State Estimation in Energy Harvesting Systems

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "State Estimation in Energy Harvesting Systems"

Transcription

1 1 Sae Esimaion in Energy Harvesing Sysems Omur Ozel Venka Ananharam Deparmen of Elecrical Engineering and Compuer Sciences Universiy of California, Berkeley, CA Absrac We consider a discree ime scalar Kalman filering problem over an erasure channel wih an energy harvesing ransmier boh wih and wihou side informaion abou he erasure sae of he channel available a he ransmier. The cos of ransmiing an observaion is one uni of energy and he ransmier conrols is energy expendiure by leveraging he available energy sorage and side informaion. In his seing, he observaions are inermienly available a he receiver and his inermiency is conrolled by he ransmier. We sudy he hreshold for he growh rae of he dynamics ha guaranees he boundedness of he asympoic expeced sae esimaion error covariance under differen sysem seings. I. INTRODUCTION Wih recen developmens in MEMS, RF, and solar echnologies, energy harvesing is becoming an inegral par of many wireless sensors. In applicaions wih energy harvesing sensors, energy o run he circuiry of he sensor o sense, process, and ransmi he measured daa is ypically only inermienly available. Energy sorage is ypically available o save a porion of he harvesed energy for laer use. This enables he deploymen of an energy managemen policy o conrol he effecs of he inermiency in he arrival of energy. In his paper, we address he implicaions of his abiliy o manage he energy inermiency in he conex of sae esimaion of a scalar dynamical sysem a a remoe locaion conneced o he source of he dynamics over a noisy channel. Energy managemen for energy harvesing applicaions has recenly been an acive opic of research. In [1], [2], his problem was sudied in an informaion heoreic seing. [1] considers he channel capaciy of a poin-opoin addiive Gaussian channel wih an energy harvesing ransmier and unlimied energy sorage. I is shown ha he energy inermiency is smoohed ou by unlimied energy sorage in deermining he channel capaciy and he ransmier is effecively average power consrained. Laer, in [2], his problem is invesigaed in he finie baery regime. This work reveals ha sudying he growh rae wih block lengh of he volume of he se of energy feasible codewords enables quie accurae approximae capaciy expressions o be wrien in he finie baery regime. [3] considers he channel capaciy when i is he receiver ha is energy harvesing, focusing on he rade-off a he receiver beween he energy cos of sampling and he energy cos of decoding. In [4], asympoic opimaliy for scheduling sensing epochs is addressed in he finie and infinie baery regimes. In conras o hese works, our work is largely moivaed by he problem of Kalman filering wih inermien observaions ha was pioneered by he seminal work [5]. This work invesigaes he sae esimaion error covariance in a Gaussian Kalman filering problem wih vecor dynamics where he observaions are randomly erased by an i.i.d. (independen and idenically disribued) erasure process. The esimaion error covariance goes from bounded o asympoically unbounded a a hreshold for he erasure probabiliy, and [5] deermines his hreshold in cerain cases. This problem has laer been considered in various differen seings [6] [13]. Noable among hese is he work of Park and Sahai [12], [13], which deermines he exac value of he hreshold in he mos general seing wih i.i.d. erasures. Addiionally, he role of sampling in he deerminaion of his hreshold is considered in [12], [13]. Laer, in [14], he value of side informaion in he conex of his Kalman filering problem is addressed. Closer o he spiri of our work, in he conex of energy harvesing, [15] considers a remoe esimaion problem wih an energy harvesing sensor and a remoe esimaor. The objecive is o joinly minimize he communicaion coss and disorion by a communicaion sraegy a he ransmier and an esimaion sraegy a he receiver. Using dynamic programming, [15] shows ha joinly opimal sraegies are characerized by hresholds and he opimal esimae is a funcion of he mos recen observaion. This work, however, does no consider channel erasures. Our work is mos closely relaed o he work of [16], which considers a problem formulaion very similar o and in many ways more general han he one presened below. Our work is disinguished from [16] by he focus on he explici deerminaion of he hreshold on he growh rae of he dynamics ha allows for asympoically bounded esimaion error covariance. Throughou he paper, we use he expressions ransmission policy and ransmission sraegy inerchangeably. We wrie := for equaliy by definiion. For any sequence (α, 0), we wrie α for (α 0,..., α ). II. THE SETUP AND MODEL We consider he Kalman filering problem wih an energy harvesing ransmier. The seing corresponding o his problem is shown in Figure 1. The sae of he

2 2 sysem x evolves according o he following sochasic rule: x +1 = ax + ω, (1) where a is a real number wih a > 1, x 0 N (0, Π 0 ) wih Π 0 > 0, and ω N (0, κ) are i.i.d. wih (ω, 0) and x 0 being muually independen. The observaions are inermienly available o he receiver. The inermiency of he observaions is due o boh he channel erasures and decision of he ransmier o no ransmi he observaion, which in urn is moivaed by he need for energy managemen. The channel is of erasure ype wih wo possible saes 0 and 1 and erasure probabiliy p e. This is represened by a channel erasure process (γ, 0), which is i.i.d. and independen of (x 0, (ω, 0)), wih P (γ = 0) = p e. The energy arrival process is an i.i.d. binary process (E, 0) ha akes values 0 or 1 wih P (E = 1) = p a, and is independen of (x 0, ((ω, γ ), 0)). A each ime 0 he ransmier decides o ransmi or no o ransmi he observaion y = cx +ν, where c 0 and (ν, 0) is an i.i.d. observaion noise process independen of (x 0, ((ω, γ, E ), 0)), wih ν N (0, 1). This ransmission policy is denoed as S {0, 1} where S = 1 means he ransmier decides o send y and incurs a depleion of one uni of energy from he baery. There is no cos associaed o no ransmiing. Arriving energy is immediaely available for daa ransmission. Accordingly, S = 1 is possible only when he baery is non-empy or E = 1. The number of unis of energy in he baery a ime, B, is updaed as B +1 = min{b + E S, B max }, (2) where S = 1 is possible only when B + E > 0. Here, B max is he baery sorage capaciy and B 0 is iniial number of unis of energy in he baery, which is assumed o be deerminisic, i.e. a fixed ineger. This is only for noaional convenience, as discussed in Remark 2. We assume B 0 is finie and B 0 {0, 1,..., B max }. We consider several scenarios for he informaion available o he ransmier when deermining S. Access o he realizaion of he erasure environmen ha will be faced on he curren ransmission is called side informaion in his documen. Furher, we also make a disincion beween he causal and he anicipaive cases - he laer is mean o capure he scenario where he ransmier migh have lookahead informaion abou he fuure of he energy arrival process and/or he erasure environmen of he channel. Anicipaive scenarios of his kind migh be of ineres in pracice if he energy arrival process and/or he erasure environmen is influenced by some feaures exernal o he model ha he ransmier has access o. More precisely, he following scenarios for he informaion available o he ransmier will show up in his documen. In all hese scenarios, (ζ, 0) is a sequence of i.i.d. random variables, each uniformly disribued on [0, 1], and independen of (x 0, ((ω, ν, E, γ ), 0)), which are used by he ransmier for randomizaion of B max E {0,1} Sysem x +1 = ax + ω y = cx + ν y B Transmier y if S = 1, 0 else Erasure Channel γ Possible Side γ {0,1} Informaion ỹ Esimaor Fig. 1. Sysem model. The side informaion may or may no be presen. he ransmission sraegy, if desired. S = S (B 0, E, ζ ), which we call he causal case wih no side informaion. S = S (B 0, E, γ, ζ ), which we call he causal case wih side informaion. S = S (B 0, Ē, ζ ), which we call he anicipaive case wih no side informaion. S = S (B 0, Ē, γ, ζ ), which we call he energy anicipaive case wih side informaion. S = S (B 0, Ē, γ, ζ ) which we call he anicipaive case wih side informaion. The reason for explicily including B 0 in hese bulles is o accommodae he siuaion where B 0 migh be random, as described in Remark 2. I is imporan o noe ha in all hese cases he decision of he ransmier as o when o ransmi he observaion does no depend on he observaions. A consequence of his is ha ((E, γ, S, ζ ), 0) is independen of ((x, y, ω, ν ), 0). This independence is crucial o suppor he resuls claimed in his paper. We urn now o discuss he receiver/esimaor. Le γ := γ S, so ( γ, 0) is he effecive erasure sequence. We are ineresed in sudying he evoluion of he predicion error covariance as he receiver ries o predic he sae a ime, given all he observaions available o i prior o ime, 0. This informaion is ( γ 1, η 1 ), where η := y 1( γ = 1) for 0. The MMSE (minimum mean square error) predicor of he sae is hen given by ˆx 1 := E [ x γ 1, η 1], 0, (3) which reads ˆx 0 1 = E[x 0 ] a = 0, by convenion, and he predicion error covariance is Π := E [ (x ˆx 1 ) 2 γ 1, η 1], (4) which reads Π 0 = E[ ( x 0 ˆx 0 1 ) 2] a = 0, by convenion, and is consisen wih he prior use of he noaion Π 0, because ˆx 0 1 = 0. Regarding he evoluion of he predicion error covariance, one can use radiional Kalman filering heory o prove he following lemma. Lemma 1 The predicion error covariance evolves according o he following random Riccai equaion, iniial-

