Edexcel Further Pure 2

Size: px
Start display at page:

Download "Edexcel Further Pure 2"

Transcription

1 Edecel Further Pure Second order differential equations Section : Non-homogeneous second order differential equations Notes and Eamples These notes contain subsections on Finding particular integrals Finding general and particular solutions Using substitutions Finding particular integrals The table below illustrates all the forms of particular integrals that you could meet. Function f() Particular integral Constant term c Linear function a + b Quadratic function a² + b + c Eponential function involving e p k e p Function involving sin p and / or cos p acos p bsin p The worked eamples in the tetbook illustrate all of these types of particular integral. Here is a further eample, illustrating an important point about the form of the particular integral. Eample Find a particular integral of the differential equation d² y y ² ² Since the function on the right-hand side is quadratic, use the trial function y a² b c a b Notice that even though the function on the right-hand side d² y a d² involves only a term in ², the trial function must also involve a term in and a constant term, as these will appear Substituting these into the differential equation: when differentiating. a ( a b) ( a² b c) ² MEI, 4/0/ /5

2 Edecel FP nd order DEs Sec. Notes & Eamples a² ( a b) (a b c) ² Equating coefficients of ²: a a Equating coefficients of : a b 0 b a 3 Equating constant terms: a b c 0 c ( a b) 3 The particular integral is y ² 4 4 A similar situation may arise when the particular integral involves trig functions. If the right-hand side of the differential equation is cos, but the particular integral must also involve sin, as this will appear when differentiating. If the form which you would epect the particular integral to take is the same as part of the complementary function, this is a problem, since this means that any particular integral satisfies the homogeneous equation and therefore does not satisfy the whole equation. For eample, you would epect the differential equation 4 4 e to have a particular integral of the form a e, but this will not work since it satisfies the equation 4 4 0,. In such cases, a particular integral of the form a e is usually used. However, in this case, this form is also the same as part of the complementary function (since the auiliary equation has a repeated root) so instead a particular integral of the form a e is used. This situation can also arise with trig functions, as shown in the eample below. Eample Find the general solution of the differential equation 4y cos sin. The auiliary equation is m 4 0 m i Complementary function is y Acos B sin The particular integral is of the form y ( acos bsin ) Since the general solution involves sin and cos, this form of the particular integral is used. MEI, 4/0/ /5

3 Edecel FP nd order DEs Sec. Notes & Eamples acos bsin ( asin b cos ) a sin b cos ( a sin b cos ) ( 4a cos 4b sin ) 4a sin 4b cos 4 ( a cos b sin ) Substituting into the differential equation: 4asin 4b cos 4 ( acos bsin ) 4 ( acos bsin ) cos sin 4asin 4b cos cos sin Equating coefficients of sin : 4a a Equating coefficients of cos : 4b b Particular integral is y 4sin 4cos General solution is y Acos Bsin sin cos Finding general and particular solutions You can see from the worked eamples in the tetbook that solving a differential equation of the form a b cy f ( ) is quite a lengthy process. However, although it is easy to make careless errors, the steps involved are all quite straightforward. Here is a summary of the process. Write down and solve the quadratic auiliary equation. Use the solutions of the auiliary equation to write down the complementary function in the appropriate form, with unknown constants A and B. Look at the function f() on the right-hand side of the differential equation. Check whether it is of the same form as any part of the complementary function, and then write down the appropriate form of the particular integral, which will involve one, two or three unknown constants. Differentiate the particular integral twice, and substitute into the original differential equation. Then equate coefficients to find the values of the unknown constants in the particular integral. Write down the general solution of the differential equation by adding the particular integral to the complementary function. If a particular solution is required, substitute the given conditions to find the values of the unknown constants A and B. (This may involve solving a pair of simultaneous equations). Here is a further eample. MEI, 4/0/ 3/5

