General Distinguishing Attacks on NMAC and HMAC with Birthday Attack Complexity

Size: px
Start display at page:

Download "General Distinguishing Attacks on NMAC and HMAC with Birthday Attack Complexity"

Transcription

1 General Distinguishing Attacks on MAC and HMAC with Birthday Attack Complexity Donghoon Chang 1 and Mridul andi 2 1 Center or Inormation Security Technologies(CIST), Korea University, Korea dhchang@cist.korea.ac.kr 2 David R. Cheriton School o Computer Science, University o Waterloo, Canada m2nandi@cs.uwaterloo.ca Abstract. Kim et al. [4] and Contini et al. [3] studied on the security o HMAC and MAC based on HAVAL, MD4, MD5, SHA-0 and SHA-1. Especially, they considered the distinguishing attacks. However, they did not describe generic distinguishing attacks on MAC and HMAC. In this paper, we describe the generic distinguishers to distinguish MAC and HMAC with the birthday attack complexity and we prove the security bound when the underlying compression unction is the random oracle. Keywords : MAC, HMAC, Distinguishing Attack, Birthday Attack. 1 Introduction. Since MD4-style hash unctions were broken, evaluations on the security o HMAC and MAC have been reuired. Kim et al. [4] and Contini et al. [3] showed the security analyses on them. However, Kim et al. distinguishing attack complexity is ar rom the birthday attack complexity. Contini et al. also suggested 2 84 as the distinguishing attack complexity o MAC and HMAC on the reduced SHA-1, which is bigger than the birthday attack complexity. In this paper, we describe the generic distinguishers to distinguish MAC and HMAC with the birthday attack complexity and we prove the security bound when the underlying compression unction is the random oracle. 2 MAC and HMAC Fig. 1 and 2 show MAC and HMAC based on a compression unction rom {0, 1} n {0, 1} b to {0, 1} n. K 1 and K 2 are n bits. K = K 0 b n where K is n bits. opad is ormed by repeating the byte 0x36 as many times as needed to get a b-bit block, and ipad is deined similarly using the byte 0x5c. H : {IV } ({0, 1} b ) {0, 1} n is the iterated hash unction. H is deined as ollows : H(IV, x 1 x 2 x t ) = ( ((IV, x 1 ), x 2 ), x t ) where x i is b bits. Let g be a padding method. g(x) = x 10 t bin 64 (x) where t is smallest nonnegative integer such that g(x) is a multiple o b and bin i (x) is the i-bit binary representation o x. Then, MAC and HMAC are deined as ollows.

2 MAC K1,K 2 (M) = H(K 2, g(h(k 1, g(m)))) HMAC K (M) = H(IV, g(k opad H(IV, g(k ipad M)))). M 1 M 2 M t K 1 h 1 h 2 h t-1 h t padding K 2 h t+1 Fig.1. MAC ( g(m) = M 1 M 2 M t) K M1 M2 Mt IV h1 h2 ht-1 K ht padding IV ht+1 Fig.2. HMAC ( g(k ipad M) = K ipad M 1 M 2 M t) 3 General Distinguishing Attack On MAC and HMAC Here, we describe three types o distinguishers A 1, A 2 and A 3. In case o A 1 and A 2, we will prove the lower bound o A 1 s advantage. On the other hand, A 3 distinguishes heuristically without proving exact proo o security bound. Practically, A 3 is reasonable. For all distinguishers, ueries are same as ollows. Let is the number o ueries such that t is a ixed value (t 2) in Fig. 1 and 2. Since g is applied two times in MAC and HMAC, t 2 means that the added inormation o the irst padding is dierent rom that o the secoond padding.

3 Each block is b bits and c = log 2 t. In MAC, A = K 1 and B = K 2 in Fig. 3. In HMAC, A = (IV, K ipad) and B = (IV, K opad) in Fig. 3. For MAC and HMAC, i-th uery is X i 0 64 bin c (1) 0 b c bin c (t 2) 0 b c bin c (t 1) where each X i is b 64 bits and X i X j or any i j and X i 0 64 bin c (j) 0 b c or any i and j such that 1 j t 2. These kinds o messages enable us to prove the security bound in the random oracle model. When we prove the security bound, we will explain in detail. MAC : M t =bin c (t-1) 10 b-c-65 bin 64 (bt-b+c) X i 0 64 bin c (1) 0 b-c bin c (t-2) 0 b-c HMAC : M t =bin c (t-1) 10 b-c-65 bin 64 (bt+c) M 1 M 2 M t-1 M t A h 0 h 1 h 2 h t-2 h t-1 h t padding B h t h t+1 Fig.3. Attack Strategy. In MAC, A = K 1 and B = K 2. In HMAC, A = (IV, K ipad) and B = (IV,K opad). In Fig. 3, or i-uery, we denote the values o h 1 h t+1 by h 1,i h t+1,i. Then we deine Pr[C m ] denotes the probability that there exist h m,i = h m,j such that 1 i j. ote that i C i occurs, then C j (i + 1 j t + 1) also occurs. Thereore, Pr[C t+1 ] = Pr[C 1 C 1 C t+1 ]. In other words, Pr[ C t+1 ] = Pr[ C 1 C 1 C t+1 ]. And Pr[C t+1 ] = 1 Pr[ C 1 C 1 C t+1 ]. Distinguisher A 1 A 1 has an access to oracle O which is MAC (or HMAC) or the random unction rom {0, 1} {0, 1} n. A 1 makes ueries as described above. Then A 1 outputs 1 i there is a collision among ueries, otherwise outputs 0. We want to compute the bound o the advantage o A 1. For this, we compute the probability that there is a collision or both MAC (or HMAC) and the random unction. In case o the random unction, we denote Pr r [C] by the probability that there exist a collsion o the random unction. Let = 2 n. Let x i,j = h i 1 M i in Fig. 3. Then Pr[ C 1 ] = ( 1) ( +1) because all X i (1 i ) are dierent. When C 1 does not occur, x 1,i x 2,j or all i and j. So, Pr[ C 2 C 1 ] = Pr[ C 2 ] = Pr[ C 1 ] = ( 1) ( +1). So, Pr[ C 1 C 2 ] = (Pr[ C 1 ]) 2 = ( ( 1) ( +1) ) 2. Similarly, we can know Pr[ C 1