3 3 ized a Π 0 : Π +1 = a 2 Π + κ γ a 2 c 2 Π 2 c 2 Π + 1. (5) Proof: The correcness of he iniializaion is seen from ˆx 0 1 = 0. In order o prove he lemma, we consider, for σ 2 > 0, he scenario where he observaions ( γ 1, η 1 ) are augmened o ( γ 1, η 1 ), where { y, if γ η := = 1, (6) y + β, if γ = 0, where (β, 0) is an i.i.d. sequence independen of (x 0, ((ω, γ, E, ν, ζ ), 0)), wih β N (0, σ 2 ). In his augmened scenario, because ( γ, 0) is independen of ((x, y, ω, ν ), 0), radiional Kalman filering heory applies, and we can wrie an evoluion equaion for he corresponding predicion error covariance. We hen focus on he asympoic scenario σ 2. The updae equaions for he predicor error covariance become equaion (5) in his limi. Furher, in his asympoic limi, if he channel incurs erasure, i.e. γ = 0, or he ransmier decides o no ransmi he observaion, i.e. S = 0, i is as if he esimaor observes noise of infinie variance in he oupu, i.e., he measuremen is los. The correcness of his inerpreaion of he asympoic limi can be jusified as done in [5]. Remark 1 Even hough he evoluion equaion for he predicion error covariance is idenical for all he ransmission informaion srucures we consider, he acual predicion error covariance processes are differen, because hey are driven by differen ( γ, 0). Remark 2 The assumpion ha B 0 is deerminisic may give he impression ha B 0 is assumed o be known o he receiver. However, all he resuls in his documen hold when B 0 is assumed o be a random finie ineger aking values in {0, 1,..., B max }, independen of (x 0, ((ω, γ, E, ζ ), 0)), and no known o he receiver. This is because (B 0, (E, γ, S, ζ ), 0) would hen be independen of ((x, y, ω, ν ), 0) under our assumpion ha he ransmier does no have access o he observaions in deciding he imes a which o ransmi. This would imply ha he evoluion of he predicion error covariance a he receiver coninues o obey equaion (5). Corollary 1 For 0, we have κ Π +1 κ + a2 c 2 if γ = 1. (7) Proof: From equaion (5), we have Π +1 = a 2 Π + κ a2 c 2 Π 2 c 2 Π + 1 if γ = 1. Since a2 c 2 Π 2 c 2 Π +1 a2 Π, we have he claimed lower bound. For he upper bound, observe ha a 2 u a2 c 2 u 2 c 2 u + 1 a2 for all u 0. c2 Corollary 2 For each 0, le denoe he ime elapsed since he mos recen ransmission if here has been a prior ransmission, and = oherwise. Noe ha = does no disinguish beween wheher or no here was a ransmission a ime 0. Then we have Π +1 min(π 0, κ)a 2, for all 0. (8) In paricular, his implies ha Π min(π 0, κ), for all 0. (9) Proof: From equaion (5), Π 1 κ if γ 0 = 0, and his is also rue if γ 0 = 1, by equaion (7), so since 0 = 0 he claim in equaion (8) is rue for = 0, i.e. for Π 1. Assume i is rue for Π for some 1. If S = 0, hen γ = 0, so from equaion (5) we have Π +1 a 2 Π, and since = in his case, he claim is rue. If S = 1 and γ = 1, hen from equaion (7) we have Π +1 κ, and since = 0 in his case, he claim is rue. If S = 1 and γ = 0, we have = 0 and Π +1 κ from equaion (5), so he claim is once again rue. This proves equaion (8) by inducion. The ruh of equaion (9) follows immediaely, since i is also rue a = 0. Corollary 3 For each 0, le denoe he ime elapsed since he mos recen successful ransmission if here has been a successful prior ransmission, and = oherwise. Noe ha = does no disinguish beween wheher or no here was a successful ransmission a ime 0. Then we have where Ma 2 Π +1, for all 0, (10) M := a 2 (max(π 0, 1 c 2 ) + κ a 2 1 ). (11) Proof: To prove equaion (10), we will acually prove a 2 max(π 0, 1 c 2 )a2 + κ a 2 1 (a2( +1) 1) Π +1, for all 0. Since 0 = 0, his is rue a = 0, by equaions (5) and (7). Assume i is rue for Π for some 1. If γ = 0, hen = 1 + 1, and since a 2 κ a 2 1 (a2( 1+1) 1) + κ = κ a 2 1 (a2( +1) 1). he claim holds for Π +1. If γ = 1, hen = 0, and he claim holds for Π +1 by equaion (7), compleing he proof.

4 4 Lemma 2 Le T 1 and T 2 be independen random variables wih P (T 1 = k) = (1 α) k 1 α and P (T 2 = k) = (1 β) k 1 β, k 1, where 0 < α, β < 1. Le T := T 1 +T 2. Noe ha T 2. We have lim k P (T = k+1 T > k) = min(α, β) Proof: The saemen follows by a direc calculaion. We nex urn o presen our main resuls. Our ineres is in he boundedness of he ime asympoe of he expeced value of he predicion error covariance, i.e. we are ineresed in sudying (E[Π ], 0). 1 A. p a = 0 III. EXTREME CASES The case p a = 0 corresponds o no arrival of energy. In his case γ = 0 for all 0, excep for a mos B 0 ime insances, so we always have lim E[Π ] =, from equaion (5). B. p e = 1 In he case p e = 1 all ransmissions are erased. Thus we have γ = 0 for all 0, so we always have lim E[Π ] = in his case, from equaion (5). C. p a = 1 The case p a = 1 corresponds o arrival of energy in every ime slo. We may assume ha 0 p e < 1 since he case p e = 1 has already been covered. I is inuiively apparen ha he bes ransmission sraegy o minimize he growh of he expeced predicor error covariance is o ransmi he observaion in each ime slo. This is formally jusified by he following resul, which covers all five ransmier informaion srucures of ineres and also idenifies he hreshold a for he asympoic boundedness of he expeced predicor error covariance. Theorem 1 When p a = 1 and 0 p e < 1, if a 2 p e < 1 he causal deerminisic sraegy wih no side informaion of ransmiing a every energy arrival ime has lim sup E[Π ] <. Conversely, when a 2 p e > 1, for any randomized anicipaive policy wih side informaion we have lim E[Π ] =. Proof: For he firs saemen, firs wrie equaion (5) as Π +1 = (a 2 Π + κ)1( γ = 0) + Π +1 1( γ = 1), (12) From equaion (7) we ge Π +1 a 2 Π 1( γ = 0) + a2 c 2 1( γ = 1) + κ. (13) Now, for he policy under consideraion, we have γ = γ for all 0. This gives, on aking expecaions and observing ha γ is independen of Π, E[Π +1 ] a 2 p e E[Π ] + a2 c 2 + κ, 1 When B 0 is random, we are in effec sudying (E[Π B 0 ], 0). which proves he saemen. For he second saemen, from equaion (5) we have which can be ieraed o give and hence Π +1 a 2 Π 1( γ = 0), (14) Π +1 a 2(+1) Π 0 1( γ 0 = 0,..., γ = 0), (15) Π +1 a 2(+1) Π 0 1(γ 0 = 0,..., γ = 0). Taking expecaions gives E[Π +1 ] (a 2 p e ) +1 Π 0, which proves he saemen. D. B max = 0 We may assume ha 0 < p a < 1 and 0 p e < 1, since he oher cases have already been covered. Noe ha we mus necessarily have B 0 = 0 when B max = 0. I is inuiively apparen ha he bes ransmission sraegy o minimize he growh of he expeced predicor error covariance is o ransmi he observaion in each ime slo. This is formally jusified by he following resul, which covers all five ransmier informaion srucures of ineres and also idenifies he hreshold a for he asympoic boundedness of he expeced predicor error covariance. Theorem 2 When B max = 0, 0 < p a < 1, and 0 p e < 1, if a 2 (1 p a (1 p e )) < 1 he causal deerminisic sraegy wih no side informaion of ransmiing a every energy arrival ime has lim sup E[Π ] <. Conversely, when a 2 (1 p a (1 p e )) > 1, for any randomized anicipaive policy wih side informaion we have lim E[Π ] =. Proof: The proof is idenical in srucure o he proof of Theorem 1. For he firs saemen, we wrie equaion (5) in he form of equaion (12) and hen use equaion (7) o ge he bound in equaion (13). We observe ha 1( γ = 0) = 1 1(γ = 1, E = 1) for he policy under consideraion. We hen ake expecaions, observing ha (γ, E ) is independen of Π, o ge E[Π +1 ] a 2 (1 p a (1 p e ))E[Π ] + a2 c 2 + κ, which proves he saemen. For he second saemen, we sar wih he lower bound in equaion (14) as in he proof of Theorem 1 and ierae as here o ge he lower bound in equaion (15). We hen observe ha 1( γ s = 0) 1 1(γ s = 1, E s = 1) for all s 0 o ge Π +1 a 2(+1) Π 0 (1 1(γ s = 1, E s = 1)). s=0 Taking expecaions gives E[Π +1 ] (a 2 (1 p a (1 p e ))) +1 Π 0, which proves he saemen.

