KB Agents and Propositional Logic

Size: px
Start display at page:

Download "KB Agents and Propositional Logic"

Transcription

1 Plan Knowledge-Based Agents Logics Propositional Logic KB Agents and Propositional Logic Announcements Assignment2 mailed out last week. Questions? Knowledge-Based Agents So far, what we ve done is look at the basic approach for problem-solving as search in a state space, requiring a specification of a state space, and a description of actions as transformations among states. This can be very powerful and useful. However, sometimes it can be inefficient. For example, what about cases where an agent has only partial knowledge about the world? For example, consider a simple vacuum world, comprised of two connected rooms and a vacuuming agent. Each of the rooms might have dirt on the floor. The agent is capable of moving between the rooms, and of vacuuming the room that it currently is in. Given this description, how many possible states of the world might there be? Now, what if the agent knows where it is and that there is dirt on the floor, but not which room(s) the dirt is in? What would the initial state of the world be? We can capture this partial knowledge by a set of states, where the set of states includes all those deemed possible by the agent. We can solve the problem by finding a single sequence of operators that leads from any of the initial states to the goal states. For example: Vacuum the current room, move to the other room, and vacuum the other room. Had it known more specifically which state it was in, it might have avoided one of those vacuuming operations. This manner of solving the problem is possible, but rather unwieldy. If the agent doesn t know which of the n rooms has dirt, then there are 2 n world states making up the initial knowledge state. Searching the space of sets of states can blow the set up enormously. This seems a waste in this case, as a

2 simple bit of reasoning tells us that if we just go to each room and vacuum, we will end up with a clean house whatever state it was in previously. As in this example, it is very often the case that it is feasible to characterize a partial state of knowledge more concisely than to list all the possible physical states. Think about the example: It is very concise to say that the agent knows that some of the rooms are dirty. It is another matter to list all the ways in which some of the rooms can be dirty. If it knows some of the rooms are dirty, this enumeration should be possible in a very mechanical way; but perhaps it can avoid much of the enumeration - which leads to the combinatorics - by just manipulating its knowledge rather than its models of the states. This goes to the heart of developing an agent based on knowledge. It frees us up from having to talk about specifics of world states, and instead talk simply about what an agent knows. Note, though, that knowing is more than just a matter of retrieving facts from some kind of a data base. What an agent knows can be well beyond what is explicitly represented. In the vacuum example, if the agent knows that some of the rooms are dirty it can answer all kinds of questions: Might room A be dirty? Must room A be dirty? Even without storing all of the answers in its database, it can derive them from what it knows. Thus, a knowledge-based agent is one that it makes sense to ASK questions of, and to TELL knowledge to. Such an agent can be usefully described as having knowledge, where this knowledge can be changed by TELLing it other knowledge, and the agent s current knowledge state (and its consequences) can be probed by ASKing. The knowledge state of such an agent is called its knowledge base, or KB. The idea of programming an agent by TELLing it things is called the declarative approach. For example, consider our vacuum cleaner agent. First, we TELL it that the house has exactly two rooms, A and B. Then we TELL it that some room or rooms have dirt in them. We could ask it whether room A has dirt in it... what should it answer? We could ask it whether room A might have dirt in it... what should it answer? Then we TELL it that room A has no dirt in it. What should it answer if we ask whether room A might have dirt in it. How about whether room B

3 might have dirt in it? How about whether room B has dirt in it? Note that here we were able to talk about interacting with the agent by TELLing and ASKing, and we possess some notion of how changing the knowledge of the agent should change what it believes based on the knowledge. In essence, the contents of its knowledge base lead (or should lead) to new conclusions about the world. This is the notion of entailment, which we ll soon return to. First, though, note that the TELL/ASK interface is just a higher-level abstraction of the agent, no different from the other abstractions we typically use in computer science. In describing a machine, we have a choice about whether to think of it at the programming language level, the machine language level, at the digital level, down to the transistors. Here we are adding a new higher level, called the knowledge-level. Just as with the other abstractions, to the extent that the higher level is an accurate characterization, it can dramatically simplify our model of the agent, and help us develop more complex behaviors. Logics Of course, to make the knowledge-level abstraction work, it needs to be grounded in a computational form. We need several things. We need a notation to write down the KB. This is called the knowledge representation language. A KR language consists of two parts: syntax: the legal sentences semantics: the facts in this world to which the sentences correspond Note that the syntax defines a structure, while the semantics ascribes meaning to the symbols embedded in the syntax. We are used to that as computer scientists - what we name a variable isn t important; rather, it is how we expect it to be used (what is it bound to) and where it fits into the program that is crucial. Interpretations. The semantics thus defines an interpretation for symbols. For example, the interpretation of a sentence DirtyA might be the fact that there is dirt in room A. The sentence is true if it is case in the world that this fact holds.

