The Transportation Problem. Experience the Joy! Feel the Excitement! Share in the Pleasure!

Size: px
Start display at page:

Download "The Transportation Problem. Experience the Joy! Feel the Excitement! Share in the Pleasure!"

Transcription

1 The Transportation Problem Experience the Joy! Feel the Excitement! Share in the Pleasure!

2 The Problem A company manufactures a single product at each of m factories. i has a capacity of S i per month. There are n warehouses receiving this product. The demand at warehouse j is D j. It cost factory i, c ij dollars to ship one unit to warehouse j. How many units should each factory send to each warehouse in order to minimize the total transportation costs? This is a really neat problem.

3 More of the Problem Shipping costs per unit shipped

4 The LP Formulation Let x ij = the number of units sent from factory i to warehouse j Min z = m i= subject to: n j= m i= n j= c x x S i =,,..., m x = D j =,,..., n x ij ij ij ij ij i 0 j 4

5 Initial Tableau Eq basic z no. Var x ij... z i... z m+j...rhs 0 z -c ij -M -M 0 i z i 0 s i m+j z m+j 0 d j 5

6 The Objective Function Min z = x + x + 0x + x 4 + 0x + x + 4x + 0x 4 + 4x + x + 5x + x 4 6

7 Constraints Min z = x + x + 0x + x 4 + 0x + x + 4x + 0x 4 + 4x + x + 5x + x 4 Subject to: x + x + x + x 4 = 0 x + x + x + x 4 = x + x + x + x 4 = constraints

8 Constraints Min z = x + x + 0x + x 4 + 0x + x + 4x + 0x 4 + 4x + x + 5x + x 4 Subject to: x + x + x + x 4 = 0 x + x + x + x 4 = x + x + x + x 4 = constraints x + x + x = 6 x + x + x = 5 x + x + x = x 4 + x 4 + x 4 = 8 constraints 8

9 A Redundant Constraint Min z = x + x + 0x + x 4 + 0x + x + 4x + 0x 4 + 4x + x + 5x + x 4 Subject to: x + x + x + x 4 = 0 x + x + x + x 4 = x + x + x + x 4 = constraints x + x + x = 6 x + x + x = 5 x + x + x = x 4 + x 4 + x 4 = 8 constraints

10 A Redundant Constraint Min z = x + x + 0x + x 4 + 0x + x + 4x + 0x 4 + 4x + x + 5x + x 4 Subject to: x + x + x + x 4 = 0 x + x + x + x 4 = x + x + x + x 4 = constraints x + x + x = 6 x + x + x = 5 x + x + x = x 4 + x 4 + x 4 = 8 constraints Isn t one of those constraints redundant? 0

11 The Northwest Corner Starting Solution

12 The Northwest Corner Starting Solution

13 The Northwest Corner Starting Solution

14 The Northwest Corner Starting Solution

15 The Northwest Corner Starting Solution

16 The Northwest Corner Starting Solution

17 The Northwest Corner Starting Solution Cost = $ 8

18 The Northwest Corner Starting Solution- Basic cells Cost = $ 8 8

19 The Northwest Corner Starting Solution Non-basic cells Cost = $ 8

20 0-+- = - Ring-around-the rosie-a Step : Find a non-basic cell to become basic. 0

21 Ring-around-the rosie-b Step : Find a non-basic cell to become basic.

22 Ring-around-the rosie-c = Step : Find a non-basic cell to become basic.

23 Ring-around-the rosie-d Step : Find a non-basic cell to become basic. -5

24 Ring-around-the rosie-a -0+- =

25 Ring-around-the rosie-b

26 Ring-around-the rosie-a =

27 Ring-around-the rosie-b

28 Ring-around-the rosie-c

29 Ring-around-the rosie-d

30 Ring-around-the rosie Select the most negative 0

31 Ring-around-the rosie = Step : From among the negative cells - select the one that goes to zero first.

32 Ring-around-the rosie = -5 Cost = $8-5 x 4 = $ Step : Generate the new basic solution by adding and subtracting the minimum cell quantity to each affected cell.