5 5 IV. THE CASE OF p e = 0 We may assume ha 1 B max and 0 < p a < 1, since he oher cases have already been covered. When he channel is erasure-free, i.e., p e = 0, no disincion needs o be made beween he case wih side informaion and he case wihou side informaion, so ha here are in effec only wo ransmier informaion srucures of ineres, namely he causal case wih no side informaion, and he anicipaive case wih no side informaion. A. The causal case wih no side informaion The hreshold a for asympoic boundedness of he expeced predicion error covariance is idenified in he following heorem. Theorem 3 Le p e = 0, 0 < p a < 1, and 1 B max. Le he iniial baery level be any finie ineger B 0 {0, 1,..., B max }. If a 2 (1 p a ) < 1 he causal deerminisic sraegy wih no side informaion of ransmiing a every energy arrival ime has lim sup E[Π ] <. Conversely, if a 2 (1 p a ) > 1 hen for every causal randomized sraegy wih no side informaion we have lim E[Π ] =. Proof: The proof of he firs saemen follows he paern of he corresponding par of he proof of Theorem 1. Wriing equaion (5) for his policy as in equaion (12), we hen use equaion (7) o ge he inequaliy in equaion (13). We hen observe ha 1( γ = 0) equals 1(E = 0) for he ransmission sraegy under consideraion. We ake expecaions in equaion (13), observing ha E is independen of Π, o ge E[Π +1 ] a 2 (1 p a )E[Π ] + a2 c 2 + κ, which proves he saemen. To prove he second saemen, pick ɛ > 0 such ha a 2(1 ɛ) (1 p a ) > 1. Fix any causal randomized sraegy wih no side informaion. Noe ha 1( γ = 0) = 1(S = 0), because p e = 0. We claim ha lim P (S ɛ = 0,..., S = 0 E 0 = 0,..., E = 0) = 1. To see his, for noaional convenience, le us denoe ψ := P (S ɛ = 0,..., S = 0 E 0 = 0,..., E = 0). Firs noe ha (16) ψ = P (S ɛ = 0,..., S = 0 E 0 = 0,..., E u = 0), (17) for all u. This is because (E +1,..., E u ) is independen of (S ɛ,..., S, E ), because he sraegy is causal. We will show ha, for all δ > 0, here can be only finiely many values of for which ψ 1 δ, which suffices o esablish he claim of equaion (16). To see his, given δ > 0, suppose here is a value of, call i 1, for which ψ 1 δ. Pick s 1 so large ha 1 < ɛs 1 and ask if here is value of, > s 1, for which ψ 1 δ. If here is such a value, call i 2, hen pick s 2 so large ha 2 < ɛs 2, and ask if here is a value of, > s 2, for which ψ 1 δ, and so on. There can be a mos B0 δ imes where he kind of choice of desired can be found. To see his, suppose here are imes 1 < 2 <... < N of he kind desired where N > B0 δ. In view of equaion (17), we have, for each 1 n N, P ((S ɛn = 0,..., S n = 0) c E 0 = 0,..., E N = 0) δ. Since he ime inervals { ɛ n,..., n } for 1 n N are disjoin, adding hese inequaliies shows ha he expeced number of ransmissions over he ime inerval {0,..., N }, condiioned on he even {E 0 = 0,..., E N = 0}, is sricly bigger han B 0, bu his is impossible. Having esablished he correcness of he claim in equaion (16), we hen sar wih equaion (5) and ge he inequaliy in equaion (14), as in he proof of Theorem 1. Raher han ieraing all he way o ge he inequaliy in equaion (15), we ierae parially o ge Π +1 a 2(+1 ɛ ) Π ɛ 1( γ ɛ = 0,..., γ = 0). From he lower bound in equaion (9), his gives Π +1 a 2(+1 ɛ ) min(π 0, κ)1( γ ɛ = 0,..., γ = 0), = a 2(+1 ɛ ) min(π 0, κ)1(s ɛ = 0,..., S = 0). Taking expecaions, we have E[Π +1 ] a 2(+1 ɛ ) min(π 0, κ)p (S ɛ = 0,..., S = 0), a 2(+1 ɛ ) min(π 0, κ)ψ (1 p a ) +1, (a 2(1 ɛ) (1 p a )) min(π 0, κ)ψ (1 p a ), which, in view of equaion (16), proves he second saemen of he heorem. B. The anicipaive case wih no side informaion The hreshold a for asympoic boundedness of he expeced predicion error covariance is idenified, in a weak form, in he following heorem. Noe ha he converse saemen is weaker han desired. Wha we would really like o prove is ha lim inf E[Π ] =. Theorem 4 Le p e = 0, 0 < p a < 1, and 1 B max. Le he iniial baery level be any finie ineger B 0 {0, 1,..., B max }. If a 2 (1 p a ) < 1 here is an anicipaive randomized sraegy wih no side informaion, which has lim sup E[Π ] <. Conversely, if a 2 (1 p a ) > 1 hen for every anicipaive randomized sraegy wih no side informaion we have 1 E[Π u] =. lim 1