4 A KR language with a precisely defined syntax and semantics is called a logic. In addition, we typically associate with the formal language a reasoning method or inference mechanism, by which some sentences are derived from others. It is useful to consider some properties of an inference mechanism. First, we need the notion of entailment. A fact is entailed by a state of knowledge (a KB), if, for every world possible in that state of knowledge, the fact is true. (notation, KB = α). For example, in our dirty room case, the KB claims that it is true that either room A or room B is dirty, and that room A isn t dirty. The fact that room B is dirty is entailed by the KB - at least in what we would usually consider a normal world. But just because something is entailed doesn t mean that we can build a mechanism to find it. Next we need the notion of derivation. If we can derive α from the KB using our inference mechanism, we write KB α, and call the record of the inference procedure a proof. So now the key is the degree to which our inference mechanism derives things that are entailed. We will say that our inference mechanism (or the logic system that includes it) is sound if it only derives things that are truly entailed. We will say that it is complete if it can derive everything that is truly entailed... Soundness (if derivation, then entailed) and completeness (if entailment, then derived). Sentences being true, valid, satisfiable, unsatisfiable. First requires a specific interpretation, others talk about properties wrt the set of interpretations. For example, the sentence D x or not D x is true in all interpretations, no matter what the symbol D x happens to mean. The sentence D x or D y is not valid but is satisfiable, because under some interpretations it is true, and in others it is false. But the sentence D x and not D x is neither valid nor satisfiable. Note that we have been working with a very broad definition of logic. In fact, any language that is operated on by formal rules is a logic. For example, we are all familiar with the logic of mathematics. We can have sentences, such as equations: 2 + x**2 = y + 2. We have inference rules. For

5 example, if we know our equation above is true, then we also know that x**2 = y, based on our inference mechanism that says that if we subtract (add) equal amounts from (to) both sides of an equation, then the equation we get out has the same truth value. Note that this inference rule leads to derivations more generally: if X+C = Y+C then X=Y. We could test to see if this rule itself is valid, or satisfiable, or unsatisfiable. We could substitute different values for X, Y, and C. If we stumble on the case, for example, where X = Y = C = 2, then the first equality holds and so does the second one, so it is satisfiable. If we have X = 2 and Y = 3, then X+C is not equal to Y+C, so our inference rule doesn t apply anyway. In fact, if we had enough time, we might conclude that the inference rule is valid - every time we find an X and Y that make the test part true, the other part also is true. As an aside, sometimes we might equate valid with vacuous. For example, the statement Either it is raining outside or it isn t, is valid, but not especially enlightening. But these kinds of tautologies just scratch the surface - in fact, valid sets of sentences are very powerful: to know something must be true even though you don t know all the details is very useful. Of course, we probably wouldn t want to establish validity through an exhaustive enumeration. For mathematics, if we want to verify that something like the above is valid, we might appeal to other proof procedures that might involve yet other inference mechanisms. But there might be other logics where we could verify the validity of a set of sentences in more of a brute force method. This is the case for some of the more specific usages of the term logic. Often the term logic is reserved for some particular general-purpose languages, one of which, propositional logic, we discuss today, and the other, first-order logic, we discuss next time. Propositional Logic Propositional Logic has a syntax to define what are the legal sentences. Give BNF, explain terminals.

6 Sentence = True False PropositionalSymbol (Sentence) Sentence Sentence Sentence Sentence Sentence Sentence Sentence Sentence Sentence What are the semantics of these? Well, we can really get at them by looking at truth-tables, where we compose truth values for complex expressions. For example, the implication case looks like this... We can test validity by generating all interpretations. Validity is the right property for an agent because its results are invariant wrt interpretations of the primitive symbols. Can test entailment by determining whether the corresponding implication is valid. Requires time O(2 n ) for a sentence with n propositional symbols. A sentence is satisfiable iff its negation is not valid. Some of the rooms are dirty: DirtyA V DirtyB If A has been vacuumed, then it isn t dirty: VacuumedA => ~DirtyA Now, given what we know, we might suppose that if A has been vacuumed, then it must be B that is dirty: VacuumedA => DirtyB. This sounds reasonable. We can check it with a truth table. DA DB VA DAvDB VA=>~DA VA=>DB T T T T F T T T F T T T T F T T F F T F F T T T F T T T T T F T F T T T F F T F T F F F F F T T

