Information Criteria and Model Selection

Size: px
Start display at page:

Download "Information Criteria and Model Selection"

Transcription

1 Information Criteria and Model Selection Herman J. Bierens Pennsylvania State University March 12, Introduction Let L n (k) be the maximum likelihood of a model with k parameters based on a sample of size n, and let k 0 be the correct number of parameters. Suppose that for k > k 0 the model with k parameters is nested in the model with k 0 parameters, so that L n ) is obtained by setting k!k 0 parameters in the larger model to constants. Without loss of generality we may assume that these constants are zeros. Thus, denoting the likelihood function of the least parsimonious model by ˆL n (θ), θ 0 Θ dú m, L n (k) ' max θ0θ k ˆL n (θ), where Θ k ' θ ' θ 1 θ 2 0 Θ: θ 2 ' 0 0ú m&k (1) for k # m. Thus, the models with k < k 0 parameters are misspecified, and the models with k > k 0 parameters are correctly specified but over-parametrized. The Akaike (1974, 1976), Hannan-Quinn (1979), and Schwarz (1978) information criteria for selecting the most parsimonious correct model are (k))/n % 2k/n, (k))/n % 2k.ln(ln(n))/n, (k))/n % k.ln(n)/n, respectively. Since the Schwarz information criterion is derived using Bayesian arguments, this criterion is also known as the Bayesian Information Criterion (BIC). These criteria take the general form (k))/n % k.n(n)/n, (2) where n(n) = 2 in the Akaike case, n(n) ' 2.ln(ln(n)) in the Hannan-Quinn case, and n(n) = ln(n) in the Schwarz case. Using these criteria, the model is selected that corresponds to ˆk ' argmin k#m (k). (3) 1

2 2. Consistency If k < k 0 then the model with k parameters is misspecified, so that p (k))/n < p ))/n. (4) Hence, it follows from (2), (4) and n(n)/n ' 0 that in all three cases ) $ (k)] ' P[&2. ))/n % k 0.n(n)/n $ &2. (k))/n % k.n(n)/n] (5) ' P[ ))/n & (k))/n # 0.5 &k).n(n)/n] ' 0, so that P[ ˆk < k 0 ] # ) $ (k) forsomek < k 0 ] # ' k<k0 ) $ (k)] ' 0 (6) For k > k 0 it follows from the likelihood ratio test that 2 (k)) & )) 6 d X k&k0 - χ 2 k&k 0, (7) where 6 d indicates convergence in distribution. Then in the Akaike case, n cn (k0) & cn (k) ' 2 ln(ln (k)) & ln(ln (k0)) & 2(k&k0 ) 6d Xk&k0 & 2(k&k 0 ), hence )> (k)] ' P[X k&k0 >2(k&k 0 )] > 0. Therefore, the Akaike criterion may asymptotically overshoot the correct number of parameters: two cases hence P[ ˆk $ k 0 ] ' 1, but P[ ˆk > k 0 ]>0, Since in the Hannan-Quinn and Schwarz cases, n(n) ' 4, p &2 )) & (k)) /n(n) ' 0 (7) implies that in these p n( ) & (k))/n(n) ' p &2 )) & (k)) /n(n) % k 0 &k ' k 0 &k # &1 so that This implies, similar to (6), that cases, ) $ (k)] ' 0. P[ ˆk > k 0 ] ' 0. Thus, in the Hannan-Quinn and Schwarz 2

3 P[ ˆk ' k 0 ] ' 1. (8) Note that the consistency result (8) holds for any criterion of the type (2) with n(n)/n ' 0 and n(n) ' 4, (9) for example, let n(n) ' n. 3. Applications 3.1 VAR and AR model selection Let L n (k) be the maximum likelihood of a d-variate Gaussian VAR(p) model, ' a 0 % ' p j'1 A j &j, U t - i.i.d. N d [0,Σ], where Y is observed for Then k = d + d 2 t 0ú d t ' 1&p,...,n..p and (k)) '& 1 n.d & 1 n.d.ln(2π) & 1 n.ln det(ˆσ p ), where ˆΣ p is the maximum likelihood estimator of the error variance Σ. Hence, &2.ln(Ln (k))/n ' ln det(ˆσp ) % d. 1 % ln(2π). (10) The second term does not depend on p. Therefore, the model is selected that corresponds to ˆp ' argmin p n (p), where )) % 2(d%d 2 p)/n, )) % 2(d%d 2 p)ln(ln(n))/n, )) % (d%d 2 p)ln(n)/n. Similarly, these criteria can also be used to determine the order p of an AR(p) model: ' α 0 % ' p j'1 α j &j, U t - i.i.d. N[0,σ 2 ], where again 0úis observed for t ' 1&p,...,n, simply by replacing d with 1 and det(ˆσ p ) with the ML estimator ˆσ 2 p of the error variance σ 2 : n (p) ' ln(ˆσ2 p ) % 2(1%p)/n, n (p) ' ln(ˆσ2 p ) % 2(1%p)ln(ln(n))/n, n (p) ' ln(ˆσ2 p ) % (1%p)ln(n)/n. 3.2 ARMA model specification Similarly, in the ARMA(p,q) case ' α 0 % ' p j'1 α j &j & ' q j'1 β j U t&j, U t - i.i.d. N[0,σ 2 ], 3