6 6 Proof: We consruc he sraegy promised in he firs saemen of he heorem. We may assume ha B 0 1, since he case B 0 = 0 is already covered by Theorem 3, in fac wih a causal deerminisic sraegy. If here is an energy arrival a ime 0 we ignore i, i.e. we keep he one uni of energy i brings in he baery if possible ill i is los due o baery overflow (which migh never happen), wihou ever using i. The successive energy arrival imes from ime 1 onwards are denoed L 1, L 1 + L 2, L 1 +L 2 +L 3,.... Thus he L k for k 1 are i.i.d. wih P (L k = s) = (1 p a ) s 1 p a for s 1. The ransmier generaes B 0 1 addiional i.i.d. random variables, denoed L 0, L 1, L 2,..., L B0+2, based on is random seed ζ 0. We also have P (L k = s) = (1 p a ) s 1 p a for s 1 for each B k 0. Concepually, we hink of hese arificially generaed random variables as represening arrivals a imes L 0, L 0 L 1,..., L 0 L 1... L B0+2. We also hink of one of he unis of energy in he baery a ime 0 (recall we have assumed ha B 0 1) as having arrived a ime 0. Wih his viewpoin in mind, le us wrie A k for L k+1... L 0, for k =,..., 1, wrie A 0 for 0, and wrie A k for L L k for k 1. We also define B0 W k := L k+1 + B 0 1 L k L k+b0 B 0 (18) for k. Our sraegy is o ransmi a each of he imes of he ype A k + W k, k, ha is nonnegaive. To show ha his policy works, we firs need o verify ha each of he proposed ransmission imes is disinc. This can be seen by checking ha, for each k, A k+1 + W k+1 (A k + W k ) = L k+1 + W k+1 W k = L k+1 + B0 L k L k+1+b0 j=1 jl k+b 0 j+2 1. B0 Noe ha his calculaion also shows ha 1+ L k L k+1+b0 j=1 jl k+b 0 j+1 A k+1 +W k+1 (A k +W k ). We also need o verify ha his policy is energy-feasible, i.e. ha i does no require a ransmission o occur a a ime unless here is energy in he baery a ha ime or here is an energy arrival a ha ime. To see his, i suffices o verify ha for each k we have A k + W k A k, which is obvious, because W k 0, and also A k + W k < A k+b0, which follows from B0 j=1 jl k+b 0 j+1 < L k L k+b0, where he sric inequaliy is because each L i is sricly posiive. Finally, we claim ha lim sup E[Π ] < under his policy. To show his, consider any ime > 0. By Corollary 3, if he mos recen ransmission occurred a ime 0 k, we have Π +1 Ma 2k, while if here has been no ransmission a any ime in {0, 1,..., }, we have Π +1 Ma 2. Here M is given by equaion (11). We have E[Π +1 ] Ma 2 P (A 0 + W 0 > ) + Ma 2k P (A j + W j = k, j=0 A j+1 + W j+1 > ), Ma 2k (k + ) P (L L B0+1 ()(k 1)). L L B0+1 is negaive binomial wih success probabiliy p a and as a 2 (1 p a ) B0+1 < 1, we have k=1 a2k (k + )P (L L B0+1 (B 0 + 1)(k 1)) <. Therefore, he firs saemen in he claim is proved. To prove he second saemen, pick ɛ > 0 such ha a 2(1 2ɛ) (1 p a ) > 1. Le T 1 denoe he ime of he firs energy arrival, so P (T 1 = s) = (1 p a ) s p a, s 0. For each 0, as in Corollary 2, le denoe he ime elapsed since he mos recen ransmission under he policy under consideraion, if here has been a prior ransmission, and = oherwise. From equaion (8), we have Π, u+1 min(π 0, κ)a 2 u 1(T 1 ), for all 0 u 1. Hence Π u+1 c 1 a 2 u 1(T 1 ), where c 1 := min(π 0, κ). Taking expecaions gives 1 1 c 1 s= E[Π u+1 ] (1 p a ) s p a E[ 1 1 a 2 u T 1 = s]. (19) Condiioned on T 1 = s, here can be a mos B 0 ransmission aemps in he inerval {0, 1,..., 1}. If u 1,..., u B0, u B0+1 are he lenghs of duraions ino which hese ransmissions spli he duraion {0, 1,..., 1}, so B0+1 k=1 u k = (and some of he u k are allowed o be 0

7 7 if here are fewer han B 0 ransmissions), hen we have 1 a 2 u = B 0+1 k=1 a 2u k 1 a 2 1 where c 2 := B0+1 a 2 1, by Jensen s inequaliy. Puing hese ogeher gives c 2(a 2 1), E[Π u+1 ] c 3 (1 p a) a 2, for a suiable consan c 3 > 0, for all sufficienly large, which complees he proof of he second saemen of he heorem. V. 0 < p e < 1 WITH NO SIDE INFORMATION Suppose 0 < p e < 1. We may assume ha 1 B max and 0 < p a < 1, since he oher cases have already been covered. If here is no side informaion here are wo informaion srucures of ineres for he ransmier, and he following heorem idenifies he hreshold a for asympoic boundedness of he expeced predicion error covariance in boh hese cases. Theorem 5 Suppose 0 < p e < 1, 0 < p a < 1, 1 B max, and le he iniial baery level be any finie ineger B 0 {0, 1,..., B max }. If a 2 (1 p a (1 p e )) < 1 he causal deerminisic policy wih no side informaion of ransmiing a every energy arrival ime has lim sup E[Π ] <. Conversely, if a 2 (1 p a (1 p e )) > 1 for every anicipaive randomized policy wih no side informaion we have lim E[Π ] =. Proof: The proof of he firs saemen is idenical o he proof of he firs saemen in Theorem 2 (he condiion ha B max = 0 in he hypohesis of ha heorem was no used in he proof of is firs saemen). To prove he second saemen, noe ha for each 0 he probabiliy of having k arrivals of energy in he ime inerval {0,..., } is ( ) +1 k p k a (1 p a ) +1 k, 0 k + 1. The oal number of ransmission aemps of he policy during his ime inerval can be a mos B 0 +k if here are k arrivals of energy during he inerval. Since (B 0, ((E, ζ ), 0)) is independen of (γ, 0), each ransmission aemp will be independenly erased wih probabiliy p e, irrespecive of he paern of he ransmission aemps. We conclude ha P ( γ = 0 ) +1 p B0+k e ( + 1 k ) p k a(1 p a ) +1 k, = p B0 e (1 p a + p a p e ) +1, (20) where 0 denoes he sring of + 1 zeros, (0,..., 0). We hen proceed as in he proof of he second saemen of Theorem 1. From equaion (5) we have he lower bound in equaion (14). Ieraing his gives he lower bound in equaion (15). Taking expecaions and using equaion (20) gives E[Π +1 ] a 2(+1) Π 0 p B0 e (1 p a + p a p e ) +1, which proves he saemen. VI. 0 < p e < 1 WITH SIDE INFORMATION Suppose 0 < p e < 1. We may assume ha 1 B max and 0 < p a < 1, since he oher cases have already been covered. If here is side informaion here are hree informaion srucures of ineres for he ransmier. The following heorem idenifies he hreshold a for asympoic boundedness of he expeced predicion error covariance in he causal case wih side informaion. Theorem 6 Suppose 0 < p e < 1, 0 < p a < 1, 1 B max, and le he iniial baery level be any finie ineger B 0 {0, 1,..., B max }. If a 2 (1 p a ) < 1 and a 2 p e < 1, here is a deerminisic causal ransmission sraegy wih side informaion such ha lim sup E[Π ] <. Conversely, if eiher a 2 (1 p a ) > 1 or a 2 p e > 1, for every causal randomized policy wih side informaion we have lim E[Π ] =. Proof: To prove he firs saemen we consider he following sraegy: wai for a fresh uni of energy o arrive a ime 1 or laer. Once i has arrived, he baery will have a leas one uni of energy. Then wai ill he firs ime ha here is side informaion ha he channel is erasurefree, and ransmi a ha ime, call i V 1. Wai for he firs arrival of energy a one of he imes from V onwards, hen, once i has arrived, wai for he nex side informaion ha he channel is erasure-free and ransmi a ha ime, ec. Wih his sraegy, ransmissions occur a he ime of a renewal process wih iner-ransmission imes i.i.d. and having he disribuion of V, which is he sum of wo independen random variables T 1 and T 2, wih P (T 1 = k) = (1 p a ) k 1 p a for k 1 and P (T 2 = k) = p k 1 e (1 p e ) for k 1. Since all ransmissions are guaraneed o be successful, = for all 0, and (, 0) evolves as a Markov chain wih P ( +1 = 1 = 0) = 1, P ( +1 = k + 1 = k) = P (V > k + 1 V > k), P ( +1 = 0 = k) = P (V = k + 1 V > k). By equaion (10), we have E[Π +1 ] ME[a 2 ] = a 2k P ( = k),