7 In short, whenever the propositions are such that the two sentences that we ve been told are true are indeed true, it is also the case that the third sentence is also true. This illustrates how we can show that two (or in general we could use more) sentences entail a third one, based on truth tables. In fact, these patterns allow us to establish inference rules for making derivations that are sound. For example: Modus Ponens (Implication-elimination) And-Elimination And-Introduction Or-Introduction Double-Negation-Elimination Unit Resolution (same as MP) Resolution α β,α β α 1 α 2 h α n 7 α i α 1,α 2,h,α n 7 α 1 α 2 h α n α i 7 α 1 α 2 h α n α α α β, β α α β, β γ α γ For example, we can verify the resolution rule using truth tables. We can use these inference rules to construct proofs. Example: Some of the rooms are dirty: DirtyA V DirtyB Vacuuming cleans them: VacuumA => ~DirtyA Convert latter clause to ~VacuumA V ~DirtyA Now use resolution to get: ~VacuumA V DirtyB

8 Of course, this could be converted back to implication: VacuumA => DirtyB This was what we proved with truth tables. What if told that A has been vacuumed? Then using Modus Ponens we can conclude DirtyB. And of course, with or-introduction, we can infer from DirtyB that it is true that DirtyA V DirtyB is true as well Inference is Search! Finding a proof can be viewed as a search procedure, where inference rules are operators that transform one set of sentences to another, augmented set. Branching factor depends on how many inference rules are applicable. However, there is no need to ever back up (remove sentences generated along an abandoned path), since propositional logic is monotonic, if KB entails α, then (KB,S) entails α, for any sentence S. Note that we can answer any entailment question in time O(2 n ), using validity procedure. It does not seem that we can do better in the general case. In some special cases, however, more efficient procedures are available. 1. If all we use is conjunction (no disjunction or negation), then essentially our KB is a database, and can answer any question via lookup. 2. A sentence of the form 8 P 1 P 2 l P n Q is called a Horn sentence. If all sentences are Horn, then we can simply apply Modus Ponens until there are no more conclusions, and answer any entailment question in polynomial time.

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

AI Programming CS S-09 Knowledge Representation

AI Programming CS S-09 Knowledge Representation AI Programming CS662-2013S-09 Knowledge Representation David Galles Department of Computer Science University of San Francisco 09-0: Overview So far, we ve talked about search, which is a means of considering

More information

Description Logics. Foundations of Propositional Logic. franconi. Enrico Franconi

Description Logics. Foundations of Propositional Logic.   franconi. Enrico Franconi (1/27) Description Logics Foundations of Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/27) Knowledge

More information

Logic: Propositional Logic (Part I)

Logic: Propositional Logic (Part I) Logic: Propositional Logic (Part I) Alessandro Artale Free University of Bozen-Bolzano Faculty of Computer Science http://www.inf.unibz.it/ artale Descrete Mathematics and Logic BSc course Thanks to Prof.

More information

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001

Logic. Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Logic Introduction to Artificial Intelligence CS/ECE 348 Lecture 11 September 27, 2001 Last Lecture Games Cont. α-β pruning Outline Games with chance, e.g. Backgammon Logical Agents and thewumpus World

More information

Advanced Topics in LP and FP

Advanced Topics in LP and FP Lecture 1: Prolog and Summary of this lecture 1 Introduction to Prolog 2 3 Truth value evaluation 4 Prolog Logic programming language Introduction to Prolog Introduced in the 1970s Program = collection

More information

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14

Logical Agents. Knowledge based agents. Knowledge based agents. Knowledge based agents. The Wumpus World. Knowledge Bases 10/20/14 0/0/4 Knowledge based agents Logical Agents Agents need to be able to: Store information about their environment Update and reason about that information Russell and Norvig, chapter 7 Knowledge based agents

More information

Logical Agents (I) Instructor: Tsung-Che Chiang

Logical Agents (I) Instructor: Tsung-Che Chiang Logical Agents (I) Instructor: Tsung-Che Chiang tcchiang@ieee.org Department of Computer Science and Information Engineering National Taiwan Normal University Artificial Intelligence, Spring, 2010 編譯有誤

More information

Artificial Intelligence. Propositional logic

Artificial Intelligence. Propositional logic Artificial Intelligence Propositional logic Propositional Logic: Syntax Syntax of propositional logic defines allowable sentences Atomic sentences consists of a single proposition symbol Each symbol stands

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Logical Agents. September 14, 2004

Logical Agents. September 14, 2004 Logical Agents September 14, 2004 The aim of AI is to develop intelligent agents that can reason about actions and their effects and about the environment, create plans to achieve a goal, execute the plans,

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey.