4 C t+1 ] = (Pr[ C 1 ]) t+1 = ( ( 1) ( +1) ) t+1. Thereore, Pr[C t+1 ] = 1 ( ( 1) ( +1) ) t+1. On the other hand, in case o the random unction, Pr r [C] = 1 ( 1) ( +1). HMAC or MAC Adv A1 () = Pr[A1 = 1] Pr[A Rand 1 = 1] ( 1) ( + 1) ( 1) ( + 1) = ( ) t+1 With using 1 x e x or x 1, ( 1) ( +1) = (1 1 )(1 2 ) (1 1 ) e = e ( 1) 2. I 2 then ( 1) 2 1. With using e x 1 (1 e 1 )x or x 1 [1], we know that e ( 1) 2 1 (1 e 1 ) ( 1) Since 1 e 1 > 0.632, e ( 1) 2 1 ( 1) ( 1) 2 < ( 1) 2 by the result o [1]. Thereore, 1 ( 1) 2. Finally, 2.. And ( 1) ( +1) ( 1) ( +1) < Adv A1 () (1 ) ( )t+1 In case o =, Adv A1 () t+1. When t = 11, Adv A1 () Distinguisher A 2 A 2 has an access to oracle O which is MAC (or HMAC) or the random unction rom {0, 1} {0, 1} n. A 2 makes ueries as described above. I there is no collision among outputs o ueries, return 0. I there is a collision (M, M ) among ueries, When comparing with MAC, A 2 makes new ueries T and T such that T = M 10 b c 65 bin 64 (bt b+c) and T = M 10 b c 65 bin 64 (bt b+c). When comparing with HMAC, A 2 makes new ueries T and T such that T = M 10 b c 65 bin 64 (bt + c) and T = M 10 b c 65 bin 64 (bt + c). I O(T) = O(T ), then return 1 otherwise 0. We know that Pr[C t ] = 1 ( ( 1) ( +1) ) t. We want to compute Pr[ {h t,i } i = {h t+1,j } j C t ]. This probability means that there is no collision which do not collide in h t. Since the size o {h t,i } i is at most and {h t,i x t+1 } i {h j,i x j+1 } i,jt 1 =, Pr[ {h t,i } i = {h t+1,j } j C t ] ( 1) ( +1) Thereore, Pr[ {h t,i } i = {h t+1,j } j C t ] ( ( 1) ( +1). )(1 ( ( 1) ( +1) ) t ).

5 HMAC or MAC Adv A2 () = Pr[A2 = 1] Pr[A Rand 2 = 1] Pr[ {h t,i } i = {h t+1,j } j C t ] 1 ( 1) ( + 1) ( (1 ( 1) ( + 1) ) t+1 1 ) ( )t+1 1 In case o =, Adv A2 () t+1. When t = 11, Adv A2 () Distinguisher A 3 See Fig. 3. We know that there is an internal collision pair in h 1 with about the ollowing probability. ( ) 2 n/2 2 n = (2 n)/2 Then automatically the pair becomes also an internal collision pair in rom h 2 to h t+1 in Fig. 3. Except the pair, we also know that there exist an internal collision pair which is collided in h 2 with above probability. By this logic, we can get t internal collision pairs in h t. In case o MAC and HMAC, since the value in h t is applied to once more, we can get (t + 1) ( 1 2 2(2 n)/2 ) collision pairs o MAC and HMAC on average. On the other hand, in case o random unction, we can get about ( 1 2 2(2 n)/2 ) collision pairs. MAC or HMAC Random Function Average (t + 1) ( 1 2 2(2 n)/2 ) t+1 2 ( 1 2 2(2 n)/2 ) 1 2 Standard Deviation 2/2 2 (t + 1)/2 Then, distinguisher A 3 says 1 (MAC or HMAC) i there are t+1 2 2(t + 1) collision pairs at least. Otherwise A 3 says 0 (random unction). So, with high probability A 3 can distinguish MAC and HMAC rom the random unction. In case t = 31, Advantage o A 3 is Adv A3 (2 n/2 MAC or HMAC ) = Pr[A3 = 1] Pr[A Rand 3 = 1] = Conclusion In this paper, we described generic distinguishing attacks on MAC and HMAC where a compression unction is used iteratively and the size o the internal state is same as that o the hash output. Thereore, we can know that the security bound o MAC and HMAC is the birthday attack complexity in case that the size o the internal state is same as that o the hash output.