4 Edecel FP nd order DEs Sec. Notes & Eamples Eample 3 Find the particular solution of the differential equation d² y y sin ² in the case where y = 0 and = 0 when = 0. The auiliary equation is: m m 0 ( m )² 0 m The complementary function is: y ( A B)e The particular integral is y asin bcos a cos bsin d² y asin bcos d² Substituting into the differential equation: asin bcos ( acos bsin ) asin bcos sin ( a b a)sin ( b a b)cos sin b sin acos sin Equating coefficients of cos : a 0 Equating coefficients of sin : b The particular integral is y cos The general solution is: y ( A B)e cos When = 0, y = 0 0 A A Be ( A B)e sin When = 0, = 0 0 B A B The particular solution is y ( )e cos For practice in finding particular solutions, try the interactive questions Second order differential equations (particular solutions). These involve only homogeneous equations for which the auiliary equation has two distinct roots. MEI, 4/0/ 4/5

5 Edecel FP nd order DEs Sec. Notes & Eamples You can eplore second order differential equations (homogeneous or nonhomogeneous) and their particular solutions using the Autograph resource Second order differential equations. Using substitutions The use of substitutions allows you to solve a wider range of differential equations, by changing a differential equation which you cannot solve into one which can be solved by one of the methods you have alrea met. Not all differential equations can be solved in this way, and it is not always obvious what substitution might work. However, you will only be epected to deal with situations in which you are given the substitution. MEI, 4/0/ 5/5

Trigonometric integrals by basic methods

Trigonometric integrals by basic methods Roberto s Notes on Integral Calculus Chapter : Integration methods Section 7 Trigonometric integrals by basic methods What you need to know already: Integrals of basic trigonometric functions. Basic trigonometric

More information

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud

Basics Concepts and Ideas First Order Differential Equations. Dr. Omar R. Daoud Basics Concepts and Ideas First Order Differential Equations Dr. Omar R. Daoud Differential Equations Man Phsical laws and relations appear mathematicall in the form of Differentia Equations The are one

More information

Integration. Section 8: Using partial fractions in integration

Integration. Section 8: Using partial fractions in integration Integration Section 8: Using partial fractions in integration Notes and Eamples These notes contain subsections on Using partial fractions in integration Putting all the integration techniques together

More information

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct.

µ Differential Equations MAΘ National Convention 2017 For all questions, answer choice E) NOTA means that none of the above answers is correct. µ Differential Equations MAΘ National Convention 07 For all questions, answer choice E) NOTA means that none of the above answers is correct.. C) Since f (, ) = +, (0) = and h =. Use Euler s method, we

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations (MA102 Mathematics II) Shyamashree Upadhyay IIT Guwahati Shyamashree Upadhyay ( IIT Guwahati ) Ordinary Differential Equations 1 / 15 Method of Undetermined Coefficients

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

C10.4 Notes and Formulas. (a) (b) (c) Figure 2 (a) A graph is symmetric with respect to the line θ =

C10.4 Notes and Formulas. (a) (b) (c) Figure 2 (a) A graph is symmetric with respect to the line θ = C10.4 Notes and Formulas symmetry tests A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types of symmetry, as shown in Figure. Figure A graph

More information

Higher Order Linear ODEs

Higher Order Linear ODEs im03.qxd 9/21/05 11:04 AM Page 59 CHAPTER 3 Higher Order Linear ODEs This chapter is new. Its material is a rearranged and somewhat extended version of material previously contained in some of the sections

More information

Integration by inverse substitution

Integration by inverse substitution Roberto s Notes on Integral Calculus Chapter : Integration methods Section 9 Integration by inverse substitution by using the sine function What you need to know already: How to integrate through basic

More information

Methods in differential equations mixed exercise 7

Methods in differential equations mixed exercise 7 Methos in ifferential equations mie eercise 7 tan lnsec The integrating factor is e = e = sec Multiplying the equation by this factor gives: sec + ysectan= sec ( sec sec y = y sec= sec = tan+ c y= sin+