4 these criteria become n (p,q) ' ln(ˆσ 2 p,q ) % 2(1%p%q)/n, n (p,q) ' ln(ˆσ 2 p,q ) % 2(1%p%q)ln(ln(n))/n, n (p,q) ' ln(ˆσ 2 p,q ) % (1%p%q)ln(n)/n, where now ˆσ 2 p,q is the ML estimator of the error variance σ 2 and n is the number of observations used in the ML estimation. It can be shown [see Hannan (1980)] that in the case of common roots in the AR and MA polynomials the Hannan-Quinn and Schwarz criteria still select the correct orders p and q consistently: Given upper bounds p $ p 0 and q $ q 0, where p 0 and q 0 are the correct orders of an ARMA(p,q) process, we have P[ˆp ' p 0, ˆq ' q 0 ] ' 1, where (ˆp,ˆq) ' argmin 0#p# p,0#q# q n (p,q). 3.3 ARCH and GARCH models If a model is extended to include ARCH or GARCH errors, it is recommended to subtract the term 1 % ln(2π) from &2. (k))/n [see (10)] in the formula for the information criteria, in order to make these criteria comparable with those for the model without (G)ARCH errors. Thus, n (k))/n % 2k/n & 1 & ln(2π), n (k))/n % 2k.ln(ln(n))/n & 1 & ln(2π), n (k))/n % k.ln(n)/n & 1 & ln(2π), where again k is the number of parameters, including the (G)ARCH parameters. References Akaike, H. (1974): "A New Look at the Statistical Model Identification," I.E.E.E. Transactions on Automatic Control, AC 19, Akaike, H. (1976): "Canonical Correlation Analysis of Time Series and the Use of an Information Criterion," in R. K. Mehra and D. G. Lainotis (eds.), System Identification: Advances and Case Studies, Academic Press, New York,

5 Hannan, E. J. (1980): "The Estimation of the Order of an ARMA Process", Annals of Statistics, 8, Hannan, E. J., and B. G. Quinn (1979): "The Determination of the Order of an Autoregression," Journal of the Royal Statistical Society, B, 41, Schwarz, G. (1978): "Estimating the Dimension of a Model," Annals of Statistics, 6,

ARMA MODELS Herman J. Bierens Pennsylvania State University February 23, 2009

ARMA MODELS Herman J. Bierens Pennsylvania State University February 23, 2009 1. Introduction Given a covariance stationary process µ ' E[ ], the Wold decomposition states that where U t ARMA MODELS Herman J. Bierens Pennsylvania State University February 23, 2009 with vanishing

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Alfredo A. Romero * College of William and Mary

Alfredo A. Romero * College of William and Mary A Note on the Use of in Model Selection Alfredo A. Romero * College of William and Mary College of William and Mary Department of Economics Working Paper Number 6 October 007 * Alfredo A. Romero is a Visiting

More information

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 7: Model Building Bus 41910, Time Series Analysis, Mr R Tsay An effective procedure for building empirical time series models is the Box-Jenkins approach, which consists of three stages: model

More information

Time Series. Chapter Time Series Data

Time Series. Chapter Time Series Data Chapter 10 Time Series 10.1 Time Series Data The main difference between time series data and cross-sectional data is the temporal ordering. To emphasize the proper ordering of the observations, Table

More information

Tutorial lecture 2: System identification

Tutorial lecture 2: System identification Tutorial lecture 2: System identification Data driven modeling: Find a good model from noisy data. Model class: Set of all a priori feasible candidate systems Identification procedure: Attach a system