6 Reerences 1. M. Bellare, J. Kilian, and P. Rogaway, The Security o the Cipher Block Chaining Message Authentication Code, Appears in Journal o Computer and System Sciences, Vol. 61, o. 3, Dec 2000, pp M. Bellare, ew Proos or MAC and HMAC: Security without Collision- Resistance, Advances in Cryptology - CRYPTO 06, LCS??, Springer-Verlag, pp.??-??,??. 3. S. Contini and Y. L. Yin, Forgery and Partial Key-Recovery Attacks on HMAC and MAC Using Hash Collisions, Advances in Cryptology - Asiacrypt 06, LCS 4284, Springer-Verlag, pp , J. Kim, A. Biryukov, B. Preneel, and S. Hong, On the Security o HMAC and MAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1, SC 06, to appear. (

Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework

Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework Distinguishing Attacks on MAC/HMAC Based on A New Dedicated Compression Function Framework Zheng Yuan 1,2,3, Haixia Liu 1, Xiaoqiu Ren 1 1 Beijing Electronic Science and Technology Institute, Beijing 100070,China

More information

On High-Rate Cryptographic Compression Functions

On High-Rate Cryptographic Compression Functions On High-Rate Cryptographic Compression Functions Richard Ostertág and Martin Stanek Department o Computer Science Faculty o Mathematics, Physics and Inormatics Comenius University Mlynská dolina, 842 48

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Full Attacks on HMAC/NMAC- and NMAC-MD5 Pierre-Alain Fouque, Gaëtan Leurent, Phong Nguyen Laboratoire d Informatique de l École Normale Supérieure CRYPTO 2007 1/26 WhatisaMACalgorithm? M Alice wants to

More information

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC

Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC Cryptanalysis on HMAC/NMAC-MD5 and MD5-MAC Xiaoyun Wang 1,2, Hongbo Yu 1, Wei Wang 2, Haina Zhang 2, and Tao Zhan 3 1 Center for Advanced Study, Tsinghua University, Beijing 100084, China {xiaoyunwang,

More information

MESSAGE AUTHENTICATION CODES and PRF DOMAIN EXTENSION. Mihir Bellare UCSD 1

MESSAGE AUTHENTICATION CODES and PRF DOMAIN EXTENSION. Mihir Bellare UCSD 1 MESSAGE AUTHENTICATION CODES and PRF DOMAIN EXTENSION Mihir Bellare UCSD 1 Integrity and authenticity The goal is to ensure that M really originates with Alice and not someone else M has not been modified

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Pierre-Alain Fouque, Gaëtan Leurent, Phong Q. Nguyen École Normale Supérieure Département d Informatique, 45 rue d Ulm, 75230 Paris Cedex 05, France

More information

ENEE 459-C Computer Security. Message authentication (continue from previous lecture)

ENEE 459-C Computer Security. Message authentication (continue from previous lecture) ENEE 459-C Computer Security Message authentication (continue from previous lecture) Last lecture Hash function Cryptographic hash function Message authentication with hash function (attack?) with cryptographic

More information

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5

Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5 Author manuscript, published in "Advances in Cryptology - CRYPTO 2007, 27th Annual International Cryptology Conference 4622 (2007) 13-30" DOI : 10.1007/978-3-540-74143-5_2 Full Key-Recovery Attacks on

More information

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34

Hash Functions. Ali El Kaafarani. Mathematical Institute Oxford University. 1 of 34 Hash Functions Ali El Kaafarani Mathematical Institute Oxford University 1 of 34 Outline 1 Definition and Notions of Security 2 The Merkle-damgård Transform 3 MAC using Hash Functions 4 Cryptanalysis:

More information

Introduction to Cryptography Lecture 4

Introduction to Cryptography Lecture 4 Data Integrity, Message Authentication Introduction to Cryptography Lecture 4 Message authentication Hash functions Benny Pinas Ris: an active adversary might change messages exchanged between and M M

More information

Lecture 10: NMAC, HMAC and Number Theory

Lecture 10: NMAC, HMAC and Number Theory CS 6903 Modern Cryptography April 10, 2008 Lecture 10: NMAC, HMAC and Number Theory Instructor: Nitesh Saxena Scribes: Jonathan Voris, Md. Borhan Uddin 1 Recap 1.1 MACs A message authentication code (MAC)

More information

Second Preimages for Iterated Hash Functions and their Implications on MACs

Second Preimages for Iterated Hash Functions and their Implications on MACs Second Preimages for Iterated Hash Functions and their Implications on MACs Mario Lamberger, Norbert Pramstaller, and Vincent Rijmen Institute for Applied Information Processing and Communications (IAIK)

More information

Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding

Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding Donghoon Chang 1, Sangjin Lee 1, Mridul Nandi 2, and Moti Yung 3 1 Center for Information Security Technologies(CIST),

More information

Breaking H 2 -MAC Using Birthday Paradox

Breaking H 2 -MAC Using Birthday Paradox Breaking H 2 -MAC Using Birthday Paradox Fanbao Liu 1,2, Tao Xie 1 and Changxiang Shen 2 1 School of Computer, National University of Defense Technology, Changsha, 410073, Hunan, P. R. China 2 School of

More information

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions

ENEE 457: Computer Systems Security 09/19/16. Lecture 6 Message Authentication Codes and Hash Functions ENEE 457: Computer Systems Security 09/19/16 Lecture 6 Message Authentication Codes and Hash Functions Charalampos (Babis) Papamanthou Department of Electrical and Computer Engineering University of Maryland,

More information

Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding

Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding Indifferentiable Security Analysis of Popular Hash Functions with Prefix-free Padding Donghoon Chang 1, Sangjin Lee 1, Mridul Nandi 2, and Moti Yung 3 1 Center for Information Security Technologies(CIST),

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #5 Sep 7 th 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list by end of today Quiz #1 will be on Thursday,