How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague, such as: this paint is grey. Major results: (wrt propositional logic) How to reason correctly. How to reason efficiently. How to determine if a statement is true or false. Fuzzy logic deal with statements that are somewhat vague,

More information

Propositional Logic: Review

Propositional Logic: Review Propositional Logic: Review Propositional logic Logical constants: true, false Propositional symbols: P, Q, S,... (atomic sentences) Wrapping parentheses: ( ) Sentences are combined by connectives:...and...or

More information

CS 2740 Knowledge Representation. Lecture 4. Propositional logic. CS 2740 Knowledge Representation. Administration

CS 2740 Knowledge Representation. Lecture 4. Propositional logic. CS 2740 Knowledge Representation. Administration Lecture 4 Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square dministration Homework assignment 1 is out Due next week on Wednesday, September 17 Problems: LISP programming a PL

More information

Logical Agent & Propositional Logic

Logical Agent & Propositional Logic Logical Agent & Propositional Logic Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. S. Russell and P. Norvig. Artificial Intelligence:

More information

Logical Agent & Propositional Logic

Logical Agent & Propositional Logic Logical Agent & Propositional Logic Berlin Chen 2005 References: 1. S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Chapter 7 2. S. Russell s teaching materials Introduction The representation

More information

CSCI 5582 Artificial Intelligence. Today 9/28. Knowledge Representation. Lecture 9

CSCI 5582 Artificial Intelligence. Today 9/28. Knowledge Representation. Lecture 9 CSCI 5582 Artificial Intelligence Lecture 9 Jim Martin Today 9/28 Review propositional logic Reasoning with Models Break More reasoning Knowledge Representation A knowledge representation is a formal scheme

More information

Logical Agents. Administrative. Thursday: Midterm 1, 7p-9p. Next Tuesday: DOW1013: Last name A-M DOW1017: Last name N-Z

Logical Agents. Administrative. Thursday: Midterm 1, 7p-9p. Next Tuesday: DOW1013: Last name A-M DOW1017: Last name N-Z Logical Agents Mary Herchenhahn, mary-h.com EECS 492 February 2 nd, 2010 Administrative Thursday: Midterm 1, 7p-9p DOW1013: Last name A-M DOW1017: Last name N-Z Next Tuesday: PS2 due PS3 distributed---

More information

Intelligent Agents. Pınar Yolum Utrecht University

Intelligent Agents. Pınar Yolum Utrecht University Intelligent Agents Pınar Yolum p.yolum@uu.nl Utrecht University Logical Agents (Based mostly on the course slides from http://aima.cs.berkeley.edu/) Outline Knowledge-based agents Wumpus world Logic in

More information

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS

EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 10, 5/9/2005 University of Washington, Department of Electrical Engineering Spring 2005 Instructor: Professor Jeff A. Bilmes Logical Agents Chapter 7

More information

Logical Agents. Chapter 7

Logical Agents. Chapter 7 Logical Agents Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

Agents that reason logically

Agents that reason logically Artificial Intelligence Sanguk Noh Logical Agents Agents that reason logically A Knowledge-Based Agent. function KB-Agent (percept) returns an action Tell(KB, Make-Percept-Sentence(percept,t)) action Ask(KB,

More information

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring

7 LOGICAL AGENTS. OHJ-2556 Artificial Intelligence, Spring OHJ-2556 Artificial Intelligence, Spring 109 7 LOGICAL AGENS We now turn to knowledge-based agents that have a knowledge base KB at their disposal With the help of the KB the agent aims at maintaining knowledge of its partially-observable environment

More information

Logical Agents. Outline

Logical Agents. Outline Logical Agents *(Chapter 7 (Russel & Norvig, 2004)) Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability

More information

Inference in Propositional Logic

Inference in Propositional Logic Inference in Propositional Logic Deepak Kumar November 2017 Propositional Logic A language for symbolic reasoning Proposition a statement that is either True or False. E.g. Bryn Mawr College is located

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR

Overview. Knowledge-Based Agents. Introduction. COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR Last time Expert Systems and Ontologies oday Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof theory Natural

