Cardiac Control Entropy: Changes in complexity of HR signal can be transient or sustained

Size: px
Start display at page:

Download "Cardiac Control Entropy: Changes in complexity of HR signal can be transient or sustained"

Transcription

1 Cardiac Control Entropy: Changes in complexity of HR signal can be transient or sustained Stephen J. McGregor 1, Erik M. Bollt 2, Joe Skufca 2, Melvyn Rubenfire 3 1 School of Health and Human Performance, Eastern Michigan University, Ypsilanti, MI, Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY, Division of Cardiovascular Medicine, 25 Frank Lloyd Wright Drive, Ann Arbor, MI Abstract: Understanding control of cardiac function is crucial for characterizing physiological responses, and for developing clinical tests. We present here the use of a recently developed statistic, control entropy (CE), which was designed to be free of the stationarity requirements of other entropy based methods used to identify changes in state of the cardiac control system. We show CE responses of ECG signal during two well characterized challenges to autonomic control of HR; postural change and the standardized Valsalva Maneuver. We also contrast data from different physiological conditions (hypotension, tachycardia, and normal) which may dictate differing control strategies identified by CE. This interesting link between function and output signals, and changes in healthy and subclinical disease populations suggests an exciting new direction for developing simple clinical tests. Macklem posits that organized life and the processes that support it lie on a continuum of complexity between low entropy of stable, inaninimate objects on one end and high entropy, disorganized systems such as weather on the other. In the middle of this continuum lies ordered, adaptable, fluctuating life sustaining processes such as metabolism or other physiological processes/systems (12). Debate notwithstanding, direct evidence from physiological measures has supported this view to some extent (17, 21, 22). So, it would seem that healthy, vibrant, adaptable processes exhibit an entropy that is higher than some pathological conditions that may exhibit high order, but low adaptability, and yet, lower entropy than other conditions that exhibit more random behavior. Specifically with regard to cardiac rhythms, it has been argued that healthy hearts typically exhibit patterns with a higher entropy than unhealthy hearts (7, 16). The generalizability of this view is still not clear as in some cases, the entropy of patterns from unhealthy hearts is time scale dependent (e.g. atrial fibrillation) (7) and unhealthy hearts may also exhibit comparable or relatively high entropy (2, 7, 20). The technical innovation necessary to interpret the implication of the entropy of the process, is to associate an appropriate partition to the signal (4, 5). One problem that presents itself when using non-linear approaches, for the determination of healthy vs diseased hearts exhibiting various rhythms is the requirement of stationarity (16, 18). Since many physiological systems exhibit slowly moving parameters and changes on multiple time scales, the requirement of stationarity imposes serious limitations to the interpretation of many phenomena, and the assumption of stationarity may impart excess confidence in the conditions. Simply quantifying the entropy of a system over a given time frame may cloud interpretation of entropy measures by excluding, or attenuating changes in entropy that may occur during the supposed stationary period. Further, many physiological processes of

2 interest, particularly cardiac arrhythmias occur under clearly non-stationary, often fleeting, conditions, and therefore traditional approaches to entropy determination are not appropriate. This may help explain why previous entropy approaches have not found more wide acceptance in clinical disciplines. To address the problem of stationarity in entropy analysis, Bollt et al. (6) recently introduced a novel regularity statistic, Control Entropy (CE). There are several aspects of CE that make it unique among regularity measures, but most important here is the alleviation of dependence upon stationarity. CE is suited particularly to conditions of dynamically changing physiology, in particular, sub-clinical, but relevant phenomena of perturbed homeostasis. Furthermore, CE can be associated with the system s control effort in the underlying process (6). Using ECG signal, we will attempt here to relate this interpretation to cardiac function, particularly differences in healthy and unhealthy individuals. To briefly restate the definition of control entropy (CE), recall the quantity at the center of information theory is the Shannon entropy (8), r H S = p i lnp i i=1 which characterizes the amount of uncertainty indicated by a partition on symbols i=1, 2,..., r, at least when each state has associated identically and independently distributed (i.i.d.) probabilities p i. The key problem is that i.i.d. must include stationary probabilities with time. Fundamentally, however, this basic and typically implicit assumption behind information theoretic analysis is contrary to our interest which is to study nonstationary systems. We have recently defined (6) a control entropy function, CE[x(t);w](t)=SampEn[ ( dx dt (t,t+w)], to indicate parametric changes in the scenario of varying parameters, under mild conditions on the dynamical variable x(t). Here, we denote a data set, x(t), together with its time domain as related to the sampling time duration, and w denotes a window length with respect to pre-history considered relevant at any instant t. Further, note the symbol in this equation is used to denote a partitioning step to associate probabilities to each state, which mathematically associates a metric topology. We (6) have shown that a SAX method (9, 10) is particularly useful, but other variations such as a continuous neighborhood approach may also apply. To demonstrate the utility, we first present the CE response of the ECG signal during two well characterized challenges to autonomic control of HR; postural change and the standard Valsalva Maneuver (VM) (Figure 1). It is evident that CE clearly identifies cardiovascular events such as posture changes and VM from the raw signal over the background noise. When either short window lengths (e.g. 801) corresponding to < 2 sec in duration or longer window lengths (e.g. 6401) corresponding to

3 approximately 13 sec in duration are used, CE spikes are observed during the actual postural changes and VM, as opposed to the more constant CE displayed during maintained posture. There is a change in CE from supine to standing (Figure 1 bottom) that might be identified by other measures of regularity (e.g. AE and SE) once conditions of stationarity are met, but it is unlikely that the clear changes in entropy identified during the postural changes and VM would be identified. In fact, it would not be appropriate to look for them as these are clearly non-stationary conditions. Figure 1. ECG and CE of ECG during postural change and Valsalva Maneuver (VM). Top: Raw ECG collected at 500 Hz from healthy young subject. Middle: CE of unfiltered signal. Bottom: Exploded view of middle from sec (Red- w = 801, White w=6401). In all panels and sec = lying supine, sec = standing, Yellow arrows indicate 20 sec standardized VM performed with 240 sec between. Fourier Transformation is commonly used to analyze components of autonomic cardiovascular control in the frequency domain. In general, it is accepted that the high frequency domain (HF; Hz) represents input from the parasympathetic and the low frequency domain (LF; Hz) from the sympathetic, or a combination of sympathetic/parasympathetic arms of the autonomic nervous system respectively (1, 13). In Figure 2, we contrast CE of the ECG signal in a healthy subject (Green) with two individuals exhibiting clinical conditions, 1) orthostatic hypotension (OH; White) and 2) sinus tachycardia (ST; Red). In the bottom panel, we see that CE of HF signal is higher in the ST compared to healthy and OH, which are similar during standing. Likewise, the subject with sinus tachycardia exhibits the strongest CE spike in the HF signal during VM.