More information

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation

Time Series Forecasting: A Tool for Out - Sample Model Selection and Evaluation AMERICAN JOURNAL OF SCIENTIFIC AND INDUSTRIAL RESEARCH 214, Science Huβ, http://www.scihub.org/ajsir ISSN: 2153-649X, doi:1.5251/ajsir.214.5.6.185.194 Time Series Forecasting: A Tool for Out - Sample Model

More information

Performance of Autoregressive Order Selection Criteria: A Simulation Study

Performance of Autoregressive Order Selection Criteria: A Simulation Study Pertanika J. Sci. & Technol. 6 (2): 7-76 (2008) ISSN: 028-7680 Universiti Putra Malaysia Press Performance of Autoregressive Order Selection Criteria: A Simulation Study Venus Khim-Sen Liew, Mahendran

More information

On Autoregressive Order Selection Criteria

On Autoregressive Order Selection Criteria On Autoregressive Order Selection Criteria Venus Khim-Sen Liew Faculty of Economics and Management, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia This version: 1 March 2004. Abstract This study

More information

A NOTE ON THE SELECTION OF TIME SERIES MODELS. June 2001

A NOTE ON THE SELECTION OF TIME SERIES MODELS. June 2001 A NOTE ON THE SELECTION OF TIME SERIES MODELS Serena Ng Pierre Perron June 2001 Abstract We consider issues related to the order of an autoregression selected using information criteria. We study the sensitivity

More information

The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models

The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models The Uniform Weak Law of Large Numbers and the Consistency of M-Estimators of Cross-Section and Time Series Models Herman J. Bierens Pennsylvania State University September 16, 2005 1. The uniform weak

More information

Model selection criteria Λ

Model selection criteria Λ Model selection criteria Λ Jean-Marie Dufour y Université de Montréal First version: March 1991 Revised: July 1998 This version: April 7, 2002 Compiled: April 7, 2002, 4:10pm Λ This work was supported

More information

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006 Least Squares Model Averaging Bruce E. Hansen University of Wisconsin January 2006 Revised: August 2006 Introduction This paper developes a model averaging estimator for linear regression. Model averaging

More information

STAT Financial Time Series

STAT Financial Time Series STAT 6104 - Financial Time Series Chapter 4 - Estimation in the time Domain Chun Yip Yau (CUHK) STAT 6104:Financial Time Series 1 / 46 Agenda 1 Introduction 2 Moment Estimates 3 Autoregressive Models (AR

More information

Terence Tai-Leung Chong. Abstract

Terence Tai-Leung Chong. Abstract Estimation of the Autoregressive Order in the Presence of Measurement Errors Terence Tai-Leung Chong The Chinese University of Hong Kong Yuanxiu Zhang University of British Columbia Venus Liew Universiti

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1)

5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) 5. Erroneous Selection of Exogenous Variables (Violation of Assumption #A1) Assumption #A1: Our regression model does not lack of any further relevant exogenous variables beyond x 1i, x 2i,..., x Ki and

More information

Introduction to Estimation Methods for Time Series models Lecture 2

Introduction to Estimation Methods for Time Series models Lecture 2 Introduction to Estimation Methods for Time Series models Lecture 2 Fulvio Corsi SNS Pisa Fulvio Corsi Introduction to Estimation () Methods for Time Series models Lecture 2 SNS Pisa 1 / 21 Estimators:

More information

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project Erik Swanson Cori Saviano Li Zha Final Project 1 Introduction In analyzing time series data, we are posed with the question of how past events influences the current situation. In order to determine this,

More information

Model selection using penalty function criteria

Model selection using penalty function criteria Model selection using penalty function criteria Laimonis Kavalieris University of Otago Dunedin, New Zealand Econometrics, Time Series Analysis, and Systems Theory Wien, June 18 20 Outline Classes of models.