More information

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant

FUNDAMENTAL TRIGONOMETRIC INDENTITIES 1 = cos. sec θ 1 = sec. = cosθ. Odd Functions sin( t) = sint. csc( t) = csct tan( t) = tant NOTES 8: ANALYTIC TRIGONOMETRY Name: Date: Period: Mrs. Nguyen s Initial: LESSON 8.1 TRIGONOMETRIC IDENTITIES FUNDAMENTAL TRIGONOMETRIC INDENTITIES Reciprocal Identities sinθ 1 cscθ cosθ 1 secθ tanθ 1

More information

Brief Notes on Differential Equations

Brief Notes on Differential Equations Brief Notes on Differential Equations (A) Searable First-Order Differential Equations Solve the following differential equations b searation of variables: (a) (b) Solution ( 1 ) (a) The ODE becomes d and

More information

17.2 Nonhomogeneous Linear Equations. 27 September 2007

17.2 Nonhomogeneous Linear Equations. 27 September 2007 17.2 Nonhomogeneous Linear Equations 27 September 2007 Nonhomogeneous Linear Equations The differential equation to be studied is of the form ay (x) + by (x) + cy(x) = G(x) (1) where a 0, b, c are given

More information

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π.

Candidates sitting FP2 may also require those formulae listed under Further Pure Mathematics FP1 and Core Mathematics C1 C4. e π. F Further IAL Pure PAPERS: Mathematics FP 04-6 AND SPECIMEN Candidates sitting FP may also require those formulae listed under Further Pure Mathematics FP and Core Mathematics C C4. Area of a sector A

More information

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description

Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics. Unit C3. C3.1 Unit description Unit C3 Core Mathematics 3 A2 compulsory unit for GCE Mathematics and GCE Pure Mathematics Mathematics C3. Unit description Algebra and functions; trigonometry; eponentials and logarithms; differentiation;

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

ME 391 Mechanical Engineering Analysis

ME 391 Mechanical Engineering Analysis Solve the following differential equations. ME 9 Mechanical Engineering Analysis Eam # Practice Problems Solutions. e u 5sin() with u(=)= We may rearrange this equation to e u 5sin() and note that it is

More information

Sec 4 Maths SET D PAPER 2

Sec 4 Maths SET D PAPER 2 S4MA Set D Paper Sec 4 Maths Exam papers with worked solutions SET D PAPER Compiled by THE MATHS CAFE P a g e Answer all questions. Write your answers and working on the separate Answer Paper provided.

More information

Core 1 Inequalities and indices Section 1: Errors and inequalities

Core 1 Inequalities and indices Section 1: Errors and inequalities Notes and Eamples Core Inequalities and indices Section : Errors and inequalities These notes contain subsections on Inequalities Linear inequalities Quadratic inequalities This is an eample resource from

More information

y 2 Well it is a cos graph with amplitude of 3 and only half a waveform between 0 and 2π because the cos argument is x /2: y =3cos π 2

y 2 Well it is a cos graph with amplitude of 3 and only half a waveform between 0 and 2π because the cos argument is x /2: y =3cos π 2 Complete Solutions Eamination Questions Complete Solutions to Eamination Questions 4. (a) How do we sketch the graph of y 3? Well it is a graph with amplitude of 3 and only half a waveform between 0 and

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman 03 04 Mathematics syllabus for Grade and For Bilingual Schools in the Sultanate of Oman Prepared By: A Stevens (Qurum Private School) M Katira (Qurum Private School) M Hawthorn (Al Sahwa Schools) In Conjunction

More information

6 Second Order Linear Differential Equations

6 Second Order Linear Differential Equations 6 Second Order Linear Differential Equations A differential equation for an unknown function y = f(x) that depends on a variable x is any equation that ties together functions of x with y and its derivatives.

More information

INVERSE TRIGONOMETRIC FUNCTIONS. Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN

INVERSE TRIGONOMETRIC FUNCTIONS. Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN . Introduction Mathematics, in general, is fundamentally the science of self-evident things. FELIX KLEIN In Chapter, we have studied that the inverse of a function f, denoted by f, eists if f is one-one

More information

SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS

SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS DEFINITION. A trig equation is an equation containing one or many trig functions of the variable arc x that rotates counterclockwise on the trig unit circle.