4 In contrast, in the top panel, CE of LF is similar in healthy (green) and ST (red), and lower in OH (white) during standing. The hypotensive subject exhibits the weakest CE response during VM in the HF frequency. Whether these differences are physiologically significant needs to be more clearly established, but as OH is associated with the lowest CE during standing in both HF and LF ranges, it seems apparent that this subject s autonomic control system is in a low state of entropy and unable to appropriately adapt to rapid challenges to homeostasis. This is supported by the weak CE response in the standard VM maneuver. In the ST subject, CE is high in both the HF and LF ranges, and higher than the healthy individual in the HF range (Figure 2, bottom). As it would be assumed that changes in complexity, and healthy high entropy would be desirable in the HF range, this would be reflective of adaptability of the parasympathetic system during challenges to homeostasis under normal activities of daily living. Figure 2 Control entropy (CE) of filtered ECG signal during postural change and standardized Valsalva maneuver (VM). Top: CE of low frequency (LF) ECG signal ( Hz). Bottom: CE of high frequency (HF) ECG signal ( Hz). Red Sinus tachycardia (ST), White orthostatic hypotension (OH), Green - Healthy normal Is it possible that this elevated CE in ST is tending toward an elevated chronic complexity of unhealthy, unadaptable entropy as proposed by Macklem (12)? Further investigations of CE of ECG signal in clinical populations with established cardiovascular autonomic neuropathy would be necessary to say with certainty. To determine whether assessing cardiac autonomic control using control entropy could be clinically useful, the CE responses of healthy and diseased populations need to be catalogued under a variety of conditions and a signature developed for a dynamical disease(s) (11). In particular, the independence from the requirement of

5 stationarity could be exploited and the CE response of ECG during different dynamic challenges to homeostasis could be examined to collect a more robust catalogue of not only dynamical diseases, but dynamical phenotypes (3). An intriguing approach is the use of CE of ECG and other physiological variables during tests of exercise capacity, such as the VO 2 max. Exercise tests are used regularly in clinical settings and it would be exciting to determine the utility of a measure such as CE under such conditions. Preliminary data from our laboratory indicates CE can discriminate changes in regularity of cardiovascular and ventilatory control, which exhibit both coupling and diversion during intense exercise, which may provide both clinical and experimental insight to these responses. There has been interest in entropy analysis of physiological signals with clinical application since Pincus introduced AE (14, 15). It is likely the requirement of stationarity limits the pragmatic use of such measures in many clinical situations. With the relief of the requirement of stationarity with CE, a particularly exciting use may be to use CE as a data mining instrument in application to streaming high frequency signals such as ECG, ventilation, blood pressure etc. Sealy has argued for the value of nonlinear measures in the critical care setting (19), and there has been some interest in the use of regularity measures in anesthesiology. As can be seen in Figure 1, in high frequency, streaming, raw signal, events as subtle as VM and postural changes can clearly be identified over background noise. These changes can be distinguished in time frames as short as 5 sec (data not shown), yet, noise does not appear to contaminate the CE analysis. Further, for monitoring purposes and event identification, waveform interpretation is not necessary, thus making automated monitoring feasible. We have thus briefly reviewed here that CE is an exciting new tool capable of handling nonstationary physiological, particularly cardiac signals. The use of CE may offer insights into control issues of the heart, as well as lead to a clinical diagnostic tool. References 1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 93: , Bien H, Yin L, and Entcheva E. Calcium instabilities in mammalian cardiomyocyte networks. Biophys J 90: , Bokil H, Tchernichovsky O, and Mitra PP. Dynamic phenotypes: time series analysis techniques for characterizing neuronal and behavioral dynamics. Neuroinformatics 4: , Bollt E, Stanford T, Lai Y-C, and Zyczkowski K. Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series. Physical Review Letters 85: , Bollt E, Stanford T, Lai Y-C, and Zyczkowski K. What Symbolic Dynamics Do We Get With A Misplaced Partition? On the Validity of Threshold Crossings Analysis of Chaotic Time-Series. Physica D 154: , Bollt EM, Skufca JD, and McGregor SJ. Control Entropy: A Complexity Measure for Nonstationary Signals. Mathematical Biosciences and Engineering In Press: 2009.

6 7. Costa M, Goldberger AL, and Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89: , Cover TM, and Thomas JA. Elements of Information Theory. Wiley-Interscience, Lin J, Keogh E, Lonardi S, and Chiu B. A Symbolic Representation of Time Series, with Implications for Streaming Algorithms. In: In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, CA: Lin J, Keogh E, Patel P, and Lonardi S. Finding Motifs in Time Series. In: proceedings of the 2nd Workshop on Temporal Data Mining, at the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Alberta, Canada.: Mackey MC, and Glass L. Oscillation and chaos in physiological control systems. Science 197: , Macklem PT. Emergent phenomena and the secrets of life. J Appl Physiol 104: , Perini R, and Veicsteinas A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur J Appl Physiol 90: , Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A 88: , Pincus SM, Gladstone IM, and Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit 7: , Pincus SM, and Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J Physiol 266: H , Pincus SM, Mulligan T, Iranmanesh A, Gheorghiu S, Godschalk M, and Veldhuis JD. Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci U S A 93: , Richman JS, and Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278: H , Seely AJ, and Macklem PT. Complex systems and the technology of variability analysis. Crit Care 8: R , ten Tusscher KH, and Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291: H , Vaillancourt DE, and Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging 23: 1-11, Vaillancourt DE, Sosnoff JJ, and Newell KM. Age-related changes in complexity depend on task dynamics. J Appl Physiol 97: , 2004.

