-HWAN LEE SPHERICAL HECKE ALGEBRAS OF SL OVER -DIMENSIONAL LOCAL FIELDS By HENRY H. KIM and KYU-HWAN LEE Absrac. In hs paper, we sudy sphercal Hece algebras of SL over wo dmensonal local felds. In order o defne

More information

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields Lecure 16 (Momenum and Impulse, Collisions and Conservaion o Momenum) Physics 160-02 Spring 2017 Douglas Fields Newon s Laws & Energy The work-energy heorem is relaed o Newon s 2 nd Law W KE 1 2 1 2 F

More information

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s Ordnary Dfferenal Equaons n Neuroscence wh Malab eamples. Am - Gan undersandng of how o se up and solve ODE s Am Undersand how o se up an solve a smple eample of he Hebb rule n D Our goal a end of class

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer d Model Cvl and Surveyng Soware Dranage Analyss Module Deenon/Reenon Basns Owen Thornon BE (Mech), d Model Programmer owen.hornon@d.com 4 January 007 Revsed: 04 Aprl 007 9 February 008 (8Cp) Ths documen

More information

Comb Filters. Comb Filters

Comb Filters. Comb Filters The smple flers dscussed so far are characered eher by a sngle passband and/or a sngle sopband There are applcaons where flers wh mulple passbands and sopbands are requred Thecomb fler s an example of

More information

FI 3103 Quantum Physics

FI 3103 Quantum Physics /9/4 FI 33 Quanum Physcs Aleander A. Iskandar Physcs of Magnesm and Phooncs Research Grou Insu Teknolog Bandung Basc Conces n Quanum Physcs Probably and Eecaon Value Hesenberg Uncerany Prncle Wave Funcon

More information

Epistemic Game Theory: Online Appendix

Epistemic Game Theory: Online Appendix Epsemc Game Theory: Onlne Appendx Edde Dekel Lucano Pomao Marcano Snscalch July 18, 2014 Prelmnares Fx a fne ype srucure T I, S, T, β I and a probably µ S T. Le T µ I, S, T µ, βµ I be a ype srucure ha

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

A New Generalized Gronwall-Bellman Type Inequality

A New Generalized Gronwall-Bellman Type Inequality 22 Inernaonal Conference on Image, Vson and Comung (ICIVC 22) IPCSIT vol. 5 (22) (22) IACSIT Press, Sngaore DOI:.7763/IPCSIT.22.V5.46 A New Generalzed Gronwall-Bellman Tye Ineualy Qnghua Feng School of

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Tight results for Next Fit and Worst Fit with resource augmentation

Tight results for Next Fit and Worst Fit with resource augmentation Tgh resuls for Nex F and Wors F wh resource augmenaon Joan Boyar Leah Epsen Asaf Levn Asrac I s well known ha he wo smple algorhms for he classc n packng prolem, NF and WF oh have an approxmaon rao of

More information

Online Learning with Partial Feedback. 1 Online Mirror Descent with Estimated Gradient

Online Learning with Partial Feedback. 1 Online Mirror Descent with Estimated Gradient Avance Course in Machine Learning Spring 2010 Online Learning wih Parial Feeback Hanous are joinly prepare by Shie Mannor an Shai Shalev-Shwarz In previous lecures we alke abou he general framework of

More information

Chapter Lagrangian Interpolation

Chapter Lagrangian Interpolation Chaper 5.4 agrangan Inerpolaon Afer readng hs chaper you should be able o:. dere agrangan mehod of nerpolaon. sole problems usng agrangan mehod of nerpolaon and. use agrangan nerpolans o fnd deraes and

More information

Existence of Time Periodic Solutions for the Ginzburg-Landau Equations. model of superconductivity

Existence of Time Periodic Solutions for the Ginzburg-Landau Equations. model of superconductivity Journal of Mahemacal Analyss and Applcaons 3, 3944 999 Arcle ID jmaa.999.683, avalable onlne a hp:www.dealbrary.com on Exsence of me Perodc Soluons for he Gnzburg-Landau Equaons of Superconducvy Bxang

More information

Periodic motions of a class of forced infinite lattices with nearest neighbor interaction

Periodic motions of a class of forced infinite lattices with nearest neighbor interaction J. Mah. Anal. Appl. 34 28 44 52 www.elsever.co/locae/jaa Peroc oons of a class of force nfne laces wh neares neghbor neracon Chao Wang a,b,, Dngban Qan a a School of Maheacal Scence, Suzhou Unversy, Suzhou

More information

LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF HEMIRING N. NITH ssstant Proessor n Mathematcs, Peryar Unversty PG Extn Centre, Dharmapur 636705. Emal : anthaarenu@gmal.com BSTRCT: In ths paper, we

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System Communcaons n Sascs Theory and Mehods, 34: 475 484, 2005 Copyrgh Taylor & Francs, Inc. ISSN: 0361-0926 prn/1532-415x onlne DOI: 10.1081/STA-200047430 Survval Analyss and Relably A Noe on he Mean Resdual

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5 TPG460 Reservor Smulaon 08 page of 5 DISCRETIZATIO OF THE FOW EQUATIOS As we already have seen, fne dfference appromaons of he paral dervaves appearng n he flow equaons may be obaned from Taylor seres

More information

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS ScInLhore),7),9-37,4 ISSN 3-536; CODEN: SINTE 8 9 A NEW INTERPRETATION O INTERVAL-VALUED UZZY INTERIOR IDEALS O ORDERED SEMIGROUPS Hdy Ullh Khn, b, Nor Hnz Srmn, Asghr Khn c nd z Muhmmd Khn d Deprmen of

More information

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data Anne Chao Ncholas J Goell C seh lzabeh L ander K Ma Rober K Colwell and Aaron M llson 03 Rarefacon and erapolaon wh ll numbers: a framewor for samplng and esmaon n speces dversy sudes cology Monographs