8 8 wih M given as in equaion (11). We have +1 a 2k P ( +1 = k) = P ( +1 = 0) + a 2 P ( +1 = 1) +1 + a 2k P ( +1 = k), k=2 = P ( +1 = 0) + a 2 P ( = 0) + a 2 ( a 2k P ( = k))p (V > k + 1 V > k). k=1 According o Lemma 2, lim k P (V > k + 1 V > k) = max((1 p a ), p e ), from which i follows ha if we have boh a 2 (1 p a ) < 1 and a 2 p e < 1, hen, for all ɛ > 0, we have +1 a 2k P ( +1 = k) C + a 2 (max((1 p a ), p e ) + ɛ)( a 2k P ( = k)) for some finie consan C, for all sufficienly large. This implies ha lim sup E[Π +1 ] <. To prove he second saemen, fix 1 B max and he iniial baery level B 0 {1,..., B max }, a finie ineger. Fix 0 < p a < 1, and consider any 0 < p e < 1. Suppose here exiss a causal randomized policy wih side informaion for which lim inf E[Π ] <. Consider he scenario where p e = 0. The ransmier can arificially creae an i.i.d. sequence of erasure wih probabiliy p e and implemen his sraegy, because, having access o he realizaion of he erasures, i has he requisie side informaion. Bu we already know from Theorem 3 ha if a 2 (1 p a ) > 1 we have lim E[Π ] =. This means ha for every 0 < p e < 1, for every causal randomized policy wih side informaion we mus have lim E[Π ] =. Similarly, fix 0 < p e < 1 and consider any 0 < p a < 1. Suppose here exiss a causal randomized policy wih side informaion for which lim inf E[Π ] <. Consider he scenario where p a = 1. The ransmier can arifically drop energy arrivals i.i.d. wih drop probabiliy 1 p a, and hen implemen he given sraegy. Bu we already know from Theorem 1 ha if a 2 p e > 1 for every randomized causal policy wih side informaion we have lim E[Π ] = (in fac we know his for randomized anicipaive policies wih side informaion). Thus i mus be he case ha for all 0 < p a < 1 for every causal randomized policy wih side informaion we have lim E[Π ] =. This complees he proof of he second saemen. For he wo anicipaive cases wih side informaion, a he ime of wriing we have only he following weak parial resul. Theorem 7 Suppose 0 < p e < 1, 0 < p a < 1, B max =, and le he iniial baery level be any finie ineger B 0 {0, 1,...}. If a 2 (1 p a ) < 1 and a 2 p e < 1, here is a randomized energy anicipaive ransmission sraegy wih side informaion such ha lim sup E[Π ] <. On he converse side, suppose 0 < p e < 1, 0 < p a < 1, 1 B max, and le he iniial baery level be any finie ineger B 0 {0, 1,..., B max }. If eiher a 2 (1 p a ) > 1 or a 2 p e > 1, for every randomized anicipaive policy wih side informaion we 1 1 have lim E[Π u] =. Proof: For he proof of he firs saemen, we se up he imes A k and he inervals W k, k exacly as in he proof of he firs saemen of Theorem 4, and view hose of he imes A k + W k, k ha are nonnegaive as poenial ransmission imes. Le A J + W J be he firs such nonnegaive ime (so J 0, and J is also a random variable). Consider A J + W J. We wai ill he firs ime U J > A J + W J a which we have he side informaion ha he channel is erasure-free and ransmi a ha ime. Le T J := U J (A J + W J ) We adjus each of he poenial ransmission imes A k + W k, k J +1 o A k +W k +T J. When we ge o ime A J+1 + W J+1 + T J, we wai ill he firs ime U J+1 > A J+1 + W J+1 + T J a which we ge he side informaion ha he channel is erasure-free. Le T J+1 := U J+1 (A J+1 + W J+1 + T J ). We adjus each of he poenial ransmission imes A k +W k +T J, k J +2 o A k +W k +T J +T J+1, and so on. Noe ha, since he erasure sequence is independen of he sequence of energy arrivals and he randomizaion variables, he sequence of random variables (T J, T J+1,...) is he porion, defined by J, of an i.i.d sequence of random variables (T k, k ), where P (T k = l) = p l 1 e (1 p e ) for l 1. The imes a which ransmissions ake place under his energy anicipaive policy are disinc, since each ransmission akes place a leas one uni of ime afer he preceding one. The policy is energy feasible because he policy of he firs par of he proof of Theorem 4 was energy feasible. Indeed, in ha policy he energy ha arrived a A k can be hough of as desined o be used a ime A k + W k. Here his energy sis in he baery longer, and is used a he ime U k (his is where we need he assumpion B max = ). The proof ha lim sup E[Π ] < for his policy also parallels he proof of he corresponding saemen in he proof of Theorem 4. Le T be independen of (L 1, L 2,..., L B0+1) wih he disribuion P (T = l) = p l 1 e (1 p e ), l 1. I suffices o replace he occurence of L L B0+1 in he proof of Theorem 4 by L L B0+1 + T. Since L L B0+1 is negaive binomial wih success probabiliy p a and as we have assumed boh a 2 (1 p a ) B0+1 < 1 and a 2 p e < 1, we have k=1 a2k (k +)P (L L B0+1 +()T

9 9 ()(k 1)) <. Therefore, he firs saemen of he heorem is proved. For proof of he second saemen, fix 1 B max, and a finie ineger B 0 {1,..., B max } as he iniial level of he baery. Firs fix 0 < p a < 1, and consider any 0 < p e < 1. If here were a randomized anicipaive sraegy wih side informaion for which 1 E[Π u] <, he ransmier could have 1 lim ensured his propery in he scenario when p e = 0 by simply arifically creaing i.i.d. erasures wih erasure probabiliy p e and implemening he given sraegy. Since he erasures are creaed by he ransmier, i has access o hem, so i is possible o implemen his sraegy. Bu we already know from Theorem 4 ha for p e = 0, if a 2 (1 p a ) > 1, hen for every randomized energy anicipaive sraegy we have lim E[Π u] =. 1 1 Thus i mus be he case ha for each 0 < p e < 1, for every randomized anicipaive sraegy wih side informaion, whenever a 2 (1 p a ) > 1 we also have 1 1 lim E[Π u] =. Similarly, fix 0 < p e < 1 and consider any 0 < p a < 1. Suppose here were a randomized anicipaive sraegy 1 1 wih side informaion for which lim E[Π u] <. The ransmier could implemen his sraegy in he scenario when p a = 1 by simply dropping energy arrivals in an i.i.d. fashion wih drop probabiliy 1 p a. Since he ransmier knows when he surviving energy arrivals occur, i is possible for i o implemen his policy. Bu we already know from Theorem 1 ha when p a = 1, if a 2 p e > 1, we have lim E[Π ] = for every randomized anicipaive policy wih side informaion. Thus i mus be he case ha for all 0 < p a < 1, if a 2 p e > 1 we also have lim E[Π ] = for every randomized anicipaive policy wih side informaion, which complees he proof of he second saemen. VII. CONCLUSION We considered a scalar inermien Kalman filering problem over an erasure channel wih an energy harvesing ransmier. We focused on he hreshold on he growh rae of he sysem dynamics ha admis an asympoically bounded sae esimaion error covariance a he receiver. We showed ha he presence of anicipaive knowledge abou he fuure energy arrivals as well as unlimied energy sorage does no aler he hreshold if he ransmier has no side informaion abou he curren erasure sae of he channel. On he conrary, we showed ha side informaion regarding he curren erasure sae of he channel could lead o an improvemen in his hreshold when combined wih energy sorage and anicipaive knowledge abou he energy arrivals. These resuls sugges new direcions of research o reveal he synergies beween channel side informaion, energy sorage capabiliy, and he poenial o provide anicipaive informaion abou fuure energy arrivals, in neworks of energy harvesing nodes ha inerac wih dynamical sysems. ACKNOWLEDGEMENT Research suppored by he NSF Science and Technology Cener gran CCF , Science of Informaion, and he NSF grans ECCS and CNS REFERENCES [1] O. Ozel and S. Ulukus, Achieving AWGN capaciy under sochasic energy harvesing, IEEE Trans. on Informaion Theory, vol. 58, pp , Ocober [2] V. Jog and V. Ananharam, A geomeric analysis of he AWGN channel wih a (σ, ρ)-power consrain, submied o IEEE Trans. on Informaion Theory, [3] H. Mahdavi-Doos and R. Yaes, Energy harvesing receivers: Finie baery capaciy, in IEEE ISIT, July [4] J. Yang, X. Wu, and J. Wu, Adapive sensing scheduling for energy harvesing sensors wih finie baery, in IEEE ICC, June [5] B. Sinopoli, L. Schenao, M. Franceshcei, K. Poolla, M. I. Jordan, and S. S. Sasry, Kalman filering wih inermien observaions, IEEE Trans. on Auomaic Conrol, vol. 49, pp , Sepember [6] M. Huang and S. Dey, Sabiliy of Kalman filering wih Markovian packe losses, Auomaica, vol. 43, no. 4, pp , [7] L. Xie, Sabiliy of random Riccai equaion wih Markovian binary swiching, IEEE Trans. on Auomaic Conrol, vol. 53, pp , Augus [8] K. You, M. Fu, and L. Xie, Mean square sabiliy wih Markovian packe losses, Auomaica, vol. 47, no. 12, pp , [9] S. Kar, B. Sinopoli, and J. Moura, Kalman filering wih inermien observaions: Weak convergence o a saionary disribuion, IEEE Trans. on Auomaic Conrol, vol. 57, pp , February [10] Y. Mo and B. Sinopoli, Kalman filering wih inermien observaions: Tail disribuion and criical value, IEEE Trans. on Auomaic Conrol, vol. 57, pp , March [11] D. E. Queveodo, A. Ahlen, A. S. Leong, and S. Dey, On Kalman filering over fading wireless channels wih conrolled ransmission powers, Auomaica, vol. 48, no. 7, pp , [12] S. Y. Park and A. Sahai, Inermien Kalman filering: Eigenvalue cycles and nonuniform sampling, in IEEE American Conrol Conference, June [13] S. Y. Park and A. Sahai, Inermien Kalman filering: Eigenvalue cycles and nonuniform sampling, available a arxiv: , [14] G. Ramnarayan, G. Ranade, and A. Sahai, Side informaion in conrol and esimaion, in IEEE ISIT, July [15] A. Nayyar, T. Basar, D. Tenekezis, and V. Veeravalli, Opimal sraegies for communicaion and remoe esimaion wih an energy harvesing sensor, IEEE Trans. on Auomaic Conrol, vol. 58, pp , Sepember [16] M. Nourian, A. S. Leong, and S. Dey, Opimal energy allocaion for Kalman filering over packe dropping links wih imperfec acknowledgemens and energy harvesing consrains, IEEE Trans. on Auomaic Conrol, vol. 59, pp , November 2014.