Sample Entropy based HRV: Effect of ECG Sampling Frequency

Sample Entropy based HRV: Effect of ECG Sampling Frequency Biomedical Science and Engineering, 2014, Vol. 2, No. 3, 68-72 Available online at http://pubs.sciepub.com/bse/2/3/3 Science and Education Publishing DOI:10.12691/bse-2-3-3 Sample Entropy based HRV: Effect

More information

Wavelet based sample entropy analysis: A new method to test weak form market efficiency

Wavelet based sample entropy analysis: A new method to test weak form market efficiency Theoretical and Applied Economics Volume XXI (2014), No. 8(597), pp. 19-26 Fet al Wavelet based sample entropy analysis: A new method to test weak form market efficiency Anoop S. KUMAR University of Hyderabad,

More information

Information-Based Similarity Index

Information-Based Similarity Index Information-Based Similarity Index Albert C.-C. Yang, Ary L Goldberger, C.-K. Peng This document can also be read on-line at http://physionet.org/physiotools/ibs/doc/. The most recent version of the software

More information

NONLINEAR DYNAMICS AND CHAOS. Facilitating medical diagnosis. Medical classifications

NONLINEAR DYNAMICS AND CHAOS. Facilitating medical diagnosis. Medical classifications LECTURE : BIOMEDICAL MODELS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharry Systems Analysis, Modelling & Prediction Group www.eng.ox.ac.uk/samp patrick@mcsharry.net Tel: +44 2 823 74 Medical diagnostics

More information

HEART RATE VARIABILITY AS DETERMINISM WITH JUMP STOCHASTIC PARAMETERS

HEART RATE VARIABILITY AS DETERMINISM WITH JUMP STOCHASTIC PARAMETERS HEART RATE VARIABILITY AS DETERMINISM WITH JUMP STOCHASTIC PARAMETERS JIONGXUAN ZHENG, JOE SKUFCA, AND ERIK BOLLT Abstract. We use measured heart rate information (RR intervals) to develop a one-dimensional

More information

Analyzing Employee s Heart rate using Nonlinear Cellular Automata model

Analyzing Employee s Heart rate using Nonlinear Cellular Automata model IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 20-35 Analyzing Employee s Heart rate using Nonlinear Cellular Automata model N. Gururajan

More information

Daily Mobility Patterns in Power Wheelchair Users: What complexity measures can be used to describe mobility patterns?

Daily Mobility Patterns in Power Wheelchair Users: What complexity measures can be used to describe mobility patterns? Daily Mobility Patterns in Power Wheelchair Users: What complexity measures can be used to describe mobility patterns? Sharon Sonenblum, ScM Introduction Technology improvements Wireless technologies Increased

More information

Modelling Heart Rate Variability

Modelling Heart Rate Variability Modelling Heart Rate Variability P. Laguna and L. Sörnmo Introduction The study of heart rate variability (HRV) has become increasingly popular because information on the state of the autonomic nervous

More information

What is Nonlinear Dynamics? HRV 2006: Techniques, Applications, and New Directions. Daniel Kaplan Macalester College Saint Paul, Minnesota

What is Nonlinear Dynamics? HRV 2006: Techniques, Applications, and New Directions. Daniel Kaplan Macalester College Saint Paul, Minnesota What is Nonlinear Dynamics? HRV 2006: Techniques, Applications, and New Directions Daniel Kaplan Macalester College Saint Paul, Minnesota Dynamics and Complexity Historically Simple systems generate simple

More information

Change ΔS of the entropy in natural time under time reversal: Complexity measures upon change of scale

Change ΔS of the entropy in natural time under time reversal: Complexity measures upon change of scale Change ΔS of the entropy in natural time under time reversal: Complexity measures upon change of scale Sarlis, N.V., Christopoulos, S-R. and Bemplidaki, M.M. Postprint deposited in Curve January 2016 Original

More information

DATA TRANSFORMS FOR SPECTRAL ANALYSES OF HEART RATE VARIABILITY

DATA TRANSFORMS FOR SPECTRAL ANALYSES OF HEART RATE VARIABILITY Copyright ISA. All Rights Reserved. DATA TRANSFORMS FOR SPECTRAL ANALYSES OF HEART RATE VARIABILITY Robert J. Ellis a*, John J. Sollers III a, Eve A. Edelstein b, and Julian F. Thayer a a Department of

More information

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY

CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 157 CHAPTER 10 PERMUTATION ENTROPY, MULTISCALE PERMUTATION ENTROPY AND WAVELET TRANSFORM ANALYSIS OF HEART RATE VARIABILITY 10.1 INTRODUCTION Complexity parameters for time series are produced based on

More information

Lecture Notes 8C120 Inleiding Meten en Modelleren. Cellular electrophysiology: modeling and simulation. Nico Kuijpers

Lecture Notes 8C120 Inleiding Meten en Modelleren. Cellular electrophysiology: modeling and simulation. Nico Kuijpers Lecture Notes 8C2 Inleiding Meten en Modelleren Cellular electrophysiology: modeling and simulation Nico Kuijpers nico.kuijpers@bf.unimaas.nl February 9, 2 2 8C2 Inleiding Meten en Modelleren Extracellular

More information

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation

Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Introduction to time-frequency analysis Centre for Doctoral Training in Healthcare Innovation Dr. Gari D. Clifford, University Lecturer & Director, Centre for Doctoral Training in Healthcare Innovation,

More information

Overture: Why is Physiologic Variability Important?