More information

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning.

PRE-CALCULUS FORM IV. Textbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. PRE-CALCULUS FORM IV Tetbook: Precalculus with Limits, A Graphing Approach. 4 th Edition, 2005, Larson, Hostetler & Edwards, Cengage Learning. Course Description: This course is designed to prepare students

More information

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems

Edexcel GCE A Level Maths. Further Maths 3 Coordinate Systems Edecel GCE A Level Maths Further Maths 3 Coordinate Sstems Edited b: K V Kumaran kumarmaths.weebl.com 1 kumarmaths.weebl.com kumarmaths.weebl.com 3 kumarmaths.weebl.com 4 kumarmaths.weebl.com 5 1. An ellipse

More information

What to Expect on the Placement Exam

What to Expect on the Placement Exam What to Epect on the Placement Eam Placement into: MTH 45 The ACCUPLACER placement eam is an adaptive test created by the College Board Educational Testing Service. This document was created to give prospective

More information

SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS (by Nghi H. Nguyen) DEFINITION.

SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS (by Nghi H. Nguyen) DEFINITION. SOLVING TRIGONOMETRIC EQUATIONS CONCEPT & METHODS (by Nghi H. Nguyen) DEFINITION. A trig equation is an equation containing one or many trig functions of the variable arc x that rotates counter clockwise

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.4 Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at

More information

MEI Core 2. Sequences and series. Section 1: Definitions and Notation

MEI Core 2. Sequences and series. Section 1: Definitions and Notation Notes and Eamples MEI Core Sequences and series Section : Definitions and Notation In this section you will learn definitions and notation involving sequences and series, and some different ways in which

More information

2. Higher-order Linear ODE s

2. Higher-order Linear ODE s 2. Higher-order Linear ODE s 2A. Second-order Linear ODE s: General Properties 2A-1. On the right below is an abbreviated form of the ODE on the left: (*) y + p()y + q()y = r() Ly = r() ; where L is the

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Chapter 1 Section Page 1 of 6 Section 1 A Catalog of Essential Functions Linear Models: All linear equations have the form rise change in horizontal The letter m is the of the line, or It can be positive,

More information

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions

Summer Review Packet for Students Entering AP Calculus BC. Complex Fractions Summer Review Packet for Students Entering AP Calculus BC Comple Fractions When simplifying comple fractions, multiply by a fraction equal to 1 which has a numerator and denominator composed of the common

More information

Extra Fun: The Indeterminate Forms 1, 0, and 0 0

Extra Fun: The Indeterminate Forms 1, 0, and 0 0 math 30, day 38 its: l hôpital s rule, part 7 Etra Fun: The Indeterminate Forms, 0, and 0 0 Some of the most interesting its in elementary calculus have the indeterminate forms,0 0, or 0 0. All of these

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h

+ 4 Ex: y = v = (1, 4) x = 1 Focus: (h, k + ) = (1, 6) L.R. = 8 units We can have parabolas that open sideways too (inverses) x = a (y k) 2 + h Unit 7 Notes Parabolas: E: reflectors, microphones, (football game), (Davinci) satellites. Light placed where ras will reflect parallel. This point is the focus. Parabola set of all points in a plane that

More information

A summary of factoring methods

A summary of factoring methods Roberto s Notes on Prerequisites for Calculus Chapter 1: Algebra Section 1 A summary of factoring methods What you need to know already: Basic algebra notation and facts. What you can learn here: What

More information

Problems with an # after the number are the only ones that a calculator is required for in the solving process.