33 Iteration The Problem Solution demo

34 Iteration The Problem Solution demo

35 Iteration The Problem Solution demo

36 Iteration The Problem Solution demo

37 Iteration The Problem Solution demo

38 Iteration The Problem Solution demo

39 Iteration The Problem Solution

40 Iteration The Problem Solution -continued

41 Iteration The Problem Solution Cost = $08-6 x = $

42 Iteration The Problem Solution

43 Iteration The Problem Solution Cost = $0 - x 5 = $

44 Iteration 4 The Problem Solution Cost = 5 - x =

45 Iteration 4 The Problem Solution Cost = 5 - x = This appears to be optimal! 45

46 A Question? =00 demand =0 What happens if m i= S i n j= D j 46

47 m i= S i > n j= D j Answer -Add a Dummy Column Month Dummy M M M

48 m i= S i < n j= D j Or Add a Dummy Row Dayton New York Columbus Excess capacity DP&L First Energy Long Island Light Dummy Peak demand Power requirements in 000 KWH 48

49 A Paradox? - Less cost more? Cost = $ A B supply s 0 Cost = $5 A B supply s 0 4

50 The Transportation Problem This has been a fast paced ride through a wondrous land in which the movement of a single commodity from source to destination is optimized. 50

Linear Programming Applications. Transportation Problem

Linear Programming Applications. Transportation Problem Linear Programming Applications Transportation Problem 1 Introduction Transportation problem is a special problem of its own structure. Planning model that allocates resources, machines, materials, capital

More information

Example: 1. In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming.

Example: 1. In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming. Ch. 4 THE TRANSPORTATION AND ASSIGNMENT PROBLEMS In this chapter we will discuss the transportation and assignment problems which are two special kinds of linear programming. deals with transporting goods

More information

UNIT 4 TRANSPORTATION PROBLEM

UNIT 4 TRANSPORTATION PROBLEM UNIT 4 TRANSPORTATION PROLEM Structure 4.1 Introduction Objectives 4.2 Mathematical Formulation of the Transportation Problem 4.3 Methods of Finding Initial asic Feasible Solution North-West orner Rule

More information

Chapter 7 TRANSPORTATION PROBLEM

Chapter 7 TRANSPORTATION PROBLEM Chapter 7 TRANSPORTATION PROBLEM Chapter 7 Transportation Transportation problem is a special case of linear programming which aims to minimize the transportation cost to supply goods from various sources

More information

TRANSPORTATION PROBLEMS

TRANSPORTATION PROBLEMS Chapter 6 TRANSPORTATION PROBLEMS 61 Transportation Model Transportation models deal with the determination of a minimum-cost plan for transporting a commodity from a number of sources to a number of destinations

More information

Transportation Simplex: Initial BFS 03/20/03 page 1 of 12

Transportation Simplex: Initial BFS 03/20/03 page 1 of 12 Dennis L. ricker Dept of Mechanical & Industrial Engineering The University of Iowa & Dept of usiness Lithuania hristian ollege Transportation Simplex: Initial FS 0/0/0 page of Obtaining an Initial asic

More information

The Transportation Problem

The Transportation Problem CHAPTER 12 The Transportation Problem Basic Concepts 1. Transportation Problem: BASIC CONCEPTS AND FORMULA This type of problem deals with optimization of transportation cost in a distribution scenario

More information

OPERATIONS RESEARCH. Transportation and Assignment Problems

OPERATIONS RESEARCH. Transportation and Assignment Problems OPERATIONS RESEARCH Chapter 2 Transportation and Assignment Problems Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com 1.0 Introduction In

More information

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4,

x 1 + 4x 2 = 5, 7x 1 + 5x 2 + 2x 3 4, LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR OCH KOMBINATORISK OPTIMERING 2018-03-16 1. a) The rst thing to do is to rewrite the problem so that the right hand side of all constraints are positive.

More information

Duality in LPP Every LPP called the primal is associated with another LPP called dual. Either of the problems is primal with the other one as dual. The optimal solution of either problem reveals the information

More information

OPERATIONS RESEARCH. Transportation and Assignment Problems

OPERATIONS RESEARCH. Transportation and Assignment Problems OPERATIONS RESEARCH Chapter 2 Transportation and Assignment Problems Prof. Bibhas C. Giri Department of Mathematics Jadavpur University Kolkata, India Email: bcgiri.jumath@gmail.com MODULE - 2: Optimality

More information

The Transportation Problem

The Transportation Problem 11 The Transportation Problem Question 1 The initial allocation of a transportation problem, alongwith the unit cost of transportation from each origin to destination is given below. You are required to

More information

TRANSPORTATION PROBLEMS

TRANSPORTATION PROBLEMS 63 TRANSPORTATION PROBLEMS 63.1 INTRODUCTION A scooter production company produces scooters at the units situated at various places (called origins) and supplies them to the places where the depot (called

More information

Minimum cost transportation problem

Minimum cost transportation problem Minimum cost transportation problem Complements of Operations Research Giovanni Righini Università degli Studi di Milano Definitions The minimum cost transportation problem is a special case of the minimum

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Department of Mathematics & Statistics Faculty of Science and Engineering END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS4303 SEMESTER: Spring 2018 MODULE TITLE:

More information

M.SC. MATHEMATICS - II YEAR

M.SC. MATHEMATICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. MATHEMATICS - II YEAR DKM24 - OPERATIONS RESEARCH (From the academic year 2016-17)