Overture: Why is Physiologic Variability Important? Welcome! HRV 2006: April, 2006 Overture: Why is Physiologic Variability Important? Ary L. Goldberger, MD Director, Margret and H.A. Rey Institute for Nonlinear Dynamics in Medicine Beth Israel Deaconess

More information

Scroll Waves in Anisotropic Excitable Media with Application to the Heart. Sima Setayeshgar Department of Physics Indiana University

Scroll Waves in Anisotropic Excitable Media with Application to the Heart. Sima Setayeshgar Department of Physics Indiana University Scroll Waves in Anisotropic Excitable Media with Application to the Heart Sima Setayeshgar Department of Physics Indiana University KITP Cardiac Dynamics Mini-Program 1 Stripes, Spots and Scrolls KITP

More information

ASYMMETRIC DETRENDED FLUCTUATION ANALYSIS REVEALS ASYMMETRY IN THE RR INTERVALS TIME SERIES

ASYMMETRIC DETRENDED FLUCTUATION ANALYSIS REVEALS ASYMMETRY IN THE RR INTERVALS TIME SERIES Journal of Applied Mathematics and Computational Mechanics 2016, 15(1), 99-106 www.amcm.pcz.pl p-issn 2299-9965 DOI: 10.17512/jamcm.2016.1.10 e-issn 2353-0588 ASYMMETRIC DETRENDED FLUCTUATION ANALYSIS

More information

An Approximate Entropy Based Approach for Quantifying Stability in Spatio-Temporal Data with Limited Temporal Observations

An Approximate Entropy Based Approach for Quantifying Stability in Spatio-Temporal Data with Limited Temporal Observations An Approximate Entropy Based Approach for Quantifying Stability in Spatio-Temporal Data with Limited Temporal Observations J. Piburn 1, R. Stewart 1, A. Morton 1 1 Oak Ridge National Laboratory, 1 Bethel

More information

arxiv:physics/ v1 [physics.med-ph] 8 Jan 2003

arxiv:physics/ v1 [physics.med-ph] 8 Jan 2003 arxiv:physics/0301011v1 [physics.med-ph] 8 Jan 2003 Spectral Statistics of RR Intervals in ECG Mladen MARTINIS, Vesna MIKUTA-MARTINIS, Andrea KNEŽEVIĆ, and Josip ČRNUGELJ Division of Theoretical Physics

More information

EEG- Signal Processing

EEG- Signal Processing Fatemeh Hadaeghi EEG- Signal Processing Lecture Notes for BSP, Chapter 5 Master Program Data Engineering 1 5 Introduction The complex patterns of neural activity, both in presence and absence of external

More information

Parameters for Minimal Model of Cardiac Cell from Two Different Methods: Voltage-Clamp and MSE Method

Parameters for Minimal Model of Cardiac Cell from Two Different Methods: Voltage-Clamp and MSE Method Parameters for Minimal Model of Cardiac Cell from Two Different Methods: oltage-clamp and MSE Method Soheila Esmaeili 1, * and Bahareh beheshti 1 Department of Biomedical engineering, ran University of

More information

JC: You want to see self-organization at work? Test each part of the circuit one by one. You ll see that the whole is more than the sum of its parts

JC: You want to see self-organization at work? Test each part of the circuit one by one. You ll see that the whole is more than the sum of its parts Translating Biological Complex Systems into Cross-Disciplinary Models: A Case Study of the Behavior of the Human Heart Using Van der Pol Oscillations Christina Cogdell & Paul Reichers PHY 256A Winter 2012

More information

Heart rate control and variability

Heart rate control and variability Heart rate control and variability Na (Lina) Li (CDS13 ) EE @ SEAS Harvard University CDS @ 20 The persistent mystery Young, fit, healthy more extreme Resting Heart Rate (bpm) 60 0 50 100 150 200 250 300

More information

Sjoerd Verduyn Lunel (Utrecht University)

Sjoerd Verduyn Lunel (Utrecht University) Universiteit Utrecht, February 9, 016 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University) S.M.VerduynLunel@uu.nl Abstract A new approach

More information

The Physics of the Heart. Sima Setayeshgar

The Physics of the Heart. Sima Setayeshgar The Physics of the Heart Sima Setayeshgar Department of Physics Indiana University Indiana Unversity Physics REU Seminar, July 27 2005 1 Stripes, Spots and Scrolls Indiana Unversity Physics REU Seminar,

More information

Malvin Carl Teich. Boston University and Columbia University Workshop on New Themes & Techniques in Complex Systems 2005

Malvin Carl Teich. Boston University and Columbia University   Workshop on New Themes & Techniques in Complex Systems 2005 Heart Rate Variability Malvin Carl Teich Boston University and Columbia University http://people.bu.edu/teich Colleagues: Steven Lowen, Harvard Medical School Conor Heneghan, University College Dublin

More information

A comprehensive model using modified Zeeman model for generating ECG signals

A comprehensive model using modified Zeeman model for generating ECG signals A comprehensive model using modified Zeeman model for generating ECG signals A Ayatollahi, N Jafarnia Dabanloo, DC McLernon, V Johari Majd, H Zhang Abstract: Developing a mathematical model for the artificial

More information

Coupling Analysis of ECG and EMG based on Multiscale symbolic transfer entropy

Coupling Analysis of ECG and EMG based on Multiscale symbolic transfer entropy 2017 2nd International Conference on Mechatronics and Information Technology (ICMIT 2017) Coupling Analysis of ECG and EMG based on Multiscale symbolic transfer entropy Lizhao Du1, a, Wenpo Yao2, b, Jun

More information

Coupled dynamics of voltage and calcium in paced cardiac cells

Coupled dynamics of voltage and calcium in paced cardiac cells Coupled dynamics of voltage and calcium in paced cardiac cells Yohannes Shiferaw, 1,2 Daisuke Sato, 1 and Alain Karma 1 1 Department of Physics and Center for Interdisciplinary Research on Complex Systems,

More information

CHAPTER 8 COMPRESSION ENTROPY ESTIMATION OF HEART RATE VARIABILITY AND COMPUTATION OF ITS RENORMALIZED ENTROPY

CHAPTER 8 COMPRESSION ENTROPY ESTIMATION OF HEART RATE VARIABILITY AND COMPUTATION OF ITS RENORMALIZED ENTROPY 108 CHAPTER 8 COMPRESSION ENTROPY ESTIMATION OF HEART RATE VARIABILITY AND COMPUTATION OF ITS RENORMALIZED ENTROPY 8.1 INTRODUCTION Klimontovich s S-theorem offers an approach to compare two different

More information

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre

Multiscale Entropy Analysis: A New Method to Detect Determinism in a Time. Series. A. Sarkar and P. Barat. Variable Energy Cyclotron Centre Multiscale Entropy Analysis: A New Method to Detect Deterinis in a Tie Series A. Sarkar and P. Barat Variable Energy Cyclotron Centre /AF Bidhan Nagar, Kolkata 700064, India PACS nubers: 05.45.Tp, 89.75.-k,

More information

PUBLISHED VERSION PERMISSIONS.