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) You will be expected to know Basic definitions Inference, derive, sound, complete Conjunctive Normal Form (CNF) Convert a Boolean formula to CNF Do a short

More information

15414/614 Optional Lecture 1: Propositional Logic

15414/614 Optional Lecture 1: Propositional Logic 15414/614 Optional Lecture 1: Propositional Logic Qinsi Wang Logic is the study of information encoded in the form of logical sentences. We use the language of Logic to state observations, to define concepts,

More information

Knowledge based Agents

Knowledge based Agents Knowledge based Agents Shobhanjana Kalita Dept. of Computer Science & Engineering Tezpur University Slides prepared from Artificial Intelligence A Modern approach by Russell & Norvig Knowledge Based Agents

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics CS1081 First Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Problems Propositional logic isn t very expressive As an example, consider p = Scotland won on Saturday

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Artificial Intelligence ((ENCS434)) University of Birzeit 1 st Semester, 2011 Artificial Intelligence (ENCS434) Inference Methods In Propositional Logic Dr. Mustafa Jarrar University of

More information

COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning " Hanna Kurniawati"

COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning  Hanna Kurniawati COMP3702/7702 Artificial Intelligence Week 5: Search in Continuous Space with an Application in Motion Planning " Hanna Kurniawati" Last week" Main components of PRM" Collision check for a configuration"

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask

Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Set 6: Knowledge Representation: The Propositional Calculus Chapter 7 R&N ICS 271 Fall 2017 Kalev Kask Outline Representing knowledge using logic Agent that reason logically A knowledge based agent Representing

More information

Artificial Intelligence Chapter 7: Logical Agents

Artificial Intelligence Chapter 7: Logical Agents Artificial Intelligence Chapter 7: Logical Agents Michael Scherger Department of Computer Science Kent State University February 20, 2006 AI: Chapter 7: Logical Agents 1 Contents Knowledge Based Agents

More information

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning

COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning COMP9414, Monday 26 March, 2012 Propositional Logic 2 COMP9414: Artificial Intelligence Propositional Logic: Automated Reasoning Overview Proof systems (including soundness and completeness) Normal Forms

More information

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim

INF5390 Kunstig intelligens. Logical Agents. Roar Fjellheim INF5390 Kunstig intelligens Logical Agents Roar Fjellheim Outline Knowledge-based agents The Wumpus world Knowledge representation Logical reasoning Propositional logic Wumpus agent Summary AIMA Chapter

More information

Propositional Logic: Methods of Proof. Chapter 7, Part II

Propositional Logic: Methods of Proof. Chapter 7, Part II Propositional Logic: Methods of Proof Chapter 7, Part II Inference in Formal Symbol Systems: Ontology, Representation, ti Inference Formal Symbol Systems Symbols correspond to things/ideas in the world

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Logic: Propositional Logic Truth Tables

Logic: Propositional Logic Truth Tables Logic: Propositional Logic Truth Tables Raffaella Bernardi bernardi@inf.unibz.it P.zza Domenicani 3, Room 2.28 Faculty of Computer Science, Free University of Bolzano-Bozen http://www.inf.unibz.it/~bernardi/courses/logic06

More information

Propositional Logic: Methods of Proof (Part II)

Propositional Logic: Methods of Proof (Part II) Propositional Logic: Methods of Proof (Part II) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (previous lecture, Part I) Chapter 7.5 (this lecture, Part II) (optional: 7.6-7.8)

More information

Logic. proof and truth syntacs and semantics. Peter Antal

Logic. proof and truth syntacs and semantics. Peter Antal Logic proof and truth syntacs and semantics Peter Antal antal@mit.bme.hu 10/9/2015 1 Knowledge-based agents Wumpus world Logic in general Syntacs transformational grammars Semantics Truth, meaning, models

More information

Introduction to Intelligent Systems

Introduction to Intelligent Systems Logical Agents Objectives Inference and entailment Sound and complete inference algorithms Inference by model checking Inference by proof Resolution Forward and backward chaining Reference Russel/Norvig:

More information

cis32-ai lecture # 18 mon-3-apr-2006

cis32-ai lecture # 18 mon-3-apr-2006 cis32-ai lecture # 18 mon-3-apr-2006 today s topics: propositional logic cis32-spring2006-sklar-lec18 1 Introduction Weak (search-based) problem-solving does not scale to real problems. To succeed, problem