More information

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker

56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker 56:171 Operations Research Midterm Exam - October 26, 1989 Instructor: D.L. Bricker Answer all of Part One and two (of the four) problems of Part Two Problem: 1 2 3 4 5 6 7 8 TOTAL Possible: 16 12 20 10

More information

Answer the following questions: Q1: Choose the correct answer ( 20 Points ):

Answer the following questions: Q1: Choose the correct answer ( 20 Points ): Benha University Final Exam. (ختلفات) Class: 2 rd Year Students Subject: Operations Research Faculty of Computers & Informatics Date: - / 5 / 2017 Time: 3 hours Examiner: Dr. El-Sayed Badr Answer the following

More information

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions

Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions Deterministic Operations Research, ME 366Q and ORI 391 Chapter 2: Homework #2 Solutions 11. Consider the following linear program. Maximize z = 6x 1 + 3x 2 subject to x 1 + 2x 2 2x 1 + x 2 20 x 1 x 2 x

More information

Operations Research: Introduction. Concept of a Model

Operations Research: Introduction. Concept of a Model Origin and Development Features Operations Research: Introduction Term or coined in 1940 by Meclosky & Trefthan in U.K. came into existence during World War II for military projects for solving strategic

More information

Transportation Problem

Transportation Problem Transportation Problem. Production costs at factories F, F, F and F 4 are Rs.,, and respectively. The production capacities are 0, 70, 40 and 0 units respectively. Four stores S, S, S and S 4 have requirements

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions 1. What does the Representation Theorem say (in linear programming)? 2. What is the Fundamental Theorem of Linear Programming? 3. What is the main idea

More information

Transportation Problem

Transportation Problem Transportation Problem Alireza Ghaffari-Hadigheh Azarbaijan Shahid Madani University (ASMU) hadigheha@azaruniv.edu Spring 2017 Alireza Ghaffari-Hadigheh (ASMU) Transportation Problem Spring 2017 1 / 34

More information

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15

Fundamentals of Operations Research. Prof. G. Srinivasan. Indian Institute of Technology Madras. Lecture No. # 15 Fundamentals of Operations Research Prof. G. Srinivasan Indian Institute of Technology Madras Lecture No. # 15 Transportation Problem - Other Issues Assignment Problem - Introduction In the last lecture

More information

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta

Standard Form An LP is in standard form when: All variables are non-negativenegative All constraints are equalities Putting an LP formulation into sta Chapter 4 Linear Programming: The Simplex Method An Overview of the Simplex Method Standard Form Tableau Form Setting Up the Initial Simplex Tableau Improving the Solution Calculating the Next Tableau

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

2. Network flows. Balance of flow: At each node, demand plus total shipments out must equal supply plus total shipments in. Reno. Denver.

2. Network flows. Balance of flow: At each node, demand plus total shipments out must equal supply plus total shipments in. Reno. Denver. . Network flows A network consists of a collection of locations along with connections between them. The locations, called the nodes of the network, can correspond to places of various kinds such as factories,

More information

The Minimum Cost Network Flow Problem

The Minimum Cost Network Flow Problem EMIS 8374 [MCNFP Review] 1 The Minimum Cost Network Flow Problem Problem Instance: Given a network G = (N, A), with a cost c ij, upper bound u ij, and lower bound l ij associated with each directed arc

More information

Exam 3 Review Math 118 Sections 1 and 2

Exam 3 Review Math 118 Sections 1 and 2 Exam 3 Review Math 118 Sections 1 and 2 This exam will cover sections 5.3-5.6, 6.1-6.3 and 7.1-7.3 of the textbook. No books, notes, calculators or other aids are allowed on this exam. There is no time

More information

Lecture 8 Network Optimization Algorithms

Lecture 8 Network Optimization Algorithms Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 8 Network Optimization Algorithms 1 21/01/14 Introduction Network models have

More information

Linear Programming. H. R. Alvarez A., Ph. D. 1

Linear Programming. H. R. Alvarez A., Ph. D. 1 Linear Programming H. R. Alvarez A., Ph. D. 1 Introduction It is a mathematical technique that allows the selection of the best course of action defining a program of feasible actions. The objective of

More information

CHAPTER SOLVING MULTI-OBJECTIVE TRANSPORTATION PROBLEM USING FUZZY PROGRAMMING TECHNIQUE-PARALLEL METHOD 40 3.