PUBLISHED VERSION PERMISSIONS. PUBLISHED VERSION Zebrowski, J. J.; Grudzinski, K.; Buchner, T.; Kuklik, Pawel; Gac, J.; Gielerak, G.; Sanders, Prashanthan; Baranowski, R. Nonlinear oscillator model reproducing various phenomena in the

More information

On multiscale entropy analysis for physiological data

On multiscale entropy analysis for physiological data Physica A ] (]]]]) ]]] ]]] www.elsevier.com/locate/physa On multiscale entropy analysis for physiological data Ranjit A. Thuraisingham, Georg A. Gottwald School of Mathematics and Statistics, University

More information

Equilibrium Time, Permutation, Multiscale and Modified Multiscale Entropies for Low-High Infection Level Intracellular Viral Reaction Kinetics

Equilibrium Time, Permutation, Multiscale and Modified Multiscale Entropies for Low-High Infection Level Intracellular Viral Reaction Kinetics Equilibrium Time, Permutation, Multiscale and Modified Multiscale Entropies for Low-High Infection Level Intracellular Viral Reaction Kinetics Fariborz Taherkhani 1, Farid Taherkhani 2* 1 Department of

More information

GLR-Entropy Model for ECG Arrhythmia Detection

GLR-Entropy Model for ECG Arrhythmia Detection , pp.363-370 http://dx.doi.org/0.4257/ijca.204.7.2.32 GLR-Entropy Model for ECG Arrhythmia Detection M. Ali Majidi and H. SadoghiYazdi,2 Department of Computer Engineering, Ferdowsi University of Mashhad,

More information

Chapter 3. Data Analysis

Chapter 3. Data Analysis Chapter 3 Data Analysis CHAPTER 3 DATA ANALYSIS The Heart Rate Variability (HRV) data profiles from a number of healthy, cardiac diseased (AF and CHF) subjects, and non-cardiac diseased subjects such as

More information

WORKING ON THE NOLTISALIS DATABASE: MEASUREMENT OF NONLINEAR PROPERTIES IN HEART RATE VARIABILITY SIGNALS

WORKING ON THE NOLTISALIS DATABASE: MEASUREMENT OF NONLINEAR PROPERTIES IN HEART RATE VARIABILITY SIGNALS WORKING ON THE NOLTISALIS DATABASE: MEASUREMENT OF NONLINEAR PROPERTIES IN HEART RATE VARIABILITY SIGNALS M. G. Signorini, R. Sassi, S. Cerutti Department of Biomedical Engineering, Polytechnic University,

More information

Scroll Waves in Anisotropic Excitable Media with Application to the Heart. Sima Setayeshgar Department of Physics Indiana University

Scroll Waves in Anisotropic Excitable Media with Application to the Heart. Sima Setayeshgar Department of Physics Indiana University Scroll Waves in Anisotropic Excitable Media with Application to the Heart Sima Setayeshgar Department of Physics Indiana University KITP Cardiac Dynamics Mini-Program 1 Stripes, Spots and Scrolls KITP

More information

Sjoerd Verduyn Lunel (Utrecht University)

Sjoerd Verduyn Lunel (Utrecht University) Lorentz Center Leiden, April 16 2013 Wasserstein distances in the analysis of time series and dynamical systems Sjoerd Verduyn Lunel (Utrecht University) Workshop Mathematics and Biology: a Roundtrip in

More information

Effects of Detrending for Analysis of Heart Rate Variability and Applications to the Estimation of Depth of Anesthesia

Effects of Detrending for Analysis of Heart Rate Variability and Applications to the Estimation of Depth of Anesthesia Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 561 568 Effects of Detrending for Analysis of Heart Rate Variability and Applications to the Estimation of Depth of Anesthesia C.

More information

Automated P-Wave Quality Assessment for Wearable Sensors

Automated P-Wave Quality Assessment for Wearable Sensors proceedings Proceedings Automated P-Wave Quality Assessment for Wearable Sensors Diogo Tecelão 1, * and Peter H. Charlton 2 1 Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade

More information

Poincaré Plots in Analysis of Selected Biomedical Signals

Poincaré Plots in Analysis of Selected Biomedical Signals STUDIES IN LOGIC, GRAMMAR AND RHETORIC 35(48) 2013 DOI: 10.2478/slgr-2013-0031 Poincaré Plots in Analysis of Selected Biomedical Signals AgnieszkaKitlasGolińska 1 1 DepartmentofMedicalInformatics,UniversityofBialystok,Poland

More information

CARDIOVASCULAR SIMULATOR

CARDIOVASCULAR SIMULATOR Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas CARDIOVASCULAR SIMULATOR Revision: January 4,

More information

Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive Coupling Interactions

Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive Coupling Interactions Commun. Theor. Phys. (Beijing, China) 45 (6) pp. 121 126 c International Academic Publishers Vol. 45, No. 1, January 15, 6 Suppression of Spiral Waves and Spatiotemporal Chaos Under Local Self-adaptive

More information

Application to Experiments

Application to Experiments Chapter 12 Application to Experiments In the past three decades there have been a large number of papers reporting the experimental observation of chaos. In this chapter I describe two rather different

More information

Interbeat interval. Beat number. Interbeat interval. Beat number. h max

Interbeat interval. Beat number. Interbeat interval. Beat number. h max Beyond 1/f: Multifractality in Human Heartbeat Dynamics Plamen Ch. Ivanov 1 2, Lus A. Nunes Amaral 1 2, Ary L. Goldberger 2, Shlomo Havlin 3, Michael G. Rosenblum 4, Zbigniew Struzik 5, and H. Eugene Stanley

More information

2011 NSF-CMACS Workshop on Atrial Fibrillation (5 th day )

2011 NSF-CMACS Workshop on Atrial Fibrillation (5 th day ) 2011 NSF-CMACS Workshop on Atrial Fibrillation (5 th day ) Flavio H. Fenton Department of Biomedical Sciences College of Veterinary Medicine, Cornell University, NY and Max Planck Institute for Dynamics

More information

International Journal of Advanced Research in Computer Science and Software Engineering

International Journal of Advanced Research in Computer Science and Software Engineering Volume 4, Issue 4, April 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Wavelet-based

More information

n m I I 1 4 1, K T (1)

n m I I 1 4 1, K T (1) 004.67.. 1,.. 2 1, 37, 03056, 2.., 2, 03113,, -. -. :,,,,,.,,,,..,,, -.,,. -, [1], (..,,,, ). [2] DFA (Detrended Fluctuation Analysis), -.,, «-». -, (,,..).,, - H > 1/2, -..,.. ISSN 1560-9189,, 2013,.