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection

SGN Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection SG 21006 Advanced Signal Processing: Lecture 8 Parameter estimation for AR and MA models. Model order selection Ioan Tabus Department of Signal Processing Tampere University of Technology Finland 1 / 28

More information

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30

MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD. Copyright c 2012 (Iowa State University) Statistics / 30 MISCELLANEOUS TOPICS RELATED TO LIKELIHOOD Copyright c 2012 (Iowa State University) Statistics 511 1 / 30 INFORMATION CRITERIA Akaike s Information criterion is given by AIC = 2l(ˆθ) + 2k, where l(ˆθ)

More information

Modelling the Skewed Exponential Power Distribution in Finance

Modelling the Skewed Exponential Power Distribution in Finance Modelling the Skewed Exponential Power Distribution in Finance Juan Miguel Marín and Genaro Sucarrat Abstract We study the properties of two methods for financial density selection of the Skewed Exponential

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Applied time-series analysis

Applied time-series analysis Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 18, 2011 Outline Introduction and overview Econometric Time-Series Analysis In principle,

More information

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University

Topic 4 Unit Roots. Gerald P. Dwyer. February Clemson University Topic 4 Unit Roots Gerald P. Dwyer Clemson University February 2016 Outline 1 Unit Roots Introduction Trend and Difference Stationary Autocorrelations of Series That Have Deterministic or Stochastic Trends

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008,

Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, Professor Dr. Roman Liesenfeld Final Exam Financial Data Analysis at the University of Freiburg (Winter Semester 2008/2009) Friday, November 14, 2008, 10.00 11.30am 1 Part 1 (38 Points) Consider the following

More information

Introduction to Time Series Analysis. Lecture 11.

Introduction to Time Series Analysis. Lecture 11. Introduction to Time Series Analysis. Lecture 11. Peter Bartlett 1. Review: Time series modelling and forecasting 2. Parameter estimation 3. Maximum likelihood estimator 4. Yule-Walker estimation 5. Yule-Walker

More information

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models

Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Lesson 13: Box-Jenkins Modeling Strategy for building ARMA models Facoltà di Economia Università dell Aquila umberto.triacca@gmail.com Introduction In this lesson we present a method to construct an ARMA(p,

More information

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL

FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL FORECASTING SUGARCANE PRODUCTION IN INDIA WITH ARIMA MODEL B. N. MANDAL Abstract: Yearly sugarcane production data for the period of - to - of India were analyzed by time-series methods. Autocorrelation

More information

TIME SERIES DATA ANALYSIS USING EVIEWS

TIME SERIES DATA ANALYSIS USING EVIEWS TIME SERIES DATA ANALYSIS USING EVIEWS I Gusti Ngurah Agung Graduate School Of Management Faculty Of Economics University Of Indonesia Ph.D. in Biostatistics and MSc. in Mathematical Statistics from University

More information

Lesson 2: Analysis of time series

Lesson 2: Analysis of time series Lesson 2: Analysis of time series Time series Main aims of time series analysis choosing right model statistical testing forecast driving and optimalisation Problems in analysis of time series time problems

More information

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 6.3. FORECASTING ARMA PROCESSES 123 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

LTI Systems, Additive Noise, and Order Estimation

LTI Systems, Additive Noise, and Order Estimation LTI Systems, Additive oise, and Order Estimation Soosan Beheshti, Munther A. Dahleh Laboratory for Information and Decision Systems Department of Electrical Engineering and Computer Science Massachusetts

More information

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests

Brief Sketch of Solutions: Tutorial 3. 3) unit root tests Brief Sketch of Solutions: Tutorial 3 3) unit root tests.5.4.4.3.3.2.2.1.1.. -.1 -.1 -.2 -.2 -.3 -.3 -.4 -.4 21 22 23 24 25 26 -.5 21 22 23 24 25 26.8.2.4. -.4 - -.8 - - -.12 21 22 23 24 25 26 -.2 21 22

More information

ARIMA Modelling and Forecasting

ARIMA Modelling and Forecasting ARIMA Modelling and Forecasting Economic time series often appear nonstationary, because of trends, seasonal patterns, cycles, etc. However, the differences may appear stationary. Δx t x t x t 1 (first

More information

System Identification General Aspects and Structure

System Identification General Aspects and Structure System Identification General Aspects and Structure M. Deistler University of Technology, Vienna Research Unit for Econometrics and System Theory {deistler@tuwien.ac.at} Contents 1 1. Introduction 2. Structure

More information

Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process

Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process IOSR Journal of Mathematics (IOSRJM) ISSN: 78-578 Volume 1, Issue 3 (July-Aug 1), PP 1- Comparison of New Approach Criteria for Estimating the Order of Autoregressive Process Salie Ayalew 1 M.Chitti Babu,