Lecture 4 Notes (Little s Theorem)

Lecture 4 Notes (Little s Theorem) Lecure 4 Noes (Lile s Theorem) This lecure concerns one of he mos imporan (and simples) heorems in Queuing Theory, Lile s Theorem. More informaion can be found in he course book, Bersekas & Gallagher,

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Expert Advice for Amateurs

Expert Advice for Amateurs Exper Advice for Amaeurs Ernes K. Lai Online Appendix - Exisence of Equilibria The analysis in his secion is performed under more general payoff funcions. Wihou aking an explici form, he payoffs of he

More information

RANDOM LAGRANGE MULTIPLIERS AND TRANSVERSALITY

RANDOM LAGRANGE MULTIPLIERS AND TRANSVERSALITY ECO 504 Spring 2006 Chris Sims RANDOM LAGRANGE MULTIPLIERS AND TRANSVERSALITY 1. INTRODUCTION Lagrange muliplier mehods are sandard fare in elemenary calculus courses, and hey play a cenral role in economic

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN Inernaional Journal of Scienific & Engineering Research, Volume 4, Issue 10, Ocober-2013 900 FUZZY MEAN RESIDUAL LIFE ORDERING OF FUZZY RANDOM VARIABLES J. EARNEST LAZARUS PIRIYAKUMAR 1, A. YAMUNA 2 1.

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC This documen was generaed a :37 PM, 1/11/018 Copyrigh 018 Richard T. Woodward 1. An inroducion o dynamic opimiaion -- Opimal Conrol and Dynamic Programming AGEC 64-018 I. Overview of opimiaion Opimiaion

More information

The Strong Law of Large Numbers

The Strong Law of Large Numbers Lecure 9 The Srong Law of Large Numbers Reading: Grimme-Sirzaker 7.2; David Williams Probabiliy wih Maringales 7.2 Furher reading: Grimme-Sirzaker 7.1, 7.3-7.5 Wih he Convergence Theorem (Theorem 54) and

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Matlab and Python programming: how to get started

Matlab and Python programming: how to get started Malab and Pyhon programming: how o ge sared Equipping readers he skills o wrie programs o explore complex sysems and discover ineresing paerns from big daa is one of he main goals of his book. In his chaper,

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

INTRODUCTION TO MACHINE LEARNING 3RD EDITION ETHEM ALPAYDIN The MIT Press, 2014 Lecure Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION alpaydin@boun.edu.r hp://www.cmpe.boun.edu.r/~ehem/i2ml3e CHAPTER 2: SUPERVISED LEARNING Learning a Class

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC

1. An introduction to dynamic optimization -- Optimal Control and Dynamic Programming AGEC This documen was generaed a :45 PM 8/8/04 Copyrigh 04 Richard T. Woodward. An inroducion o dynamic opimizaion -- Opimal Conrol and Dynamic Programming AGEC 637-04 I. Overview of opimizaion Opimizaion is

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Sequential Importance Resampling (SIR) Particle Filter

Sequential Importance Resampling (SIR) Particle Filter Paricle Filers++ Pieer Abbeel UC Berkeley EECS Many slides adaped from Thrun, Burgard and Fox, Probabilisic Roboics 1. Algorihm paricle_filer( S -1, u, z ): 2. Sequenial Imporance Resampling (SIR) Paricle

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

Georey E. Hinton. University oftoronto. Technical Report CRG-TR February 22, Abstract

Georey E. Hinton. University oftoronto.   Technical Report CRG-TR February 22, Abstract Parameer Esimaion for Linear Dynamical Sysems Zoubin Ghahramani Georey E. Hinon Deparmen of Compuer Science Universiy oftorono 6 King's College Road Torono, Canada M5S A4 Email: zoubin@cs.orono.edu Technical

More information

Optimal Server Assignment in Multi-Server

Optimal Server Assignment in Multi-Server Opimal Server Assignmen in Muli-Server 1 Queueing Sysems wih Random Conneciviies Hassan Halabian, Suden Member, IEEE, Ioannis Lambadaris, Member, IEEE, arxiv:1112.1178v2 [mah.oc] 21 Jun 2013 Yannis Viniois,

More information

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes WHAT IS A KALMAN FILTER An recursive analyical echnique o esimae ime dependen physical parameers in he presence of noise processes Example of a ime and frequency applicaion: Offse beween wo clocks PREDICTORS,

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball A Noe on Superlinear Ambrosei-Prodi Type Problem in a Ball by P. N. Srikanh 1, Sanjiban Sanra 2 Absrac Using a careful analysis of he Morse Indices of he soluions obained by using he Mounain Pass Theorem

More information

A Dynamic Model of Economic Fluctuations

A Dynamic Model of Economic Fluctuations CHAPTER 15 A Dynamic Model of Economic Flucuaions Modified for ECON 2204 by Bob Murphy 2016 Worh Publishers, all righs reserved IN THIS CHAPTER, OU WILL LEARN: how o incorporae dynamics ino he AD-AS model

More information

= ( ) ) or a system of differential equations with continuous parametrization (T = R

= ( ) ) or a system of differential equations with continuous parametrization (T = R XIII. DIFFERENCE AND DIFFERENTIAL EQUATIONS Ofen funcions, or a sysem of funcion, are paramerized in erms of some variable, usually denoed as and inerpreed as ime. The variable is wrien as a funcion of

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Lab 10: RC, RL, and RLC Circuits

Lab 10: RC, RL, and RLC Circuits Lab 10: RC, RL, and RLC Circuis In his experimen, we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors. We will sudy he way volages and currens change in

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Intelligent Packet Dropping for Optimal Energy-Delay Tradeoffs in Wireless Downlinks

Intelligent Packet Dropping for Optimal Energy-Delay Tradeoffs in Wireless Downlinks IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 3, PP. 565-579, MARCH 2009. 1 Inelligen Packe Dropping for Opimal Energy-Delay Tradeoffs in Wireless Downlinks Michael J. Neely Universiy of Souhern

More information

Longest Common Prefixes

Longest Common Prefixes Longes Common Prefixes The sandard ordering for srings is he lexicographical order. I is induced by an order over he alphabe. We will use he same symbols (,

More information

Examples of Dynamic Programming Problems

Examples of Dynamic Programming Problems M.I.T. 5.450-Fall 00 Sloan School of Managemen Professor Leonid Kogan Examples of Dynamic Programming Problems Problem A given quaniy X of a single resource is o be allocaed opimally among N producion

More information

CENTRALIZED VERSUS DECENTRALIZED PRODUCTION PLANNING IN SUPPLY CHAINS

CENTRALIZED VERSUS DECENTRALIZED PRODUCTION PLANNING IN SUPPLY CHAINS CENRALIZED VERSUS DECENRALIZED PRODUCION PLANNING IN SUPPLY CHAINS Georges SAHARIDIS* a, Yves DALLERY* a, Fikri KARAESMEN* b * a Ecole Cenrale Paris Deparmen of Indusial Engineering (LGI), +3343388, saharidis,dallery@lgi.ecp.fr

More information

Article from. Predictive Analytics and Futurism. July 2016 Issue 13

Article from. Predictive Analytics and Futurism. July 2016 Issue 13 Aricle from Predicive Analyics and Fuurism July 6 Issue An Inroducion o Incremenal Learning By Qiang Wu and Dave Snell Machine learning provides useful ools for predicive analyics The ypical machine learning

More information

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure

Learning Objectives: Practice designing and simulating digital circuits including flip flops Experience state machine design procedure Lab 4: Synchronous Sae Machine Design Summary: Design and implemen synchronous sae machine circuis and es hem wih simulaions in Cadence Viruoso. Learning Objecives: Pracice designing and simulaing digial