More information

Investigation of Dynamical Systems in Pulse Oximetry Time Series

Investigation of Dynamical Systems in Pulse Oximetry Time Series Investigation of Dynamical Systems in Pulse Oximetry Time Series Jun Liang Abstract Chaotic behavior of human physiology is a problem that can be investigated through various measurements. One of the most

More information

Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible?

Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible? CHAOS 18, 013129 2008 Bifurcation analysis of a normal form for excitable media: Are stable dynamical alternans on a ring possible? Georg A. Gottwald a School of Mathematics and Statistics and Centre for

More information

Investigations of Cardiac Rhythm Fluctuation Using the DFA Method

Investigations of Cardiac Rhythm Fluctuation Using the DFA Method Investigations of Cardiac Rhythm Fluctuation Using the DFA Method Slabu Lavinia, Negoita Catalina, Sandu Anca, Amariei Liviu, Corduneanu Constantin, Prof. Dr. Ioan Grosu University of Medicine and Pharmacy

More information

Multi-sensor Information Fusion for Classification of Driver's Physiological Sensor Data

Multi-sensor Information Fusion for Classification of Driver's Physiological Sensor Data School of Innovation, Design and Engineering Multi-sensor Information Fusion for Classification of Driver's Physiological Sensor Data Master in Software Engineering 30 Credits, Advanced Level Author: Shaibal

More information

Forecasting Wind Ramps

Forecasting Wind Ramps Forecasting Wind Ramps Erin Summers and Anand Subramanian Jan 5, 20 Introduction The recent increase in the number of wind power producers has necessitated changes in the methods power system operators

More information

The Physics of the Heart. Sima Setayeshgar

The Physics of the Heart. Sima Setayeshgar The Physics of the Heart Sima Setayeshgar Department of Physics Indiana University Indiana Unversity Physics REU Seminar: August 1, 2007 1 Stripes, Spots and Scrolls Indiana Unversity Physics REU Seminar:

More information

Computer Science Department Technical Report. University of California. Los Angeles, CA

Computer Science Department Technical Report. University of California. Los Angeles, CA Computer Science Department Technical Report University of California Los Angeles, CA 995-1596 COMPUTER SIMULATION OF THE JAFRI-WINSLOW ACTION POTENTIAL MODEL Sergey Y. Chernyavskiy November 1998 Boris

More information

Learning Entropy: Multiscale Measure for Incremental Learning

Learning Entropy: Multiscale Measure for Incremental Learning Entropy 2013, 15, 4159-4187; doi:10.3390/e15104159 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Learning Entropy: Multiscale Measure for Incremental Learning Ivo Bukovsky Czech

More information

ROBUST PARAMETERS IDENTIFICATION OF THE OXYGEN KINETICS USING THE MAXIMUM ENTROPY PRINCIPLE

ROBUST PARAMETERS IDENTIFICATION OF THE OXYGEN KINETICS USING THE MAXIMUM ENTROPY PRINCIPLE ROBUST PARAMETERS IDENTIFICATION OF THE OXYGEN KINETICS USING THE MAXIMUM ENTROPY PRINCIPLE R. Q. Lima, roberta_10_lima@hotmail.com R. Sampaio, rsampaio@puc-rio.br PUC-Rio, Marquês de São Vicente, 225,

More information

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE

NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE NONLINEAR TIME SERIES ANALYSIS, WITH APPLICATIONS TO MEDICINE José María Amigó Centro de Investigación Operativa, Universidad Miguel Hernández, Elche (Spain) J.M. Amigó (CIO) Nonlinear time series analysis

More information

Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami. Poincaré Plot Methods for Heart Rate Variability Analysis

Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami. Poincaré Plot Methods for Heart Rate Variability Analysis Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami Poincaré Plot Methods for Heart Rate Variability Analysis Poincaré Plot Methods for Heart Rate Variability Analysis

More information

Assessing Catheter Contact in Radiofrequency Cardiac Ablation Using Complex Impedance

Assessing Catheter Contact in Radiofrequency Cardiac Ablation Using Complex Impedance Assessing Catheter Contact in Radiofrequency Cardiac Ablation Using Complex Impedance Neal P. Gallagher a, Israel J. Byrd b, Elise C. Fear a, Edward J. Vigmond a a Dept. Electrical and Computer Engineering,

More information

Increasing sensitivity in the measurement of heart rate variability: The method of non-stationary RR time frequency analysis

Increasing sensitivity in the measurement of heart rate variability: The method of non-stationary RR time frequency analysis c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 8 ( 2 1 2 ) 53 67 jo ur n al hom ep age : www.intl.elsevierhealth.com/journals/cmpb Increasing sensitivity in the measurement

More information

Study of nonlinear phenomena in a tokamak plasma using a novel Hilbert transform technique

Study of nonlinear phenomena in a tokamak plasma using a novel Hilbert transform technique Study of nonlinear phenomena in a tokamak plasma using a novel Hilbert transform technique Daniel Raju, R. Jha and A. Sen Institute for Plasma Research, Bhat, Gandhinagar-382428, INDIA Abstract. A new

More information

Nonlinear Biomedical Physics

Nonlinear Biomedical Physics Nonlinear Biomedical Physics BioMed Central Research Estimating the distribution of dynamic invariants: illustrated with an application to human photo-plethysmographic time series Michael Small* Open Access

More information

Multicomponent DS Fusion Approach for Waveform EKG Detection

Multicomponent DS Fusion Approach for Waveform EKG Detection Multicomponent DS Fusion Approach for Waveform EKG Detection Nicholas Napoli University of Virginia njn5fg@virginia.edu August 10, 2013 Nicholas Napoli (UVa) Multicomponent EKG Fusion August 10, 2013 1