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

A NEW INFORMATION THEORETIC APPROACH TO ORDER ESTIMATION PROBLEM. Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

A NEW INFORMATION THEORETIC APPROACH TO ORDER ESTIMATION PROBLEM. Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A. A EW IFORMATIO THEORETIC APPROACH TO ORDER ESTIMATIO PROBLEM Soosan Beheshti Munther A. Dahleh Massachusetts Institute of Technology, Cambridge, MA 0239, U.S.A. Abstract: We introduce a new method of model

More information

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University The Bootstrap: Theory and Applications Biing-Shen Kuo National Chengchi University Motivation: Poor Asymptotic Approximation Most of statistical inference relies on asymptotic theory. Motivation: Poor

More information

Minimum Message Length Autoregressive Model Order Selection

Minimum Message Length Autoregressive Model Order Selection Minimum Message Length Autoregressive Model Order Selection Leigh J. Fitzgibbon School of Computer Science and Software Engineering, Monash University Clayton, Victoria 38, Australia leighf@csse.monash.edu.au

More information

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria

Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Arma-Arch Modeling Of The Returns Of First Bank Of Nigeria Emmanuel Alphonsus Akpan Imoh Udo Moffat Department of Mathematics and Statistics University of Uyo, Nigeria Ntiedo Bassey Ekpo Department of

More information

Econometric Forecasting

Econometric Forecasting Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna October 1, 2014 Outline Introduction Model-free extrapolation Univariate time-series models Trend

More information

New Introduction to Multiple Time Series Analysis

New Introduction to Multiple Time Series Analysis Helmut Lütkepohl New Introduction to Multiple Time Series Analysis With 49 Figures and 36 Tables Springer Contents 1 Introduction 1 1.1 Objectives of Analyzing Multiple Time Series 1 1.2 Some Basics 2

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson

PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS. Yngve Selén and Erik G. Larsson PARAMETER ESTIMATION AND ORDER SELECTION FOR LINEAR REGRESSION PROBLEMS Yngve Selén and Eri G Larsson Dept of Information Technology Uppsala University, PO Box 337 SE-71 Uppsala, Sweden email: yngveselen@ituuse

More information

Quantitative Finance I

Quantitative Finance I Quantitative Finance I Linear AR and MA Models (Lecture 4) Winter Semester 01/013 by Lukas Vacha * If viewed in.pdf format - for full functionality use Mathematica 7 (or higher) notebook (.nb) version

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore,

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, 61 4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 Mean: y t = µ + θ(l)ɛ t, where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, E(y t ) = µ + θ(l)e(ɛ t ) = µ 62 Example: MA(q) Model: y t = ɛ t + θ 1 ɛ

More information

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals

DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals DIC, AIC, BIC, PPL, MSPE Residuals Predictive residuals Overall Measures of GOF Deviance: this measures the overall likelihood of the model given a parameter vector D( θ) = 2 log L( θ) This can be averaged

More information

Lecture on ARMA model

Lecture on ARMA model Lecture on ARMA model Robert M. de Jong Ohio State University Columbus, OH 43210 USA Chien-Ho Wang National Taipei University Taipei City, 104 Taiwan ROC October 19, 2006 (Very Preliminary edition, Comment

More information

Lesson 9: Autoregressive-Moving Average (ARMA) models

Lesson 9: Autoregressive-Moving Average (ARMA) models Lesson 9: Autoregressive-Moving Average (ARMA) models Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Introduction We have seen

More information

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION

LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION LATVIAN GDP: TIME SERIES FORECASTING USING VECTOR AUTO REGRESSION BEZRUCKO Aleksandrs, (LV) Abstract: The target goal of this work is to develop a methodology of forecasting Latvian GDP using ARMA (AutoRegressive-Moving-Average)

More information

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models

The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models The Behaviour of the Akaike Information Criterion when Applied to Non-nested Sequences of Models Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health

More information

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems

Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Analysis of the AIC Statistic for Optimal Detection of Small Changes in Dynamic Systems Jeremy S. Conner and Dale E. Seborg Department of Chemical Engineering University of California, Santa Barbara, CA

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

AR-order estimation by testing sets using the Modified Information Criterion

AR-order estimation by testing sets using the Modified Information Criterion AR-order estimation by testing sets using the Modified Information Criterion Rudy Moddemeijer 14th March 2006 Abstract The Modified Information Criterion (MIC) is an Akaike-like criterion which allows

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Circle a single answer for each multiple choice question. Your choice should be made clearly.