More information

Provably Secure Double-Block-Length Hash Functions in a Black-Box Model

Provably Secure Double-Block-Length Hash Functions in a Black-Box Model Provably Secure Double-Block-ength Hash Functions in a Black-Box Model Shoichi Hirose Graduate School o Inormatics, Kyoto niversity, Kyoto 606-8501 Japan hirose@i.kyoto-u.ac.jp Abstract. In CRYPTO 89,

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #6 Sep 8 th 2005 CSCI 6268/TLEN 5831, Fall 2005 Announcements Quiz #1 later today Still some have not signed up for class mailing list Perhaps

More information

A Generalization of PGV-Hash Functions and Security Analysis in Black-Box Model

A Generalization of PGV-Hash Functions and Security Analysis in Black-Box Model A Generalization of PGV-Hash Functions and Security Analysis in Black-Box Model Wonil Lee 1, Mridul Nandi 2, Palash Sarkar 2, Donghoon Chang 1, Sangjin Lee 1, and Kouichi Sakurai 3 1 Center for Information

More information

Attacks on hash functions. Birthday attacks and Multicollisions

Attacks on hash functions. Birthday attacks and Multicollisions Attacks on hash functions Birthday attacks and Multicollisions Birthday Attack Basics In a group of 23 people, the probability that there are at least two persons on the same day in the same month is greater

More information

New Proofs for NMAC and HMAC: Security without Collision-Resistance

New Proofs for NMAC and HMAC: Security without Collision-Resistance New Proofs for NMAC and HMAC: Security without Collision-Resistance Mihir Bellare Dept. of Computer Science & Engineering 0404, University of California San Diego 9500 Gilman Drive, La Jolla, CA 92093-0404,

More information

Leftovers from Lecture 3

Leftovers from Lecture 3 Leftovers from Lecture 3 Implementing GF(2^k) Multiplication: Polynomial multiplication, and then remainder modulo the defining polynomial f(x): (1,1,0,1,1) *(0,1,0,1,1) = (1,1,0,0,1) For small size finite

More information

Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions

Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions Forgery and Partial Key-Recovery Attacks on HMAC and NMAC Using Hash Collisions Scott Contini 1 and Yiqun Lisa Yin 2 1 Macquarie University, Centre for Advanced Computing ACAC, NSW 2109, Australia scontini@comp.mq.edu.au

More information

Introduction to Cryptography k. Lecture 5. Benny Pinkas k. Requirements. Data Integrity, Message Authentication

Introduction to Cryptography k. Lecture 5. Benny Pinkas k. Requirements. Data Integrity, Message Authentication Common Usage of MACs for message authentication Introduction to Cryptography k Alice α m, MAC k (m) Isα= MAC k (m)? Bob k Lecture 5 Benny Pinkas k Alice m, MAC k (m) m,α Got you! α MAC k (m )! Bob k Eve

More information

Improved Generic Attacks Against Hash-based MACs and HAIFA

Improved Generic Attacks Against Hash-based MACs and HAIFA Improved Generic Attacks Against Hash-based MACs and HAIFA Itai Dinur 1 and Gaëtan Leurent 2 1 Département d Informatique, École Normale Supérieure, Paris, France Itai.Dinur@ens.fr 2 Inria, EPI SECRET,

More information

Lecture 10: NMAC, HMAC and Number Theory

Lecture 10: NMAC, HMAC and Number Theory CS 6903 Modern Cryptography April 13, 2011 Lecture 10: NMAC, HMAC and Number Theory Instructor: Nitesh Saxena Scribes: Anand Desai,Manav Singh Dahiya,Amol Bhavekar 1 Recap 1.1 MACs A Message Authentication

More information

Cryptography CS 555. Topic 13: HMACs and Generic Attacks

Cryptography CS 555. Topic 13: HMACs and Generic Attacks Cryptography CS 555 Topic 13: HMACs and Generic Attacks 1 Recap Cryptographic Hash Functions Merkle-Damgård Transform Today s Goals: HMACs (constructing MACs from collision-resistant hash functions) Generic

More information

Introduction to Cryptography

Introduction to Cryptography B504 / I538: Introduction to Cryptography Spring 2017 Lecture 12 Recall: MAC existential forgery game 1 n Challenger (C) k Gen(1 n ) Forger (A) 1 n m 1 m 1 M {m} t 1 MAC k (m 1 ) t 1 m 2 m 2 M {m} t 2

More information

New Proofs for NMAC and HMAC: Security without Collision-Resistance

New Proofs for NMAC and HMAC: Security without Collision-Resistance A preliminary version of this paper appears in Advances in Cryptology CRYPTO 06, Lecture Notes in Computer Science Vol. 4117, C. Dwork ed., Springer-Verlag, 2006. This is the full version. New Proofs for

More information

SPCS Cryptography Homework 13

SPCS Cryptography Homework 13 1 1.1 PRP For this homework, use the ollowing PRP: E(k, m) : {0, 1} 3 {0, 1} 3 {0, 1} 3 000 001 010 011 100 101 110 111 m 000 011 001 111 010 000 101 110 100 001 101 110 010 000 111 100 001 011 010 001

More information

Higher Order Universal One-Way Hash Functions

Higher Order Universal One-Way Hash Functions Higher Order Universal One-Way Hash Functions Deukjo Hong 1, Bart Preneel 2, and Sangjin Lee 1 1 Center for Information Security Technologies(CIST), Korea University, Seoul, Korea {hongdj,sangjin}@cist.korea.ac.kr

More information

Introduction to Information Security

Introduction to Information Security Introduction to Information Security Lecture 4: Hash Functions and MAC 2007. 6. Prof. Byoungcheon Lee sultan (at) joongbu. ac. kr Information and Communications University Contents 1. Introduction - Hash