More information

1 Consumption and Risky Assets

1 Consumption and Risky Assets Soluions o Problem Se 8 Econ 0A - nd Half - Fall 011 Prof David Romer, GSI: Vicoria Vanasco 1 Consumpion and Risky Asses Consumer's lifeime uiliy: U = u(c 1 )+E[u(c )] Income: Y 1 = Ȳ cerain and Y F (

More information

The general Solow model

The general Solow model The general Solow model Back o a closed economy In he basic Solow model: no growh in GDP per worker in seady sae This conradics he empirics for he Wesern world (sylized fac #5) In he general Solow model:

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016 UNIVERSITÁ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA Bernoulli numbers Francesco Chiai, Maeo Pinonello December 5, 206 During las lessons we have proved he Las Ferma Theorem

More information

5.1 - Logarithms and Their Properties

5.1 - Logarithms and Their Properties Chaper 5 Logarihmic Funcions 5.1 - Logarihms and Their Properies Suppose ha a populaion grows according o he formula P 10, where P is he colony size a ime, in hours. When will he populaion be 2500? We

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Novi Sad J. Mah. Vol. 32, No. 2, 2002, 95-108 95 POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION Hajnalka Péics 1, János Karsai 2 Absrac. We consider he scalar nonauonomous neural delay differenial

More information

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE

INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE INDEPENDENT SETS IN GRAPHS WITH GIVEN MINIMUM DEGREE JAMES ALEXANDER, JONATHAN CUTLER, AND TIM MINK Absrac The enumeraion of independen ses in graphs wih various resricions has been a opic of much ineres

More information

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian CS 4495 Compuer Vision A. Bobick CS 4495 Compuer Vision - KalmanGaussian Aaron Bobick School of Ineracive Compuing CS 4495 Compuer Vision A. Bobick Adminisrivia S5 will be ou his Thurs Due Sun Nov h :55pm

More information

Nonlinear observation over erasure channel

Nonlinear observation over erasure channel Nonlinear observaion over erasure channel Ami Diwadkar Umesh Vaidya Absrac In his paper, we sudy he problem of sae observaion of nonlinear sysems over an erasure channel. The noion of mean square exponenial

More information

8. Basic RL and RC Circuits

8. Basic RL and RC Circuits 8. Basic L and C Circuis This chaper deals wih he soluions of he responses of L and C circuis The analysis of C and L circuis leads o a linear differenial equaion This chaper covers he following opics

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Homework 4 (Stats 620, Winter 2017) Due Tuesday Feb 14, in class Questions are derived from problems in Stochastic Processes by S. Ross. Homework 4 (Sas 62, Winer 217) Due Tuesday Feb 14, in class Quesions are derived from problems in Sochasic Processes by S. Ross. 1. Le A() and Y () denoe respecively he age and excess a. Find: (a) P{Y

More information

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011 2229-12 School and Workshop on Marke Microsrucure: Design, Efficiency and Saisical Regulariies 21-25 March 2011 Some mahemaical properies of order book models Frederic ABERGEL Ecole Cenrale Paris Grande

More information

Air Traffic Forecast Empirical Research Based on the MCMC Method

Air Traffic Forecast Empirical Research Based on the MCMC Method Compuer and Informaion Science; Vol. 5, No. 5; 0 ISSN 93-8989 E-ISSN 93-8997 Published by Canadian Cener of Science and Educaion Air Traffic Forecas Empirical Research Based on he MCMC Mehod Jian-bo Wang,

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

Object tracking: Using HMMs to estimate the geographical location of fish

Object tracking: Using HMMs to estimate the geographical location of fish Objec racking: Using HMMs o esimae he geographical locaion of fish 02433 - Hidden Markov Models Marin Wæver Pedersen, Henrik Madsen Course week 13 MWP, compiled June 8, 2011 Objecive: Locae fish from agging

More information

Written Exercise Sheet 5

Written Exercise Sheet 5 jian-jia.chen [ ] u-dormund.de lea.schoenberger [ ] u-dormund.de Exercise for he lecure Embedded Sysems Winersemeser 17/18 Wrien Exercise Shee 5 Hins: These assignmens will be discussed a E23 OH14, from

More information

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

Stochastic Model for Cancer Cell Growth through Single Forward Mutation Journal of Modern Applied Saisical Mehods Volume 16 Issue 1 Aricle 31 5-1-2017 Sochasic Model for Cancer Cell Growh hrough Single Forward Muaion Jayabharahiraj Jayabalan Pondicherry Universiy, jayabharahi8@gmail.com

More information

Stochastic Perishable Inventory Systems: Dual-Balancing and Look-Ahead Approaches

Stochastic Perishable Inventory Systems: Dual-Balancing and Look-Ahead Approaches Sochasic Perishable Invenory Sysems: Dual-Balancing and Look-Ahead Approaches by Yuhe Diao A hesis presened o he Universiy Of Waerloo in fulfilmen of he hesis requiremen for he degree of Maser of Applied

More information

Introduction to Probability and Statistics Slides 4 Chapter 4

Introduction to Probability and Statistics Slides 4 Chapter 4 Inroducion o Probabiliy and Saisics Slides 4 Chaper 4 Ammar M. Sarhan, asarhan@mahsa.dal.ca Deparmen of Mahemaics and Saisics, Dalhousie Universiy Fall Semeser 8 Dr. Ammar Sarhan Chaper 4 Coninuous Random

More information

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0. Time-Domain Sysem Analysis Coninuous Time. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 1. J. Robers - All Righs Reserved. Edied by Dr. Rober Akl 2 Le a sysem be described by a 2 y ( ) + a 1

More information

On the Stability Region of Multi-Queue Multi-Server Queueing Systems with Stationary Channel Distribution

On the Stability Region of Multi-Queue Multi-Server Queueing Systems with Stationary Channel Distribution On he Sabiliy Region of Muli-Queue Muli-Server Queueing Sysems wih Saionary Channel Disribuion Hassan Halabian, Ioannis Lambadaris, Chung-Horng Lung Deparmen of Sysems and Compuer Engineering, Carleon

More information

Product Integration. Richard D. Gill. Mathematical Institute, University of Utrecht, Netherlands EURANDOM, Eindhoven, Netherlands August 9, 2001

Product Integration. Richard D. Gill. Mathematical Institute, University of Utrecht, Netherlands EURANDOM, Eindhoven, Netherlands August 9, 2001 Produc Inegraion Richard D. Gill Mahemaical Insiue, Universiy of Urech, Neherlands EURANDOM, Eindhoven, Neherlands Augus 9, 21 Absrac This is a brief survey of produc-inegraion for biosaisicians. 1 Produc-Inegraion

More information

Chapter 7 Response of First-order RL and RC Circuits

Chapter 7 Response of First-order RL and RC Circuits Chaper 7 Response of Firs-order RL and RC Circuis 7.- The Naural Response of RL and RC Circuis 7.3 The Sep Response of RL and RC Circuis 7.4 A General Soluion for Sep and Naural Responses 7.5 Sequenial

More information

Problem Set #3: AK models

Problem Set #3: AK models Universiy of Warwick EC9A2 Advanced Macroeconomic Analysis Problem Se #3: AK models Jorge F. Chavez December 3, 2012 Problem 1 Consider a compeiive economy, in which he level of echnology, which is exernal

More information

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal?

EE 315 Notes. Gürdal Arslan CLASS 1. (Sections ) What is a signal? EE 35 Noes Gürdal Arslan CLASS (Secions.-.2) Wha is a signal? In his class, a signal is some funcion of ime and i represens how some physical quaniy changes over some window of ime. Examples: velociy of

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

Lower and Upper Bounds on FIFO Buffer Management in QoS Switches

Lower and Upper Bounds on FIFO Buffer Management in QoS Switches Lower and Upper Bounds on FIFO Buffer Managemen in QoS Swiches Mahias Engler Mahias Wesermann Deparmen of Compuer Science RWTH Aachen 52056 Aachen, Germany {engler,marsu}@cs.rwh-aachen.de Absrac We consider

More information

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important

Non-parametric techniques. Instance Based Learning. NN Decision Boundaries. Nearest Neighbor Algorithm. Distance metric important on-parameric echniques Insance Based Learning AKA: neares neighbor mehods, non-parameric, lazy, memorybased, or case-based learning Copyrigh 2005 by David Helmbold 1 Do no fi a model (as do LTU, decision

More information

Reserves measures have an economic component eg. what could be extracted at current prices?