More information

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference Outline Logical Agents ECE57 Applied Artificial Intelligence Spring 007 Lecture #6 Logical reasoning Propositional Logic Wumpus World Inference Russell & Norvig, chapter 7 ECE57 Applied Artificial Intelligence

More information

Inference Methods In Propositional Logic

Inference Methods In Propositional Logic Lecture Notes, Advanced Artificial Intelligence (SCOM7341) Sina Institute, University of Birzeit 2 nd Semester, 2012 Advanced Artificial Intelligence (SCOM7341) Inference Methods In Propositional Logic

More information

Propositional Logic Part 1

Propositional Logic Part 1 Propositional Logic Part 1 Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Louis Oliphant, Andrew Moore, Jerry Zhu] slide 1 5 is even

More information

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5

Logical Inference. Artificial Intelligence. Topic 12. Reading: Russell and Norvig, Chapter 7, Section 5 rtificial Intelligence Topic 12 Logical Inference Reading: Russell and Norvig, Chapter 7, Section 5 c Cara MacNish. Includes material c S. Russell & P. Norvig 1995,2003 with permission. CITS4211 Logical

More information

First-Degree Entailment

First-Degree Entailment March 5, 2013 Relevance Logics Relevance logics are non-classical logics that try to avoid the paradoxes of material and strict implication: p (q p) p (p q) (p q) (q r) (p p) q p (q q) p (q q) Counterintuitive?

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) This lecture topic: Propositional Logic (two lectures) Chapter 7.1-7.4 (this lecture, Part I) Chapter 7.5 (next lecture, Part II) Next lecture topic: First-order

More information

Deliberative Agents Knowledge Representation I. Deliberative Agents

Deliberative Agents Knowledge Representation I. Deliberative Agents Deliberative Agents Knowledge Representation I Vasant Honavar Bioinformatics and Computational Biology Program Center for Computational Intelligence, Learning, & Discovery honavar@cs.iastate.edu www.cs.iastate.edu/~honavar/

More information

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz )

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) Logic in AI Chapter 7 Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) 2 Knowledge Representation represent knowledge about the world in a manner that

More information

Announcements. CS243: Discrete Structures. Propositional Logic II. Review. Operator Precedence. Operator Precedence, cont. Operator Precedence Example

Announcements. CS243: Discrete Structures. Propositional Logic II. Review. Operator Precedence. Operator Precedence, cont. Operator Precedence Example Announcements CS243: Discrete Structures Propositional Logic II Işıl Dillig First homework assignment out today! Due in one week, i.e., before lecture next Tuesday 09/11 Weilin s Tuesday office hours are

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics irst Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Logic Recap You should already know the basics of irst Order Logic (OL) It s a prerequisite of this course!

More information

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World School of Informatics, University of Edinburgh 26/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Outline Knowledge-based

More information

Introduction to Intelligent Systems

Introduction to Intelligent Systems Logical Agents Objectives Inference and entailment Sound and complete inference algorithms Inference by model checking Inference by proof Resolution Forward and backward chaining Reference Russel/Norvig:

More information

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer

Artificial Intelligence. Propositional Logic. Copyright 2011 Dieter Fensel and Florian Fischer Artificial Intelligence Propositional Logic Copyright 2011 Dieter Fensel and Florian Fischer 1 Where are we? # Title 1 Introduction 2 Propositional Logic 3 Predicate Logic 4 Reasoning 5 Search Methods

More information

Propositional Logic. Spring Propositional Logic Spring / 32

Propositional Logic. Spring Propositional Logic Spring / 32 Propositional Logic Spring 2016 Propositional Logic Spring 2016 1 / 32 Introduction Learning Outcomes for this Presentation Learning Outcomes... At the conclusion of this session, we will Define the elements

More information

Propositional Logic. Fall () Propositional Logic Fall / 30

Propositional Logic. Fall () Propositional Logic Fall / 30 Propositional Logic Fall 2013 () Propositional Logic Fall 2013 1 / 30 1 Introduction Learning Outcomes for this Presentation 2 Definitions Statements Logical connectives Interpretations, contexts,... Logically

More information

Knowledge Representation. Propositional logic.