More information

A new Design Criteria for Hash-Functions

A new Design Criteria for Hash-Functions A new Design Criteria or Hash-Functions Jean-Sébastien Coron 1, Yevgeniy Dodis 2, Cécile Malinaud 3, and Prashant Puniya 2 1 University o Luxembourg, coron@clipper.ens.r 2 New-York University, {dodis,puniya}@cs.nyu.edu

More information

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017

COS433/Math 473: Cryptography. Mark Zhandry Princeton University Spring 2017 COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Authenticated Encryption Syntax Syntax: Enc: K M à C Dec: K C à M { } Correctness: For all k K, m M, Dec(k, Enc(k,m) ) = m Unforgeability

More information

New Attacks against Standardized MACs

New Attacks against Standardized MACs New Attacks against Standardized MACs Antoine Joux 1, Guillaume Poupard 1, and Jacques Stern 2 1 DCSSI Crypto Lab 51 Boulevard de La Tour-Maubourg 75700 Paris 07 SP, France {Antoine.Joux,Guillaume.Poupard}@m4x.org

More information

Online Cryptography Course. Collision resistance. Introduc3on. Dan Boneh

Online Cryptography Course. Collision resistance. Introduc3on. Dan Boneh Online Cryptography Course Collision resistance Introduc3on Recap: message integrity So far, four MAC construc3ons: PRFs ECBC- MAC, CMAC : commonly used with AES (e.g. 802.11i) NMAC : basis of HMAC (this

More information

Cryptanalysis of the GOST Hash Function

Cryptanalysis of the GOST Hash Function Cryptanalysis o the GOST Hash Function Florian Mendel 1, Norbert Pramstaller 1, Christian Rechberger 1, Marcin Kontak 2, and Janusz Szmidt 2 1 Institute or Applied Inormation Processing and Communications

More information

Full-Round Differential Attack on the Original Version of the Hash Function Proposed at PKC 98

Full-Round Differential Attack on the Original Version of the Hash Function Proposed at PKC 98 Full-Round Differential Attack on the Original Version of the Hash Function Proposed at PKC 98 Donghoon Chang 1, Jaechul Sung 2, Soohak Sung 3,SangjinLee 1,and Jongin Lim 1 1 Center for Information Security

More information

Security without Collision-Resistance

Security without Collision-Resistance A preliminary version of this paper appears in Advances in Cryptology CRYPTO 06, Lecture Notes in Computer Science Vol. 4117, C. Dwork ed., Springer-Verlag, 2006. This is the full version. New Proofs for

More information

The Impact of Carries on the Complexity of Collision Attacks on SHA-1

The Impact of Carries on the Complexity of Collision Attacks on SHA-1 The Impact o Carries on the Complexity o Collision Attacks on SHA-1 Florian Mendel, Norbert Pramstaller, Christian Rechberger and Vincent Rijmen Norbert.Pramstaller@iaik.tugraz.at Institute or Applied

More information

Improved indifferentiability security analysis of chopmd Hash Function

Improved indifferentiability security analysis of chopmd Hash Function Improved indifferentiability security analysis of chopmd Hash Function Donghoon Chang 1 and Mridul Nandi 2 1 Center for Information Security Technologies (CIST) Korea University, Seoul, Korea dhchang@cist.korea.ac.kr

More information

3C - A Provably Secure Pseudorandom Function and Message Authentication Code. A New mode of operation for Cryptographic Hash Function

3C - A Provably Secure Pseudorandom Function and Message Authentication Code. A New mode of operation for Cryptographic Hash Function 3C - A Provably Secure Pseudorandom Function and Message Authentication Code. A New mode of operation for Cryptographic Hash Function Praveen Gauravaram 1, William Millan 1, Juanma Gonzalez Neito 1, Edward

More information

Week 12: Hash Functions and MAC

Week 12: Hash Functions and MAC Week 12: Hash Functions and MAC 1. Introduction Hash Functions vs. MAC 2 Hash Functions Any Message M Hash Function Generate a fixed length Fingerprint for an arbitrary length message. No Key involved.

More information

Provable Seconde Preimage Resistance Revisited

Provable Seconde Preimage Resistance Revisited Provable Seconde Preimage Resistance Revisited Charles Bouillaguet 1 Bastien Vayssiere 2 1 LIFL University o Lille, France 2 PRISM University o Versailles, France SAC 2013 1 / 29 Cryptographic Hash Functions

More information

Foundations of Network and Computer Security

Foundations of Network and Computer Security Foundations of Network and Computer Security John Black Lecture #4 Sep 2 nd 2004 CSCI 6268/TLEN 5831, Fall 2004 Announcements Please sign up for class mailing list Quiz #1 will be on Thursday, Sep 9 th

More information

Lecture 14: Cryptographic Hash Functions

Lecture 14: Cryptographic Hash Functions CSE 599b: Cryptography (Winter 2006) Lecture 14: Cryptographic Hash Functions 17 February 2006 Lecturer: Paul Beame Scribe: Paul Beame 1 Hash Function Properties A hash function family H = {H K } K K is

More information

ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls

ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls ZCZ: Achieving n-bit SPRP Security with a Minimal Number of Tweakable-block-cipher Calls Ritam Bhaumik, Indian Statistical Institute, Kolkata Eik List, Bauhaus-Universität Weimar, Weimar Mridul Nandi,