More information

Robust and Sensitive Method of Lyapunov Exponent for Heart Rate Variability

Robust and Sensitive Method of Lyapunov Exponent for Heart Rate Variability Robust and Sensitive Method of Lyapunov Exponent for Heart Rate Variability Mazhar B. Tayel 1 and Eslam I AlSaba 2 1,2 Department of Electrical Engineering, Alexandria University, Alexandria, Egypt profbasyouni@gmail.com

More information

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO-

BEFORE TAKING THIS MODULE YOU MUST ( TAKE BIO-4013Y OR TAKE BIO- 2018/9 - BIO-4001A BIODIVERSITY Autumn Semester, Level 4 module (Maximum 150 Students) Organiser: Dr Harriet Jones Timetable Slot:DD This module explores life on Earth. You will be introduced to the major

More information

Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis

Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis Cogn Neurodyn (2011) 5:277 284 DOI 10.1007/s11571-011-9159-8 RESEARCH ARTICLE Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis Meng

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

Entropy-Based Algorithm to Detect Life Threatening Cardiac Arrhythmias Using Raw Electrocardiogram Signals

Entropy-Based Algorithm to Detect Life Threatening Cardiac Arrhythmias Using Raw Electrocardiogram Signals Middle-East Journal of Scientific Research 2 (): 43-42, 22 ISSN 99-9233 IDOSI Publications, 22 DOI:.5829/idosi.mejsr.22.2..8 Entropy-Based Algorithm to Detect Life Threatening Cardiac Arrhythmias Using

More information

Time-Series Analysis Prediction Similarity between Time-series Symbolic Approximation SAX References. Time-Series Streams

Time-Series Analysis Prediction Similarity between Time-series Symbolic Approximation SAX References. Time-Series Streams Time-Series Streams João Gama LIAAD-INESC Porto, University of Porto, Portugal jgama@fep.up.pt 1 Time-Series Analysis 2 Prediction Filters Neural Nets 3 Similarity between Time-series Euclidean Distance

More information

Multiscale entropy analysis of human gait dynamics

Multiscale entropy analysis of human gait dynamics Available online at www.sciencedirect.com Physica A 330 (2003) 53 60 www.elsevier.com/locate/physa Multiscale entropy analysis of human gait dynamics M. Costa a;b, C.-K. Peng a, Ary L. Goldberger a, Jerey

More information

Classification of periodic, chaotic and random sequences using approximate entropy and Lempel Ziv complexity measures

Classification of periodic, chaotic and random sequences using approximate entropy and Lempel Ziv complexity measures PRAMANA c Indian Academy of Sciences Vol. 84, No. 3 journal of March 2015 physics pp. 365 372 Classification of periodic, chaotic and random sequences using approximate entropy and Lempel Ziv complexity

More information

SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION

SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION ISBN 978-83-942807-7-2 PORTAL CZM 2015 SYNCHRONIZATION PROBLEM OF THE COUPLED MODIFIED VAN DER POL EQUATIONS IN A MODEL OF THE HEART ACTION BEATA JACKOWSKA-ZDUNIAK ABSTRACT. In this paper, modified van

More information

A GENERIC FRAMEWORK FOR THE DEVELOPMENT OF THE SIGNAL SIMULATOR

A GENERIC FRAMEWORK FOR THE DEVELOPMENT OF THE SIGNAL SIMULATOR A GENERIC FRAMEWORK FOR THE DEVELOPMENT OF THE SIGNAL SIMULATOR 1 SUDHAKAR S DUBEY, 2 SHAMI TRIPATHI M.E. Students Electronics and Telecommunication Engineering, Thakur College of Engineering and Technology,

More information

Physiology Coloring Book: Panels 29, 32, 33,

Physiology Coloring Book: Panels 29, 32, 33, ELEC4623/ELEC9734: Semester 2, 2009 Dr Stephen Redmond School of Electrical Engineering & Telecommunications Email: s.redmond@unsw.edu.au Ph: 9385 6101 Rm: 458, ELECENG (G17) Physiology Coloring Book:

More information

2013 NSF-CMACS Workshop on Atrial Fibrillation

2013 NSF-CMACS Workshop on Atrial Fibrillation 2013 NSF-CMACS Workshop on A Atrial Fibrillation Flavio H. Fenton School of Physics Georgia Institute of Technology, Atlanta, GA and Max Planck Institute for Dynamics and Self-organization, Goettingen,

More information

Test Date Job Number Referring Site

Test Date Job Number Referring Site hr Holter Analysis ECG On-Demand Black Barn, Cornwells Farm Sheephurst Lane, Marden Kent T S Details Patient ame Patient umber Patient D.O.B. Jane Smith // ( Years) Test Date Job umber Referring Site //

More information

8. The approach for complexity analysis of multivariate time series

8. The approach for complexity analysis of multivariate time series 8. The approach for complexity analysis of multivariate time series Kazimieras Pukenas Lithuanian Sports University, Kaunas, Lithuania E-mail: kazimieras.pukenas@lsu.lt (Received 15 June 2015; received

More information

Universal structures of normal and pathological heart rate variability (Supplemental Information)

Universal structures of normal and pathological heart rate variability (Supplemental Information) Universal structures of normal and pathological heart rate variability (Supplemental Information) Alfonso M. Gañán-Calvo 1, Juan Fajardo-López 2 1 Depto. de Ingeniería Aeroespacial y Mecánica de Fluidos,

More information

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD

Biological Systems Modeling & Simulation. Konstantinos P. Michmizos, PhD Biological Systems Modeling & Simulation 2 Konstantinos P. Michmizos, PhD June 25, 2012 Previous Lecture Biomedical Signal examples (1-d, 2-d, 3-d, ) Purpose of Signal Analysis Noise Frequency domain (1-d,

More information

Statistical physics approach to categorize biologic signals: From heart rate dynamics to DNA sequences

Statistical physics approach to categorize biologic signals: From heart rate dynamics to DNA sequences Statistical physics approach to categorize biologic signals: From heart rate dynamics to DNA sequences C.-K. Peng Margret and H. A. Rey Institute for Nonlinear Dynamics in Medicine, Division of Interdisciplinary

More information

Ramakrishna Mukkamala. Bachelor of Science in Engineering Biomedical and Electrical Engineering Duke University (1993)