Problems with an # after the number are the only ones that a calculator is required for in the solving process. Instructions: Make sure all problems are numbered in order. (Level : If the problem had an *please skip that number) All work is in pencil, and is shown completely. Graphs are drawn out by hand. If you

More information

HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS CHAPTER 5 HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS SECTION 5. INTRODUCTION: SECOND-ORDER LINEAR EQUATIONS In this section the central ideas of the theory of linear differential equations are introduced

More information

Ma 221. The material below was covered during the lecture given last Wed. (1/29/14). Homogeneous Linear Equations with Constant Coefficients

Ma 221. The material below was covered during the lecture given last Wed. (1/29/14). Homogeneous Linear Equations with Constant Coefficients Ma 1 The material below was covered during the lecture given last Wed. (1/9/1). Homogeneous Linear Equations with Constant Coefficients We shall now discuss the problem of solving the homogeneous equation

More information

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x)

In this note we will evaluate the limits of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0. f(x) L Hôpital s Rule In this note we will evaluate the its of some indeterminate forms using L Hôpital s Rule. Indeterminate Forms and 0 0 f() Suppose a f() = 0 and a g() = 0. Then a g() the indeterminate

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2

u C = 1 18 (2x3 + 5) 3 + C This is the answer, which we can check by di erentiating: = (2x3 + 5) 2 (6x 2 )+0=x 2 (2x 3 + 5) 2 Net multiply by, bring the unwanted outside the integral, and substitute in. ( + 5) d = ( + 5) {z {z d = u u We can now use Formula getting u = u + C = 8 ( + 5) + C This is the answer, which we can check

More information

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities.

Section 7.2 Addition and Subtraction Identities. In this section, we begin expanding our repertoire of trigonometric identities. Section 7. Addition and Subtraction Identities 47 Section 7. Addition and Subtraction Identities In this section, we begin expanding our repertoire of trigonometric identities. Identities The sum and difference

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

1 Some general theory for 2nd order linear nonhomogeneous

1 Some general theory for 2nd order linear nonhomogeneous Math 175 Honors ODE I Spring, 013 Notes 5 1 Some general theory for nd order linear nonhomogeneous equations 1.1 General form of the solution Suppose that p; q; and g are continuous on an interval I; and

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

Lesson 5.3. Solving Trigonometric Equations

Lesson 5.3. Solving Trigonometric Equations Lesson 5.3 Solving To solve trigonometric equations: Use standard algebraic techniques learned in Algebra II. Look for factoring and collecting like terms. Isolate the trig function in the equation. Use

More information

Section 1.2 A Catalog of Essential Functions

Section 1.2 A Catalog of Essential Functions Page 1 of 6 Section 1. A Catalog of Essential Functions Linear Models: All linear equations have the form y = m + b. rise change in horizontal The letter m is the slope of the line, or. It can be positive,

More information

Time: 1 hour 30 minutes

Time: 1 hour 30 minutes Paper Reference(s) 6665/0 Edecel GCE Core Mathematics C3 Bronze Level B Time: hour 30 minutes Materials required for eamination papers Mathematical Formulae (Green) Items included with question Nil Candidates

More information

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS Page of 6 FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS 6. HYPERBOLIC FUNCTIONS These functions which are defined in terms of e will be seen later to be related to the trigonometic functions via comple

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

10. Trigonometric equations

10. Trigonometric equations 0 EP-Program - Strisuksa School - Roi-et Math : Trigonometry () Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 0. Trigonometric

More information

Ordinary differential equations

Ordinary differential equations Class 7 Today s topics The nonhomogeneous equation Resonance u + pu + qu = g(t). The nonhomogeneous second order linear equation This is the nonhomogeneous second order linear equation u + pu + qu = g(t).