Knowledge Representation. Propositional logic. CS 1571 Introduction to AI Lecture 10 Knowledge Representation. Propositional logic. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Announcements Homework assignment 3 due today Homework assignment

More information

Chapter 4: Classical Propositional Semantics

Chapter 4: Classical Propositional Semantics Chapter 4: Classical Propositional Semantics Language : L {,,, }. Classical Semantics assumptions: TWO VALUES: there are only two logical values: truth (T) and false (F), and EXTENSIONALITY: the logical

More information

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents

CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I 1 Knowledge-based Agents Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Intermediate Logic. Natural Deduction for TFL

Intermediate Logic. Natural Deduction for TFL Intermediate Logic Lecture Two Natural Deduction for TFL Rob Trueman rob.trueman@york.ac.uk University of York The Trouble with Truth Tables Natural Deduction for TFL The Trouble with Truth Tables The

More information

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents

Knowledge-based Agents. CS 331: Artificial Intelligence Propositional Logic I. Knowledge-based Agents. Outline. Knowledge-based Agents Knowledge-based Agents CS 331: Artificial Intelligence Propositional Logic I Can represent knowledge And reason with this knowledge How is this different from the knowledge used by problem-specific agents?

More information

Natural Deduction for Propositional Logic

Natural Deduction for Propositional Logic Natural Deduction for Propositional Logic Bow-Yaw Wang Institute of Information Science Academia Sinica, Taiwan September 10, 2018 Bow-Yaw Wang (Academia Sinica) Natural Deduction for Propositional Logic

More information

Propositional Logic: Part II - Syntax & Proofs 0-0

Propositional Logic: Part II - Syntax & Proofs 0-0 Propositional Logic: Part II - Syntax & Proofs 0-0 Outline Syntax of Propositional Formulas Motivating Proofs Syntactic Entailment and Proofs Proof Rules for Natural Deduction Axioms, theories and theorems

More information

Knowledge Representation. Propositional logic

Knowledge Representation. Propositional logic CS 2710 Foundations of AI Lecture 10 Knowledge Representation. Propositional logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Knowledge-based agent Knowledge base Inference engine Knowledge

More information

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference

Outline. Logical Agents. Logical Reasoning. Knowledge Representation. Logical reasoning Propositional Logic Wumpus World Inference Outline Logical Agents ECE57 Applied Artificial Intelligence Spring 008 Lecture #6 Logical reasoning Propositional Logic Wumpus World Inference Russell & Norvig, chapter 7 ECE57 Applied Artificial Intelligence

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

CS 7180: Behavioral Modeling and Decision- making in AI

CS 7180: Behavioral Modeling and Decision- making in AI CS 7180: Behavioral Modeling and Decision- making in AI Review of Propositional Logic Prof. Amy Sliva September 7, 2012 Outline General properties of logics Syntax, semantics, entailment, inference, and

More information

CS 771 Artificial Intelligence. Propositional Logic

CS 771 Artificial Intelligence. Propositional Logic CS 771 Artificial Intelligence Propositional Logic Why Do We Need Logic? Problem-solving agents were very inflexible hard code every possible state E.g., in the transition of 8-puzzle problem, knowledge

More information

Logical Agents: Propositional Logic. Chapter 7

Logical Agents: Propositional Logic. Chapter 7 Logical Agents: Propositional Logic Chapter 7 Outline Topics: Knowledge-based agents Example domain: The Wumpus World Logic in general models and entailment Propositional (Boolean) logic Equivalence, validity,

More information

Propositional Logic. Logic. Propositional Logic Syntax. Propositional Logic

Propositional Logic. Logic. Propositional Logic Syntax. Propositional Logic Propositional Logic Reading: Chapter 7.1, 7.3 7.5 [ased on slides from Jerry Zhu, Louis Oliphant and ndrew Moore] Logic If the rules of the world are presented formally, then a decision maker can use logical

More information

Truth-Functional Logic

Truth-Functional Logic Truth-Functional Logic Syntax Every atomic sentence (A, B, C, ) is a sentence and are sentences With ϕ a sentence, the negation ϕ is a sentence With ϕ and ψ sentences, the conjunction ϕ ψ is a sentence

More information

Propositional logic (revision) & semantic entailment. p. 1/34

Propositional logic (revision) & semantic entailment. p. 1/34 Propositional logic (revision) & semantic entailment p. 1/34 Reading The background reading for propositional logic is Chapter 1 of Huth/Ryan. (This will cover approximately the first three lectures.)