More information

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling Improvemen n Esmang Populaon Mean usng Two Auxlar Varables n Two-Phase amplng Rajesh ngh Deparmen of ascs, Banaras Hndu Unvers(U.P.), Inda (rsnghsa@ahoo.com) Pankaj Chauhan and Nrmala awan chool of ascs,

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Malaysan Journal of Mahemacal Scences 9(2): 277-300 (2015) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homeage: h://ensemumedumy/journal A Mehod for Deermnng -Adc Orders of Facorals 1* Rafka Zulkal,

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Lnear Response Theory: The connecon beween QFT and expermens 3.1. Basc conceps and deas Q: ow do we measure he conducvy of a meal? A: we frs nroduce a weak elecrc feld E, and hen measure

More information

Scattering at an Interface: Oblique Incidence

Scattering at an Interface: Oblique Incidence Course Insrucor Dr. Raymond C. Rumpf Offce: A 337 Phone: (915) 747 6958 E Mal: rcrumpf@uep.edu EE 4347 Appled Elecromagnecs Topc 3g Scaerng a an Inerface: Oblque Incdence Scaerng These Oblque noes may

More information

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling Rajesh ngh Deparmen of ascs, Banaras Hndu Unvers(U.P.), Inda Pankaj Chauhan, Nrmala awan chool of ascs, DAVV, Indore (M.P.), Inda Florenn marandache Deparmen of Mahemacs, Unvers of New Meco, Gallup, UA

More information

WebAssign HW Due 11:59PM Tuesday Clicker Information

WebAssign HW Due 11:59PM Tuesday Clicker Information WebAssgn HW Due 11:59PM Tuesday Clcker Inormaon Remnder: 90% aemp, 10% correc answer Clcker answers wll be a end o class sldes (onlne). Some days we wll do a lo o quesons, and ew ohers Each day o clcker

More information

Example: MOSFET Amplifier Distortion

Example: MOSFET Amplifier Distortion 4/25/2011 Example MSFET Amplfer Dsoron 1/9 Example: MSFET Amplfer Dsoron Recall hs crcu from a prevous handou: ( ) = I ( ) D D d 15.0 V RD = 5K v ( ) = V v ( ) D o v( ) - K = 2 0.25 ma/v V = 2.0 V 40V.

More information

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas) Lecure 8: The Lalace Transform (See Secons 88- and 47 n Boas) Recall ha our bg-cure goal s he analyss of he dfferenal equaon, ax bx cx F, where we emloy varous exansons for he drvng funcon F deendng on

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm H ( q, p, ) = q p L( q, q, ) H p = q H q = p H = L Equvalen o Lagrangan formalsm Smpler, bu

More information

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS Elecronic Journal of Differenial Equaions, Vol. 206 (206, No. 39, pp.. ISSN: 072-669. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu fp ejde.mah.xsae.edu EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4 CS434a/54a: Paern Recognon Prof. Olga Veksler Lecure 4 Oulne Normal Random Varable Properes Dscrmnan funcons Why Normal Random Varables? Analycally racable Works well when observaon comes form a corruped

More information

On Two Integrability Methods of Improper Integrals

On Two Integrability Methods of Improper Integrals Inernaional Journal of Mahemaics and Compuer Science, 13(218), no. 1, 45 5 M CS On Two Inegrabiliy Mehods of Improper Inegrals H. N. ÖZGEN Mahemaics Deparmen Faculy of Educaion Mersin Universiy, TR-33169

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 9 Hamlonan Equaons of Moon (Chaper 8) Wha We Dd Las Tme Consruced Hamlonan formalsm Hqp (,,) = qp Lqq (,,) H p = q H q = p H L = Equvalen o Lagrangan formalsm Smpler, bu wce as

More information

Upper Bound For Matrix Operators On Some Sequence Spaces

Upper Bound For Matrix Operators On Some Sequence Spaces Suama Uer Bou formar Oeraors Uer Bou For Mar Oeraors O Some Sequece Saces Suama Dearme of Mahemacs Gaah Maa Uersy Yogyaara 558 INDONESIA Emal: suama@ugmac masomo@yahoocom Isar D alam aer aa susa masalah

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Chapter 6: AC Circuits

Chapter 6: AC Circuits Chaper 6: AC Crcus Chaper 6: Oulne Phasors and he AC Seady Sae AC Crcus A sable, lnear crcu operang n he seady sae wh snusodal excaon (.e., snusodal seady sae. Complee response forced response naural response.

More information

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005 Dynamc Team Decson Theory EECS 558 Proec Shruvandana Sharma and Davd Shuman December 0, 005 Oulne Inroducon o Team Decson Theory Decomposon of he Dynamc Team Decson Problem Equvalence of Sac and Dynamc

More information

II. Light is a Ray (Geometrical Optics)

II. Light is a Ray (Geometrical Optics) II Lgh s a Ray (Geomercal Opcs) IIB Reflecon and Refracon Hero s Prncple of Leas Dsance Law of Reflecon Hero of Aleandra, who lved n he 2 nd cenury BC, posulaed he followng prncple: Prncple of Leas Dsance:

More information

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence Supplemen for Sochasic Convex Opimizaion: Faser Local Growh Implies Faser Global Convergence Yi Xu Qihang Lin ianbao Yang Proof of heorem heorem Suppose Assumpion holds and F (w) obeys he LGC (6) Given

More information

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V )

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V ) 1 Lecture 2 Recap Last tme we talked about presheaves and sheaves. Preshea: F on a topologcal space X, wth groups (resp. rngs, sets, etc.) F(U) or each open set U X, wth restrcton homs ρ UV : F(U) F(V

More information