More information

Preimage Attacks on Reduced Tiger and SHA-2

Preimage Attacks on Reduced Tiger and SHA-2 Preimage Attacks on Reduced Tiger and SHA-2 Takanori Isobe and Kyoji Shibutani Sony Corporation 1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan {Takanori.Isobe,Kyoji.Shibutani}@jp.sony.com Abstract. This

More information

Message Authentication Codes (MACs) and Hashes

Message Authentication Codes (MACs) and Hashes Message Authentication Codes (MACs) and Hashes David Brumley dbrumley@cmu.edu Carnegie Mellon University Credits: Many slides from Dan Boneh s June 2012 Coursera crypto class, which is awesome! Recap so

More information

Cryptanalysis of Tweaked Versions of SMASH and Reparation

Cryptanalysis of Tweaked Versions of SMASH and Reparation Cryptanalysis of Tweaked Versions of SMASH and Reparation Pierre-Alain Fouque, Jacques Stern, and Sébastien Zimmer CNRS-École normale supérieure-inria Paris, France {Pierre-Alain.Fouque,Jacques.Stern,Sebastien.Zimmer}@ens.fr

More information

On the Security of Hash Functions Employing Blockcipher Post-processing

On the Security of Hash Functions Employing Blockcipher Post-processing On the Security of Hash Functions Employing Blockcipher Post-processing Donghoon Chang 1, Mridul Nandi 2, Moti Yung 3 1 National Institute of Standards and Technology (NIST), USA 2 C R Rao AIMSCS, Hyderabad,

More information

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5

Models and analysis of security protocols 1st Semester Symmetric Encryption Lecture 5 Models and analysis of security protocols 1st Semester 2009-2010 Symmetric Encryption Lecture 5 Pascal Lafourcade Université Joseph Fourier, Verimag Master: September 29th 2009 1 / 60 Last Time (I) Security

More information

SMASH - A Cryptographic Hash Function

SMASH - A Cryptographic Hash Function SMASH - A Cryptographic Hash Function Lars R. Knudsen Department of Mathematics, Technical University of Denmark Abstract. 1 This paper presents a new hash function design, which is different from the

More information

Improved Collision and Preimage Resistance Bounds on PGV Schemes

Improved Collision and Preimage Resistance Bounds on PGV Schemes Improved Collision and Preimage Resistance Bounds on PGV Schemes Lei Duo 1 and Chao Li 1 Department of Science, National University of Defense Technology, Changsha, China Duoduolei@gmail.com Department

More information

CBC MAC for Real-Time Data Sources. Abstract. The Cipher Block Chaining (CBC) Message Authentication Code (MAC) is an

CBC MAC for Real-Time Data Sources. Abstract. The Cipher Block Chaining (CBC) Message Authentication Code (MAC) is an CBC MAC for Real-Time Data Sources Erez Petrank Charles Racko y Abstract The Cipher Block Chaining (CBC) Message Authentication Code (MAC) is an authentication method which is widely used in practice.

More information

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588

Cryptographic Hashes. Yan Huang. Credits: David Evans, CS588 Cryptographic Hashes Yan Huang Credits: David Evans, CS588 Recap: CPA 1. k KeyGen(1 n ). b {0,1}. Give Enc(k, ) to A. 2. A chooses as many plaintexts as he wants, and receives the corresponding ciphertexts

More information

Improved security analysis of OMAC

Improved security analysis of OMAC Improved security analysis of OMAC Mridul andi CIVESTAV-IP, Mexico City mridul.nandi@gmail.com Abstract. We present an improved security analysis of OMAC, the construction is widely used as a candidate

More information

Fast and Secure CBC-Type MAC Algorithms

Fast and Secure CBC-Type MAC Algorithms Fast and Secure CBC-Type MAC Algorithms Mridul Nandi National Institute of Standards and Technology mridul.nandi@gmail.com Abstract. The CBC-MAC or cipher block chaining message authentication code, is

More information

Design Paradigms for Building Multi-Property Hash Functions

Design Paradigms for Building Multi-Property Hash Functions Design Paradigms or Building Multi-Property Hash Functions Thomas Ristenpart UCSD Security and Cryptography Lab Lorentz Workshop June, 2008 Multi-property hash unctions One hash unction with many security

More information

Chapter 5. Hash Functions. 5.1 The hash function SHA1

Chapter 5. Hash Functions. 5.1 The hash function SHA1 Chapter 5 Hash Functions A hash function usually means a function that compresses, meaning the output is shorter than the input. Often, such a function takes an input of arbitrary or almost arbitrary length

More information

2 n 2 n 2 n/2. Bart Preneel Generic Constructions for Iterated Hash Functions. Generic Constructions for Iterated Hash Functions.

2 n 2 n 2 n/2. Bart Preneel Generic Constructions for Iterated Hash Functions. Generic Constructions for Iterated Hash Functions. or Iterated Hash Functions or Iterated Hash Functions COSIC Kath. Univ. Leuven, Belgium & ABT Crypto bart.preneel(at)esat.kuleuven.be April 2007 Outline deinitions applications generic attacks attacks

More information

Generic Universal Forgery Attack on Iterative Hash-based MACs

Generic Universal Forgery Attack on Iterative Hash-based MACs Generic Universal Forgery Attack on Iterative Hash-based MACs Thomas Peyrin and Lei Wang Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University,

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 15 October 20, 2014 CPSC 467, Lecture 15 1/37 Common Hash Functions SHA-2 MD5 Birthday Attack on Hash Functions Constructing New

More information

SMASH - A Cryptographic Hash Function

SMASH - A Cryptographic Hash Function SMASH - A Cryptographic Hash Function Lars R. Knudsen Department of Mathematics, Technical University of Denmark Abstract. 1 This paper presents a new hash function design, which is different from the