More information

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9

Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Unit 1. Propositional Logic Reading do all quick-checks Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4. Review 2.9 Typeset September 23, 2005 1 Statements or propositions Defn: A statement is an assertion

More information

Logical Agents. Santa Clara University

Logical Agents. Santa Clara University Logical Agents Santa Clara University Logical Agents Humans know things Humans use knowledge to make plans Humans do not act completely reflexive, but reason AI: Simple problem-solving agents have knowledge

More information

Intelligent Systems. Propositional Logic. Dieter Fensel and Dumitru Roman. Copyright 2008 STI INNSBRUCK

Intelligent Systems. Propositional Logic. Dieter Fensel and Dumitru Roman. Copyright 2008 STI INNSBRUCK Intelligent Systems Propositional Logic Dieter Fensel and Dumitru Roman www.sti-innsbruck.at Copyright 2008 STI INNSBRUCK www.sti-innsbruck.at Where are we? # Title 1 Introduction 2 Propositional Logic

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World

Agenda. Artificial Intelligence. Reasoning in the Wumpus World. The Wumpus World Agenda Artificial Intelligence 10. Propositional Reasoning, Part I: Principles How to Think About What is True or False 1 Introduction Álvaro Torralba Wolfgang Wahlster 2 Propositional Logic 3 Resolution

More information

Symbolic Logic 3. For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true.

Symbolic Logic 3. For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true. Symbolic Logic 3 Testing deductive validity with truth tables For an inference to be deductively valid it is impossible for the conclusion to be false if the premises are true. So, given that truth tables

More information

Logical agents. Chapter 7. Chapter 7 1

Logical agents. Chapter 7. Chapter 7 1 Logical agents Chapter 7 Chapter 7 1 Outline Knowledge-based agents Logic in general models and entailment Propositional (oolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

CSC242: Intro to AI. Lecture 11. Tuesday, February 26, 13

CSC242: Intro to AI. Lecture 11. Tuesday, February 26, 13 CSC242: Intro to AI Lecture 11 Propositional Inference Propositional Inference Factored Representation Splits a state into variables (factors, attributes, features, things you know ) that can have values

More information

5. And. 5.1 The conjunction

5. And. 5.1 The conjunction 5. And 5.1 The conjunction To make our logical language more easy and intuitive to use, we can now add to it elements that make it able to express the equivalents of other sentences from a natural language

More information

Logic. (Propositional Logic)

Logic. (Propositional Logic) Logic (Propositional Logic) 1 REPRESENTING KNOWLEDGE: LOGIC Logic is the branch of mathematics / philosophy concerned with knowledge and reasoning Aristotle distinguished between three types of arguments:

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Class Assignment Strategies

Class Assignment Strategies Class Assignment Strategies ì Team- A'ack: Team a'ack ì Individualis2c: Search for possible ì Poli2cal: look at others and make decision based on who is winning, who is loosing, and conversa;on ì Emo2on

More information

Artificial Intelligence Knowledge Representation I

Artificial Intelligence Knowledge Representation I Artificial Intelligence Knowledge Representation I Agents that reason logically knowledge-based approach implement agents that know about their world and reason about possible courses of action needs to

More information

Propositional Logic: Logical Agents (Part I)

Propositional Logic: Logical Agents (Part I) Propositional Logic: Logical Agents (Part I) First Lecture Today (Tue 21 Jun) Read Chapters 1 and 2 Second Lecture Today (Tue 21 Jun) Read Chapter 7.1-7.4 Next Lecture (Thu 23 Jun) Read Chapters 7.5 (optional:

More information

5. And. 5.1 The conjunction

5. And. 5.1 The conjunction 5. And 5.1 The conjunction To make our logical language more easy and intuitive to use, we can now add to it elements that make it able to express the equivalents of other sentences from a natural language

More information

Proof Methods for Propositional Logic

Proof Methods for Propositional Logic Proof Methods for Propositional Logic Logical equivalence Two sentences are logically equivalent iff they are true in the same models: α ß iff α β and β α Russell and Norvig Chapter 7 CS440 Fall 2015 1

More information

PROPOSITIONAL CALCULUS

PROPOSITIONAL CALCULUS PROPOSITIONAL CALCULUS A proposition is a complete declarative sentence that is either TRUE (truth value T or 1) or FALSE (truth value F or 0), but not both. These are not propositions! Connectives and

More information

Logical Agents. Chapter 7

Logical Agents. Chapter 7 Logical Agents Chapter 7 Outline Knowledge-based agents Wumpus world Logic in general - models and entailment Propositional (Boolean) logic Equivalence, validity, satisfiability Inference rules and theorem

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Maren Bennewitz, and Marco Ragni Albert-Ludwigs-Universität Freiburg Contents 1 Agents

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Bernhard Nebel Albert-Ludwigs-Universität Freiburg May 17, 2016

More information