More information

MHF 4U Unit 4 Polynomial Functions Outline

MHF 4U Unit 4 Polynomial Functions Outline MHF 4U Unit 4 Polynomial Functions Outline Day Lesson Title Specific Epectations Transforming Trigonometric Functions B.4,.5, 3. Transforming Sinusoidal Functions B.4,.5, 3. 3 Transforming Sinusoidal Functions

More information

A.P. Calculus Summer Packet

A.P. Calculus Summer Packet A.P. Calculus Summer Packet Going into AP calculus, there are certain skills that have been taught to you over the previous years that we assume you have. If you do not have these skills, you will find

More information

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green)

Paper Reference. Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes. Mathematical Formulae (Orange or Green) Centre No. Candidate No. Paper Reference(s) 6665/01 Edecel GCE Core Mathematics C3 Advanced Thursday 11 June 009 Morning Time: 1 hour 30 minutes Materials required for eamination Mathematical Formulae

More information

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique

Outline. 1 Integration by Substitution: The Technique. 2 Integration by Substitution: Worked Examples. 3 Integration by Parts: The Technique MS2: IT Mathematics Integration Two Techniques of Integration John Carroll School of Mathematical Sciences Dublin City University Integration by Substitution: The Technique Integration by Substitution:

More information

SCATTERING. V 0 x a. V V x a. d Asin kx 2m dx. 2mE k. Acos x or Asin. A cosh x or Asinh

SCATTERING. V 0 x a. V V x a. d Asin kx 2m dx. 2mE k. Acos x or Asin. A cosh x or Asinh SCATTERING Consider a particle of mass m moving along the x axis with energy E. It encounters a potential given by V0 x a VV x a 0 In the region x > a we have with d E Asinkx m dx In the region x < a we

More information

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers Syllabus Objectives: 5.1 The student will eplore methods of vector addition and subtraction. 5. The student will develop strategies for computing a vector s direction angle and magnitude given its coordinates.

More information

Ordinary Differential Equations (ODEs)

Ordinary Differential Equations (ODEs) Chapter 13 Ordinary Differential Equations (ODEs) We briefly review how to solve some of the most standard ODEs. 13.1 First Order Equations 13.1.1 Separable Equations A first-order ordinary differential

More information

Summer MA Lesson 11 Section 1.5 (part 1)

Summer MA Lesson 11 Section 1.5 (part 1) Summer MA 500 Lesson Section.5 (part ) The general form of a quadratic equation is a + b + c = 0, where a, b, and c are real numbers and a 0. This is a second degree equation. There are four ways to possibly

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified)

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) SUMMER 8 EXAMINATION Important Instructions to eaminers: ) The answers should be eamined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written

More information

GCE Edexcel GCE. Core Mathematics C4 (6666) June Edexcel GCE. Mark Scheme (Final) Core Mathematics C4 (6666)

GCE Edexcel GCE. Core Mathematics C4 (6666) June Edexcel GCE. Mark Scheme (Final) Core Mathematics C4 (6666) GCE Edecel GCE Core Mathematics C4 (6666) June 006 Mark (Final) Edecel GCE Core Mathematics C4 (6666) June 006 6666 Pure Mathematics C4 Mark Question. dy dy dy = 6 4y + = 0 d d d Differentiates implicitly

More information

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions. Signals And Sysems Exam#. Given x() and y() below: x() y() 4 4 (A) Give he expression of x() in erms of sep funcions. (%) x () = q() q( ) + q( 4) (B) Plo x(.5). (%) x() g() = x( ) h() = g(. 5) = x(. 5)

More information

SEE and DISCUSS the pictures on pages in your text. Key picture:

SEE and DISCUSS the pictures on pages in your text. Key picture: Math 6 Notes 1.1 A PREVIEW OF CALCULUS There are main problems in calculus: 1. Finding a tangent line to a curve though a point on the curve.. Finding the area under a curve on some interval. SEE and DISCUSS

More information

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs

AQA Level 2 Further mathematics Number & algebra. Section 3: Functions and their graphs AQA Level Further mathematics Number & algebra Section : Functions and their graphs Notes and Eamples These notes contain subsections on: The language of functions Gradients The equation of a straight

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

THS Step By Step Calculus Chapter 1

THS Step By Step Calculus Chapter 1 Name: Class Period: Throughout this packet there will be blanks you are epected to fill in prior to coming to class. This packet follows your Larson Tetbook. Do NOT throw away! Keep in 3 ring binder until