More information

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5)

Symmetric Ciphers. Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Ciphers Mahalingam Ramkumar (Sections 3.2, 3.3, 3.7 and 6.5) Symmetric Cryptography C = E(P,K) P = D(C,K) Requirements Given C, the only way to obtain P should be with the knowledge of K Any

More information

An introduction to Hash functions

An introduction to Hash functions An introduction to Hash functions Anna Rimoldi eriscs - Universitée de la Méditerranée, Marseille Secondo Workshop di Crittografia BunnyTN 2011 A. Rimoldi (eriscs) Hash function 12 September 2011 1 / 27

More information

CPSC 467: Cryptography and Computer Security

CPSC 467: Cryptography and Computer Security CPSC 467: Cryptography and Computer Security Michael J. Fischer Lecture 16 October 30, 2017 CPSC 467, Lecture 16 1/52 Properties of Hash Functions Hash functions do not always look random Relations among

More information

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited

From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited From Fixed-Length to Arbitrary-Length RSA Encoding Schemes Revisited Julien Cathalo 1, Jean-Sébastien Coron 2, and David Naccache 2,3 1 UCL Crypto Group Place du Levant 3, Louvain-la-Neuve, B-1348, Belgium

More information

Perfectly-Crafted Swiss Army Knives in Theory

Perfectly-Crafted Swiss Army Knives in Theory Perfectly-Crafted Swiss Army Knives in Theory Workshop Hash Functions in Cryptology * supported by Emmy Noether Program German Research Foundation (DFG) Hash Functions as a Universal Tool collision resistance

More information

Message Authentication. Adam O Neill Based on

Message Authentication. Adam O Neill Based on Message Authentication Adam O Neill Based on http://cseweb.ucsd.edu/~mihir/cse207/ Authenticity and Integrity - Message actually comes from. claimed Sender - Message was not modified in transit ' Electronic

More information

Notes for Lecture 9. 1 Combining Encryption and Authentication

Notes for Lecture 9. 1 Combining Encryption and Authentication U.C. Berkeley CS276: Cryptography Handout N9 Luca Trevisan February 17, 2009 Notes for Lecture 9 Notes scribed by Joel Weinberger, posted March 1, 2009 Summary Last time, we showed that combining a CPA-secure

More information

Weaknesses in the HAS-V Compression Function

Weaknesses in the HAS-V Compression Function Weaknesses in the HAS-V Compression Function Florian Mendel and Vincent Rijmen Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010

More information

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes

From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes From Fixed-Length Messages to Arbitrary-Length Messages Practical RSA Signature Padding Schemes [Published in D. Naccache, Ed., Topics in Cryptology CT-RSA 2001, vol. 2020 of Lecture Notes in Computer

More information

Functional Graphs and Their Applications in Generic Attacks on Iterated Hash Constructions

Functional Graphs and Their Applications in Generic Attacks on Iterated Hash Constructions Functional Graphs and Their Applications in Generic Attacks on Iterated Hash Constructions Zhenzhen Bao 1, Jian Guo 1 and Lei Wang 2,3 1 School of Physical and Mathematical Sciences, Nanyang Technological

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 23 February 2011 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

TheImpactofCarriesontheComplexityof Collision Attacks on SHA-1

TheImpactofCarriesontheComplexityof Collision Attacks on SHA-1 TheImpactoCarriesontheComplexityo Collision Attacks on SHA-1 Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen Institute or Applied Inormation Processing and Communications

More information

CIS 6930/4930 Computer and Network Security. Topic 4. Cryptographic Hash Functions

CIS 6930/4930 Computer and Network Security. Topic 4. Cryptographic Hash Functions CIS 6930/4930 Computer and Network Security Topic 4. Cryptographic Hash Functions 1 The SHA-1 Hash Function 2 Secure Hash Algorithm (SHA) Developed by NIST, specified in the Secure Hash Standard, 1993

More information

Provable Security of Cryptographic Hash Functions

Provable Security of Cryptographic Hash Functions Provable Security of Cryptographic Hash Functions Mohammad Reza Reyhanitabar Centre for Computer and Information Security Research University of Wollongong Australia Outline Introduction Security Properties

More information

Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan

Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan Cryptanalysis of a Message Authentication Code due to Cary and Venkatesan Simon R. Blackburn and Kenneth G. Paterson Department of Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX,

More information

1 Cryptographic hash functions

1 Cryptographic hash functions CSCI 5440: Cryptography Lecture 6 The Chinese University of Hong Kong 24 October 2012 1 Cryptographic hash functions Last time we saw a construction of message authentication codes (MACs) for fixed-length

More information

Hashes and Message Digests Alex X. Liu & Haipeng Dai

Hashes and Message Digests Alex X. Liu & Haipeng Dai Hashes and Message Digests Alex X. Liu & Haipeng Dai haipengdai@nju.edu.cn 313 CS Building Department of Computer Science and Technology Nanjing University Integrity vs. Secrecy Integrity: attacker cannot

More information

Preimage Attacks on 3, 4, and 5-Pass HAVAL

Preimage Attacks on 3, 4, and 5-Pass HAVAL Preimage Attacks on 3, 4, and 5-Pass HAVAL Yu Sasaki and Kazumaro Aoki NTT, 3-9-11 Midoricho, Musashino-shi, Tokyo, 180-8585 Japan Abstract. This paper proposes preimage attacks on hash function HAVAL