Circle a single answer for each multiple choice question. Your choice should be made clearly. TEST #1 STA 4853 March 4, 215 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. There are 31 questions. Circle

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation

BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation BIO5312 Biostatistics Lecture 13: Maximum Likelihood Estimation Yujin Chung November 29th, 2016 Fall 2016 Yujin Chung Lec13: MLE Fall 2016 1/24 Previous Parametric tests Mean comparisons (normality assumption)

More information

Estimation and application of best ARIMA model for forecasting the uranium price.

Estimation and application of best ARIMA model for forecasting the uranium price. Estimation and application of best ARIMA model for forecasting the uranium price. Medeu Amangeldi May 13, 2018 Capstone Project Superviser: Dongming Wei Second reader: Zhenisbek Assylbekov Abstract This

More information

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE)

MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) MAT 3379 (Winter 2016) FINAL EXAM (PRACTICE) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes. Only

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY & Contents PREFACE xiii 1 1.1. 1.2. Difference Equations First-Order Difference Equations 1 /?th-order Difference

More information

1.5 Testing and Model Selection

1.5 Testing and Model Selection 1.5 Testing and Model Selection The EViews output for least squares, probit and logit includes some statistics relevant to testing hypotheses (e.g. Likelihood Ratio statistic) and to choosing between specifications

More information

Performance of lag length selection criteria in three different situations

Performance of lag length selection criteria in three different situations MPRA Munich Personal RePEc Archive Performance of lag length selection criteria in three different situations Zahid Asghar and Irum Abid Quaid-i-Azam University, Islamabad Aril 2007 Online at htts://mra.ub.uni-muenchen.de/40042/

More information

SRNDNA Model Fitting in RL Workshop

SRNDNA Model Fitting in RL Workshop SRNDNA Model Fitting in RL Workshop yael@princeton.edu Topics: 1. trial-by-trial model fitting (morning; Yael) 2. model comparison (morning; Yael) 3. advanced topics (hierarchical fitting etc.) (afternoon;

More information

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics

Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics Master of Science Thesis Wind speed modeling by Alicja Lojowska

More information

FEA Working Paper No

FEA Working Paper No FEA Working Paper No. 2001-1 ACCURACY OF MODEL SELECTION CRITERIA FOR A CLASS OF AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTIC MODELS Kwek Kian Teng Faculty of Economics & Administration University of Malaya

More information

Forecasting exchange rate volatility using conditional variance models selected by information criteria

Forecasting exchange rate volatility using conditional variance models selected by information criteria Forecasting exchange rate volatility using conditional variance models selected by information criteria Article Accepted Version Brooks, C. and Burke, S. (1998) Forecasting exchange rate volatility using

More information

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994).

Note: The primary reference for these notes is Enders (2004). An alternative and more technical treatment can be found in Hamilton (1994). Chapter 4 Analysis of a Single Time Series Note: The primary reference for these notes is Enders (4). An alternative and more technical treatment can be found in Hamilton (994). Most data used in financial

More information

Problem Set 2: Box-Jenkins methodology

Problem Set 2: Box-Jenkins methodology Problem Set : Box-Jenkins methodology 1) For an AR1) process we have: γ0) = σ ε 1 φ σ ε γ0) = 1 φ Hence, For a MA1) process, p lim R = φ γ0) = 1 + θ )σ ε σ ε 1 = γ0) 1 + θ Therefore, p lim R = 1 1 1 +

More information

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation.

Linear models. Chapter Overview. Linear process: A process {X n } is a linear process if it has the representation. Chapter 2 Linear models 2.1 Overview Linear process: A process {X n } is a linear process if it has the representation X n = b j ɛ n j j=0 for all n, where ɛ n N(0, σ 2 ) (Gaussian distributed with zero

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

10. Time series regression and forecasting

10. Time series regression and forecasting 10. Time series regression and forecasting Key feature of this section: Analysis of data on a single entity observed at multiple points in time (time series data) Typical research questions: What is the

More information

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling

Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling Kriging models with Gaussian processes - covariance function estimation and impact of spatial sampling François Bachoc former PhD advisor: Josselin Garnier former CEA advisor: Jean-Marc Martinez Department

More information

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices

Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Article Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices Fei Jin 1,2 and Lung-fei Lee 3, * 1 School of Economics, Shanghai University of Finance and Economics,

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Dynamic Time Series Regression: A Panacea for Spurious Correlations