More information

Indeterminate Forms and L Hospital s Rule

Indeterminate Forms and L Hospital s Rule APPLICATIONS OF DIFFERENTIATION Indeterminate Forms and L Hospital s Rule In this section, we will learn: How to evaluate functions whose values cannot be found at certain points. INDETERMINATE FORM TYPE

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

Higher Order Linear ODEs

Higher Order Linear ODEs c03.qxd 6/18/11 2:57 PM Page 57 CHAPTER 3 Higher Order Linear ODEs Chapters 1 and 2 demonstrate and illustrate that first- and second-order ODEs are, by far, the most important ones in usual engineering

More information

Section Graphs of Inverse Trigonometric Functions. Recall: Example 1: = 3. Example 2: arcsin sin = 3. Example 3: tan cot

Section Graphs of Inverse Trigonometric Functions. Recall: Example 1: = 3. Example 2: arcsin sin = 3. Example 3: tan cot Section 5.4 - Graphs of Inverse Trigonometric Functions Recall: Eample 1: tan 1 2π tan 3 Eample 2: 5π arcsin sin 3 Eample 3: tan cot 5 1 2 1 Eample 4: sin cos 4 1 1 Eample 5: tan sin 5 1 4 ) Eample 6:

More information

Further Ordinary Differential Equations

Further Ordinary Differential Equations Advanced Higher Notes (Unit ) Prerequisites: Standard integrals; integration by substitution; integration by parts; finding a constant of integration; solving quadratic equations (with possibly complex

More information

San Francisco State University

San Francisco State University AN INTRODUCTION TO DIFFERENTIAL GALOIS THEORY BRUCE SIMON San Francisco State University Abstract. Differential Galois theory takes the approach of algebraic Galois theory and applies it to differential

More information

Section 4.7: Variable-Coefficient Equations

Section 4.7: Variable-Coefficient Equations Cauchy-Euler Equations Section 4.7: Variable-Coefficient Equations Before concluding our study of second-order linear DE s, let us summarize what we ve done. In Sections 4.2 and 4.3 we showed how to find

More information

9.5 Parametric Equations

9.5 Parametric Equations Date: 9.5 Parametric Equations Syllabus Objective: 1.10 The student will solve problems using parametric equations. Parametric Curve: the set of all points xy,, where on an interval I (called the parameter

More information

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15

π π π π Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A B C D Determine the period of 15 Trigonometry Homework Booklet 1. Convert 5.3 radians to degrees. A. 0.09 B. 0.18 C. 151.83 D. 303.67. Determine the period of y = 6cos x + 8. 15 15 A. B. C. 15 D. 30 15 3. Determine the exact value of

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Variation of Parameters Page Questions Example (3.6.) Find a particular solution of the differential equation y 5y + 6y = 2e

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Core Mathematics 2 Unit C2 AS

Core Mathematics 2 Unit C2 AS Core Mathematics 2 Unit C2 AS compulsory unit for GCE AS and GCE Mathematics, GCE AS and GCE Pure Mathematics C2.1 Unit description Algebra and functions; coordinate geometry in the (, y) plane; sequences

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

M098 Carson Elementary and Intermediate Algebra 3e Section 11.3

M098 Carson Elementary and Intermediate Algebra 3e Section 11.3 Objectives. Solve equations by writing them in quadratic form.. Solve equations that are quadratic in form by using substitution. Vocabulary Prior Knowledge Solve rational equations: Clear the fraction.

More information

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V

TAM3B DIFFERENTIAL EQUATIONS Unit : I to V TAM3B DIFFERENTIAL EQUATIONS Unit : I to V Unit I -Syllabus Homogeneous Functions and examples Homogeneous Differential Equations Exact Equations First Order Linear Differential Equations Reduction of

More information

PMT. Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics FP2 (6668/01)

PMT. Mark Scheme (Results) Summer Pearson Edexcel GCE in Further Pure Mathematics FP2 (6668/01) Mark (Results) Summer 04 Pearson Edecel GCE in Further Pure Mathematics FP (6668/0) Edecel and BTEC Qualifications Edecel and BTEC qualifications come from Pearson, the world s leading learning company.