Reserves measures have an economic component eg. what could be extracted at current prices? 3.2 Non-renewable esources A. Are socks of non-renewable resources fixed? eserves measures have an economic componen eg. wha could be exraced a curren prices? - Locaion and quaniies of reserves of resources

More information

A Hop Constrained Min-Sum Arborescence with Outage Costs

A Hop Constrained Min-Sum Arborescence with Outage Costs A Hop Consrained Min-Sum Arborescence wih Ouage Coss Rakesh Kawara Minnesoa Sae Universiy, Mankao, MN 56001 Email: Kawara@mnsu.edu Absrac The hop consrained min-sum arborescence wih ouage coss problem

More information

MANAGEMENT SCIENCE doi /mnsc ec pp. ec1 ec20

MANAGEMENT SCIENCE doi /mnsc ec pp. ec1 ec20 MANAGEMENT SCIENCE doi.287/mnsc.7.82ec pp. ec ec2 e-companion ONLY AVAILABLE IN ELECTRONIC FORM informs 28 INFORMS Elecronic Companion Saffing of Time-Varying Queues o Achieve Time-Sable Performance by

More information

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control)

Embedded Systems and Software. A Simple Introduction to Embedded Control Systems (PID Control) Embedded Sysems and Sofware A Simple Inroducion o Embedded Conrol Sysems (PID Conrol) Embedded Sysems and Sofware, ECE:3360. The Universiy of Iowa, 2016 Slide 1 Acknowledgemens The maerial in his lecure

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

A Prey-Predator Model with an Alternative Food for the Predator and Optimal Harvesting of the Prey

A Prey-Predator Model with an Alternative Food for the Predator and Optimal Harvesting of the Prey Available online a www.pelagiaresearchlibrary.com Advances in Applied Science Research, 0, (4):45-459 A Prey-Predaor Model wih an Alernaive Food for he Predaor and Opimal Harvesing of he Prey K. Madhusudhan

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2

Hall effect. Formulae :- 1) Hall coefficient RH = cm / Coulumb. 2) Magnetic induction BY 2 Page of 6 all effec Aim :- ) To deermine he all coefficien (R ) ) To measure he unknown magneic field (B ) and o compare i wih ha measured by he Gaussmeer (B ). Apparaus :- ) Gauss meer wih probe ) Elecromagne

More information

Module 4: Time Response of discrete time systems Lecture Note 2

Module 4: Time Response of discrete time systems Lecture Note 2 Module 4: Time Response of discree ime sysems Lecure Noe 2 1 Prooype second order sysem The sudy of a second order sysem is imporan because many higher order sysem can be approimaed by a second order model

More information

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0.

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0. Advanced Financial Models Example shee 3 - Michaelmas 217 Michael Tehranchi Problem 1. Le f : [, R be a coninuous (non-random funcion and W a Brownian moion, and le σ 2 = f(s 2 ds and assume σ 2

More information

Final Exam. Tuesday, December hours

Final Exam. Tuesday, December hours San Francisco Sae Universiy Michael Bar ECON 560 Fall 03 Final Exam Tuesday, December 7 hours Name: Insrucions. This is closed book, closed noes exam.. No calculaors of any kind are allowed. 3. Show all

More information

3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change 3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

More information

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004

Augmented Reality II - Kalman Filters - Gudrun Klinker May 25, 2004 Augmened Realiy II Kalman Filers Gudrun Klinker May 25, 2004 Ouline Moivaion Discree Kalman Filer Modeled Process Compuing Model Parameers Algorihm Exended Kalman Filer Kalman Filer for Sensor Fusion Lieraure

More information

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing M Business Forecasing Mehods Exponenial moohing Mehods ecurer : Dr Iris Yeung Room No : P79 Tel No : 788 8 Types of Exponenial moohing Mehods imple Exponenial moohing Double Exponenial moohing Brown s

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering

Announcements. Recap: Filtering. Recap: Reasoning Over Time. Example: State Representations for Robot Localization. Particle Filtering Inroducion o Arificial Inelligence V22.0472-001 Fall 2009 Lecure 18: aricle & Kalman Filering Announcemens Final exam will be a 7pm on Wednesday December 14 h Dae of las class 1.5 hrs long I won ask anyhing

More information

Stability and Convergence in Adaptive Systems *

Stability and Convergence in Adaptive Systems * Sabiliy and Convergence in Adapive Sysems * Margarea Sefanovic, Rengrong Wang, and Michael G. Safonov Universiy of Souhern California, Los Angeles, CA 989-563 Absrac - Sufficien condiions for adapive conrol

More information

AN OPTIMAL CONTROL PROBLEM FOR SPLINES ASSOCIATED TO LINEAR DIFFERENTIAL OPERATORS

AN OPTIMAL CONTROL PROBLEM FOR SPLINES ASSOCIATED TO LINEAR DIFFERENTIAL OPERATORS CONTROLO 6 7h Poruguese Conference on Auomaic Conrol Insiuo Superior Técnico, Lisboa, Porugal Sepember -3, 6 AN OPTIMAL CONTROL PROBLEM FOR SPLINES ASSOCIATED TO LINEAR DIFFERENTIAL OPERATORS Rui C. Rodrigues,

More information

EE3723 : Digital Communications

EE3723 : Digital Communications EE373 : Digial Communicaions Week 6-7: Deecion Error Probabiliy Signal Space Orhogonal Signal Space MAJU-Digial Comm.-Week-6-7 Deecion Mached filer reduces he received signal o a single variable zt, afer

More information

INCENTIVE COMPATIBILITY AND MECHANISM DESIGN

INCENTIVE COMPATIBILITY AND MECHANISM DESIGN Essenial Microeconomics -- INCENTIVE COMPATIBILITY AND MECHANISM DESIGN Signaling games 2 Incenive Compaibiliy 7 Spence s example: Educaional signaling 9 Single Crossing Propery Mechanism Design 7 Local

More information

Mobility-Pattern Based Localization Update Algorithms for Mobile Wireless Sensor Networks

Mobility-Pattern Based Localization Update Algorithms for Mobile Wireless Sensor Networks Mobiliy-Paern Based Localizaion Updae Algorihms for Mobile Wireless Sensor Neworks Mohammad Y. Al-laho, Min Song, Jun Wang Deparmen of Elecrical and Compuer Engineering Old Dominion Universiy 231 Kaufman

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Subway stations energy and air quality management

Subway stations energy and air quality management Subway saions energy and air qualiy managemen wih sochasic opimizaion Trisan Rigau 1,2,4, Advisors: P. Carpenier 3, J.-Ph. Chancelier 2, M. De Lara 2 EFFICACITY 1 CERMICS, ENPC 2 UMA, ENSTA 3 LISIS, IFSTTAR

More information

THE BELLMAN PRINCIPLE OF OPTIMALITY

THE BELLMAN PRINCIPLE OF OPTIMALITY THE BELLMAN PRINCIPLE OF OPTIMALITY IOANID ROSU As I undersand, here are wo approaches o dynamic opimizaion: he Ponrjagin Hamilonian) approach, and he Bellman approach. I saw several clear discussions

More information

Decentralizing the Growth Model. 5/4/96 version

Decentralizing the Growth Model. 5/4/96 version Econ. 5b Spring 996 C. Sims I. The Single-Agen-Type Model The agen maximizes subjec o and Decenralizing he Growh Model 5/4/96 version E U( C ) C + I f( K, L, A),,.,, (2) K I + δk (3) L (4) () K, all. (5)

More information

On-line Adaptive Optimal Timing Control of Switched Systems

On-line Adaptive Optimal Timing Control of Switched Systems On-line Adapive Opimal Timing Conrol of Swiched Sysems X.C. Ding, Y. Wardi and M. Egersed Absrac In his paper we consider he problem of opimizing over he swiching imes for a muli-modal dynamic sysem when

More information

4.6 One Dimensional Kinematics and Integration

4.6 One Dimensional Kinematics and Integration 4.6 One Dimensional Kinemaics and Inegraion When he acceleraion a( of an objec is a non-consan funcion of ime, we would like o deermine he ime dependence of he posiion funcion x( and he x -componen of

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring Experiment 9: Faraday s Law of Induction MASSACHUSETTS INSTITUTE OF TECHNOLOY Deparmen of Physics 8.02 Spring 2005 OBJECTIVES Experimen 9: Faraday s Law of Inducion 1. To become familiar wih he conceps of changing magneic flux and induced curren

More information

Stability analysis of parallel server systems under longest queue first

Stability analysis of parallel server systems under longest queue first Mah Meh Oper Res (2011) 74:257 279 DOI 10.1007/s00186-011-0362-5 ORIGINAL ARTICLE Sabiliy analysis of parallel server sysems under longes queue firs Golshid Baharian Tolga Tezcan Received: 15 November

More information