More information

Lecture 10 - MAC s continued, hash & MAC

Lecture 10 - MAC s continued, hash & MAC Lecture 10 - MAC s continued, hash & MAC Boaz Barak March 3, 2010 Reading: Boneh-Shoup chapters 7,8 The field GF(2 n ). A field F is a set with a multiplication ( ) and addition operations that satisfy

More information

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS

ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS ANOTHER LOOK AT SECURITY THEOREMS FOR 1-KEY NESTED MACS NEAL KOBLITZ AND ALFRED MENEZES Abstract. We prove a security theorem without collision-resistance or a class o 1-key hash-unction-based MAC schemes

More information

Beyond the MD5 Collisions

Beyond the MD5 Collisions Beyond the MD5 Collisions Daniel Joščák Daniel.Joscak@i.cz S.ICZ a.s. Hvězdova 1689/2a, 140 00 Prague 4; Faculty of Mathematics and Physics, Charles University, Prague Abstract We summarize results and

More information

The Hash Function Fugue

The Hash Function Fugue The Hash Function Fugue Shai Halevi William E. Hall Charanjit S. Jutla IBM T.J. Watson Research Center October 6, 2009 Abstract We describe Fugue, a hash function supporting inputs of length upto 2 64

More information

Online Cryptography Course. Message integrity. Message Auth. Codes. Dan Boneh

Online Cryptography Course. Message integrity. Message Auth. Codes. Dan Boneh Online Cryptography Course Message integrity Message Auth. Codes Message Integrity Goal: integrity, no confiden>ality. Examples: Protec>ng public binaries on disk. Protec>ng banner ads on web pages. Message

More information

Generic Security of NMAC and HMAC with Input Whitening

Generic Security of NMAC and HMAC with Input Whitening Generic Security of NMAC and HMAC with Input Whitening Peter Gaži 1, Krzysztof Pietrzak 1, and Stefano Tessaro 2 1 IST Austria {peter.gazi,pietrzak}@ist.ac.at 2 UC Santa Barbara tessaro@cs.ucsb.edu Abstract.

More information

The Security of Abreast-DM in the Ideal Cipher Model

The Security of Abreast-DM in the Ideal Cipher Model The Security of breast-dm in the Ideal Cipher Model Jooyoung Lee, Daesung Kwon The ttached Institute of Electronics and Telecommunications Research Institute Yuseong-gu, Daejeon, Korea 305-390 jlee05@ensec.re.kr,ds

More information

Preimage Attack on ARIRANG

Preimage Attack on ARIRANG Preimage Attack on ARIRANG Deukjo Hong, Woo-Hwan Kim, Bonwook Koo The Attached Institute of ETRI, P.O.Box 1, Yuseong, Daejeon, 305-600, Korea {hongdj,whkim5,bwkoo}@ensec.re.kr Abstract. The hash function

More information

Avoiding collisions Cryptographic hash functions. Table of contents

Avoiding collisions Cryptographic hash functions. Table of contents Avoiding collisions Cryptographic hash functions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Collision resistance Birthday attacks

More information

EME : extending EME to handle arbitrary-length messages with associated data

EME : extending EME to handle arbitrary-length messages with associated data EME : extending EME to handle arbitrary-length messages with associated data (Preliminiary Draft) Shai Halevi May 18, 2004 Abstract We describe a mode of oepration EME that turns a regular block cipher

More information

Avoiding collisions Cryptographic hash functions. Table of contents

Avoiding collisions Cryptographic hash functions. Table of contents Avoiding collisions Cryptographic hash functions Foundations of Cryptography Computer Science Department Wellesley College Fall 2016 Table of contents Introduction Davies-Meyer Hashes in Practice Hash

More information

A Composition Theorem for Universal One-Way Hash Functions

A Composition Theorem for Universal One-Way Hash Functions A Composition Theorem for Universal One-Way Hash Functions Victor Shoup IBM Zurich Research Lab, Säumerstr. 4, 8803 Rüschlikon, Switzerland sho@zurich.ibm.com Abstract. In this paper we present a new scheme

More information

The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash Function

The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash Function The Ideal-Cipher Model, Revisited: An Uninstantiable Blockcipher-Based Hash Function J. Black July 1, 2005 Abstract The Ideal-Cipher Model of a blockcipher is a well-known and widely-used model dating

More information

Analysis of Underlying Assumptions in NIST DRBGs

Analysis of Underlying Assumptions in NIST DRBGs Analysis of Underlying Assumptions in NIST DRBGs Wilson Kan Security and Privacy Group Pitney Bowes Inc. September 4, 2007 Abstract In [1], four different DRBGs are recommended for cryptographic purpose.

More information

Breaking Symmetric Cryptosystems Using Quantum Algorithms

Breaking Symmetric Cryptosystems Using Quantum Algorithms Breaking Symmetric Cryptosystems Using Quantum Algorithms Gaëtan Leurent Joined work with: Marc Kaplan Anthony Leverrier María Naya-Plasencia Inria, France FOQUS Workshop Gaëtan Leurent (Inria) Breaking

More information

Cryptographic Hash Functions

Cryptographic Hash Functions Cryptographic Hash Functions Çetin Kaya Koç koc@ece.orst.edu Electrical & Computer Engineering Oregon State University Corvallis, Oregon 97331 Technical Report December 9, 2002 Version 1.5 1 1 Introduction

More information

A (Second) Preimage Attack on the GOST Hash Function

A (Second) Preimage Attack on the GOST Hash Function A (Second) Preimage Attack on the GOST Hash Function Florian Mendel, Norbert Pramstaller, and Christian Rechberger Institute for Applied Information Processing and Communications (IAIK), Graz University

More information