More information

AQA Statistics 1. Probability. Section 1: Introducing Probability. Notation

AQA Statistics 1. Probability. Section 1: Introducing Probability. Notation Notes and Examples AQA Statistics 1 Probability Section 1: Introducing Probability These notes contain subsections on Notation The complement of an event Probability of either one event or another Notation

More information

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically 1 MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically Definition Trigonometric identity Investigate 1. Using the diagram

More information

STEP Support Programme. STEP 2 Trigonometry Questions: Solutions

STEP Support Programme. STEP 2 Trigonometry Questions: Solutions STEP Support Programme STEP Trigonometry Questions: Solutions We have cos cos cos sin sin cos cos sin cos sin cos cos cos sin cos cos cos cos cos cos cos + cos 4 cos cos Since the answer is given, you

More information

AP Calculus I Summer Packet

AP Calculus I Summer Packet AP Calculus I Summer Packet This will be your first grade of AP Calculus and due on the first day of class. Please turn in ALL of your work and the attached completed answer sheet. I. Intercepts The -intercept

More information

6.1: Reciprocal, Quotient & Pythagorean Identities

6.1: Reciprocal, Quotient & Pythagorean Identities Math Pre-Calculus 6.: Reciprocal, Quotient & Pythagorean Identities A trigonometric identity is an equation that is valid for all values of the variable(s) for which the equation is defined. In this chapter

More information

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3

dy dy 2 dy d Y 2 dx dx Substituting these into the given differential equation d 2 Y dy 2Y = 2x + 3 ( ) ( 1 + 2b)= 3 Solutions 14() 1 Coplete solutions to Eerise 14() 1. (a) Sine f()= 18 is a onstant so Y = C, differentiating this zero. Substituting for Y into Y = 18 C = 18, hene C = 9 The partiular integral Y = 9. (This

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

Chapter 1 Analytic geometry in the plane

Chapter 1 Analytic geometry in the plane 3110 General Mathematics 1 31 10 General Mathematics For the students from Pharmaceutical Faculty 1/004 Instructor: Dr Wattana Toutip (ดร.ว ฒนา เถาว ท พย ) Chapter 1 Analytic geometry in the plane Overview:

More information

Function Gallery: Some Basic Functions and Their Properties

Function Gallery: Some Basic Functions and Their Properties Function Gallery: Some Basic Functions and Their Properties Linear Equation y = m+b Linear Equation y = -m + b This Eample: y = 3 + 3 This Eample: y = - + 0 Domain (-, ) Domain (-, ) Range (-, ) Range

More information

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper

C4 mark schemes - International A level (150 minute papers). First mark scheme is June 2014, second mark scheme is Specimen paper C4 mark schemes - International A level (0 minute papers). First mark scheme is June 04, second mark scheme is Specimen paper. (a) f (.).7, f () M Sign change (and f ( ) is continuous) therefore there

More information

Summer Packet Honors PreCalculus

Summer Packet Honors PreCalculus Summer Packet Honors PreCalculus Honors Pre-Calculus is a demanding course that relies heavily upon a student s algebra, geometry, and trigonometry skills. You are epected to know these topics before entering

More information

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1

Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Differential Equations Practice: 2nd Order Linear: Nonhomogeneous Equations: Undetermined Coefficients Page 1 Questions Example (3.5.3) Find a general solution of the differential equation y 2y 3y = 3te

More information

WJEC Core 2 Integration. Section 1: Introduction to integration

WJEC Core 2 Integration. Section 1: Introduction to integration WJEC Core Integration Section : Introuction to integration Notes an Eamples These notes contain subsections on: Reversing ifferentiation The rule for integrating n Fining the arbitrary constant Reversing

More information