Dynamic Time Series Regression: A Panacea for Spurious Correlations International Journal of Scientific and Research Publications, Volume 6, Issue 10, October 2016 337 Dynamic Time Series Regression: A Panacea for Spurious Correlations Emmanuel Alphonsus Akpan *, Imoh

More information

Akaike criterion: Kullback-Leibler discrepancy

Akaike criterion: Kullback-Leibler discrepancy Model choice. Akaike s criterion Akaike criterion: Kullback-Leibler discrepancy Given a family of probability densities {f ( ; ψ), ψ Ψ}, Kullback-Leibler s index of f ( ; ψ) relative to f ( ; θ) is (ψ

More information

13. Estimation and Extensions in the ARCH model. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture:

13. Estimation and Extensions in the ARCH model. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture: 13. Estimation and Extensions in the ARCH model MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: Robert F. Engle. GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics,

More information

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications Fumiya Akashi Research Associate Department of Applied Mathematics Waseda University

More information

The Multiple Regression Model Estimation

The Multiple Regression Model Estimation Lesson 5 The Multiple Regression Model Estimation Pilar González and Susan Orbe Dpt Applied Econometrics III (Econometrics and Statistics) Pilar González and Susan Orbe OCW 2014 Lesson 5 Regression model:

More information

Figure 29: AR model fit into speech sample ah (top), the residual, and the random sample of the model (bottom).

Figure 29: AR model fit into speech sample ah (top), the residual, and the random sample of the model (bottom). Original 0.4 0.0 0.4 ACF 0.5 0.0 0.5 1.0 0 500 1000 1500 2000 0 50 100 150 200 Residual 0.05 0.05 ACF 0 500 1000 1500 2000 0 50 100 150 200 Generated 0.4 0.0 0.4 ACF 0.5 0.0 0.5 1.0 0 500 1000 1500 2000

More information

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution

Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Econometrics for Policy Analysis A Train The Trainer Workshop Oct 22-28, 2016 Organized by African Heritage Institution Delivered by Dr. Nathaniel E. Urama Department of Economics, University of Nigeria,

More information

Determining the number of components in mixture models for hierarchical data

Determining the number of components in mixture models for hierarchical data Determining the number of components in mixture models for hierarchical data Olga Lukočienė 1 and Jeroen K. Vermunt 2 1 Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000

More information

Modelling the Covariance

Modelling the Covariance Modelling the Covariance Jamie Monogan Washington University in St Louis February 9, 2010 Jamie Monogan (WUStL) Modelling the Covariance February 9, 2010 1 / 13 Objectives By the end of this meeting, participants

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY

Time Series Analysis. James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY Time Series Analysis James D. Hamilton PRINCETON UNIVERSITY PRESS PRINCETON, NEW JERSEY PREFACE xiii 1 Difference Equations 1.1. First-Order Difference Equations 1 1.2. pth-order Difference Equations 7

More information

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS

Romanian Economic and Business Review Vol. 3, No. 3 THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS THE EVOLUTION OF SNP PETROM STOCK LIST - STUDY THROUGH AUTOREGRESSIVE MODELS Marian Zaharia, Ioana Zaheu, and Elena Roxana Stan Abstract Stock exchange market is one of the most dynamic and unpredictable

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Volume 30, Issue 1. The relationship between the F-test and the Schwarz criterion: Implications for Granger-causality tests

Volume 30, Issue 1. The relationship between the F-test and the Schwarz criterion: Implications for Granger-causality tests Volume 30, Issue 1 The relationship between the F-test and the Schwarz criterion: Implications for Granger-causality tests Erdal Atukeren ETH Zurich - KOF Swiss Economic Institute Abstract In applied research,

More information

Example: Baseball winning % for NL West pennant winner

Example: Baseball winning % for NL West pennant winner (38) Likelihood based statistics ñ ln( _) = log of likelihood: big is good. ñ AIC = -2 ln( _) + 2(p+q) small is good Akaike's Information Criterion ñ SBC = -2 ln( _) + (p+q) ln(n) Schwartz's Bayesian Criterion

More information

A Course in Time Series Analysis

A Course in Time Series Analysis A Course in Time Series Analysis Edited by DANIEL PENA Universidad Carlos III de Madrid GEORGE C. TIAO University of Chicago RUEY S. TSAY University of Chicago A Wiley-Interscience Publication JOHN WILEY

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information