Ramakrishna Mukkamala. Bachelor of Science in Engineering Biomedical and Electrical Engineering Duke University (1993) Closed-Loop System Identification of Cardiovascular Control Mechanisms in Diabetic Autonomic Neuropathy by Ramakrishna Mukkamala Bachelor of Science in Engineering Biomedical and Electrical Engineering

More information

The difference-sign runs length distribution in testing for serial independence

The difference-sign runs length distribution in testing for serial independence The difference-sign runs length distribution in testing for serial independence Camillo Cammarota Dept. of Mathematics, University of Rome La Sapienza, P.le A. Moro 2, 0085, Rome, Italy Abstract We investigate

More information

Deviations from uniform power law scaling in nonstationary time series

Deviations from uniform power law scaling in nonstationary time series PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997 Deviations from uniform power law scaling in nonstationary time series Gandhimohan M. Viswanathan, 1 C.-K. Peng, 1,2 H. Eugene Stanley, 1 and Ary L. Goldberger

More information

Anatomy & Physiology Standards and Benchmarks

Anatomy & Physiology Standards and Benchmarks Anatomy & Standards and Standard 1: Understands and applies principles of scientific inquiry Power : Identifies questions and concepts that guide science investigations Uses technology and mathematics

More information

LABETTE COMMUNITY COLLEGE BRIEF SYLLABUS. ANATOMY AND PHYSIOLOGY, lecture and lab

LABETTE COMMUNITY COLLEGE BRIEF SYLLABUS. ANATOMY AND PHYSIOLOGY, lecture and lab LABETTE COMMUNITY COLLEGE BRIEF SYLLABUS SPECIAL NOTE: This brief syllabus is not intended to be a legal contract. A full syllabus will be distributed to students at the first class session. TEXT AND SUPPLEMENTARY

More information

Time-Frequency and. Point Process Algorithms for. Cardiac Arrhythmia Analysis. and Cardiorespiratory Control

Time-Frequency and. Point Process Algorithms for. Cardiac Arrhythmia Analysis. and Cardiorespiratory Control Time-Frequency and Point Process Algorithms for Cardiac Arrhythmia Analysis and Cardiorespiratory Control Sandun V. W. Kodituwakku B.E. (Hon 1), The University of Adelaide May 2012 A thesis submitted for

More information

Permutation entropy a natural complexity measure for time series

Permutation entropy a natural complexity measure for time series Permutation entropy a natural complexity measure for time series Christoph Bandt and Bernd Pompe Institute of Mathematics and Institute of Physics, University of Greifswald, Germany (February 18, 2002)

More information

Electrophysiological Modeling of Membranes and Cells

Electrophysiological Modeling of Membranes and Cells Bioeng 6460 Electrophysiology and Bioelectricity Electrophysiological Modeling of Membranes and Cells Frank B. Sachse fs@cvrti.utah.edu Overview Recapitulation Electrical Modeling of Membranes Cardiac

More information

6.3.4 Action potential

6.3.4 Action potential I ion C m C m dφ dt Figure 6.8: Electrical circuit model of the cell membrane. Normally, cells are net negative inside the cell which results in a non-zero resting membrane potential. The membrane potential

More information

Nonlinear Versatile Tools for Heart Rate Variability Prediction anddiagnosis

Nonlinear Versatile Tools for Heart Rate Variability Prediction anddiagnosis International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 4 Issue 10 ǁ October. 2016 ǁ PP.08-19 Nonlinear Versatile Tools for Heart Rate

More information

Fisher Analysis of D st Time Series

Fisher Analysis of D st Time Series ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(2010) No.4,pp.402-406 Fisher Analysis of D st Time Series L. Telesca 1, M. Lovallo 2 1,2 Istituto di Metodologie

More information

DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS

DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS of DYNAMIC ANALYSIS OF THE CORRELATION INTEGRAL OF HEART RATE VARIABILITY IN HYPERTROPHIC CARDIOMYOPATHY PATIENTS R. Carvajal,2, M. Vallverdú, J.J. Zebrowski 3, R. Baranowski, L. Chojnowska, P. Caminal

More information

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor

Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Chaotic Modeling and Simulation (CMSIM) 4: 243-252, 25 Comparison of Nonlinear Dynamics of Parkinsonian and Essential Tremor Olga E. Dick Pavlov Institute of Physiology of Russian Academy of Science, nab.

More information

DYNAMICAL ANALYSIS OF HEART BEAT FROM THE VIEWPOINT OF CHAOS THEORY

DYNAMICAL ANALYSIS OF HEART BEAT FROM THE VIEWPOINT OF CHAOS THEORY BIOPHYSICS DYNAMICAL ANALYSIS OF HEART BEAT FROM THE VIEWPOINT OF CHAOS THEORY D. CREANGA 1, C. NADEJDE 1, P. GASNER 1 1 Univ. Al. I. Cuza, Iasi, Faculty of Physics, 11 A Blvd. Carol I, Iasi, Romania,

More information

Wavelet entropy as a measure of solar cycle complexity

Wavelet entropy as a measure of solar cycle complexity Astron. Astrophys. 363, 3 35 () Wavelet entropy as a measure of solar cycle complexity S. Sello Mathematical and Physical Models, Enel Research, Via Andrea Pisano, 56 Pisa, Italy (sello@pte.enel.it) Received

More information

Finding persisting states for knowledge discovery in time series

Finding persisting states for knowledge discovery in time series Finding persisting states for knowledge discovery in time series Fabian Mörchen and Alfred Ultsch Data Bionics Research Group, Philipps-University Marburg, 3532 Marburg, Germany Abstract. Knowledge Discovery

More information

Introduction to Physiology V - Coupling and Propagation

Introduction to Physiology V - Coupling and Propagation Introduction to Physiology V - Coupling and Propagation J. P. Keener Mathematics Department Coupling and Propagation p./33 Spatially Extended Excitable Media Neurons and axons Coupling and Propagation

More information

M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2

M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2 M. DAROWSKI 1, W. KLONOWSKI 1,2, M. KOZARSKI 1, G. FERRARI 3, K. ZIELIŃSKI 1, R. STEPIEN 1,2 1 Polish Academy of Sciences (IBIB PAN) Institute of Biocybernetics and Biomedical Engineering Warsaw, Poland,

More information