CHAPTER SOLVING MULTI-OBJECTIVE TRANSPORTATION PROBLEM USING FUZZY PROGRAMMING TECHNIQUE-PARALLEL METHOD 40 3. CHAPTER - 3 40 SOLVING MULTI-OBJECTIVE TRANSPORTATION PROBLEM USING FUZZY PROGRAMMING TECHNIQUE-PARALLEL METHOD 40 3.1 INTRODUCTION 40 3.2 MULTIOBJECTIVE TRANSPORTATION PROBLEM 41 3.3 THEOREMS ON TRANSPORTATION

More information

Systems Analysis in Construction

Systems Analysis in Construction Systems Analysis in Construction CB312 Construction & Building Engineering Department- AASTMT by A h m e d E l h a k e e m & M o h a m e d S a i e d 3. Linear Programming Optimization Simplex Method 135

More information

IE 5531: Engineering Optimization I

IE 5531: Engineering Optimization I IE 5531: Engineering Optimization I Lecture 7: Duality and applications Prof. John Gunnar Carlsson September 29, 2010 Prof. John Gunnar Carlsson IE 5531: Engineering Optimization I September 29, 2010 1

More information

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics

Dr. S. Bourazza Math-473 Jazan University Department of Mathematics Dr. Said Bourazza Department of Mathematics Jazan University 1 P a g e Contents: Chapter 0: Modelization 3 Chapter1: Graphical Methods 7 Chapter2: Simplex method 13 Chapter3: Duality 36 Chapter4: Transportation

More information

Activity Predecessors Time (months) A - 2 B A 6 C A 4 D B 4 E C 2 F B,D 1 G D,E 2 H C 1. dummy0 C4 E2

Activity Predecessors Time (months) A - 2 B A 6 C A 4 D B 4 E C 2 F B,D 1 G D,E 2 H C 1. dummy0 C4 E2 AMS 341 (Spring, 2009) Exam 2 - Solution notes Estie Arkin Mean 68.56, median 70, high 99, low 13. 1. (12 points) A frazzled student is trying to plan all the work they must complete before graduating.

More information

MA 162: Finite Mathematics - Section 3.3/4.1

MA 162: Finite Mathematics - Section 3.3/4.1 MA 162: Finite Mathematics - Section 3.3/4.1 Fall 2014 Ray Kremer University of Kentucky October 6, 2014 Announcements: Homework 3.3 due Tuesday at 6pm. Homework 4.1 due Friday at 6pm. Exam scores were

More information

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions.

Prelude to the Simplex Algorithm. The Algebraic Approach The search for extreme point solutions. Prelude to the Simplex Algorithm The Algebraic Approach The search for extreme point solutions. 1 Linear Programming-1 x 2 12 8 (4,8) Max z = 6x 1 + 4x 2 Subj. to: x 1 + x 2

More information

Modeling Network Optimization Problems

Modeling Network Optimization Problems Modeling Network Optimization Problems John E. Mitchell http://www.rpi.edu/~mitchj Mathematical Models of Operations Research MATP4700 / ISYE4770 October 19, 01 Mitchell (MATP4700) Network Optimization

More information

W P 1 30 / 10 / P 2 25 / 15 / P 3 20 / / 0 20 / 10 / 0 35 / 20 / 0

W P 1 30 / 10 / P 2 25 / 15 / P 3 20 / / 0 20 / 10 / 0 35 / 20 / 0 11 P 1 and W 1 with shipping cost. The column total (i.e. market requirement) corresponding to this cell is 2 while the row total (Plant capacity) is. So we allocate 2 units to this cell. Not the market

More information

Linear Programming. (Com S 477/577 Notes) Yan-Bin Jia. Nov 28, 2017

Linear Programming. (Com S 477/577 Notes) Yan-Bin Jia. Nov 28, 2017 Linear Programming (Com S 4/ Notes) Yan-Bin Jia Nov 8, Introduction Many problems can be formulated as maximizing or minimizing an objective in the form of a linear function given a set of linear constraints

More information

Task Predecessors Time (hours) A - 2 B - 3 C A 1 D B 8 E B,C 7 F D,E 5

Task Predecessors Time (hours) A - 2 B - 3 C A 1 D B 8 E B,C 7 F D,E 5 AMS 34 (Spring, 00) Exam - Solution notes Estie Arkin Mean 73.95, median 76, top quartile 87, high 99, low.. (0 points) I am planning a vacation once the spring semester is over. There are many tasks that

More information

Maximum Flow Problem (Ford and Fulkerson, 1956)

Maximum Flow Problem (Ford and Fulkerson, 1956) Maximum Flow Problem (Ford and Fulkerson, 196) In this problem we find the maximum flow possible in a directed connected network with arc capacities. There is unlimited quantity available in the given

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6

(P ) Minimize 4x 1 + 6x 2 + 5x 3 s.t. 2x 1 3x 3 3 3x 2 2x 3 6 The exam is three hours long and consists of 4 exercises. The exam is graded on a scale 0-25 points, and the points assigned to each question are indicated in parenthesis within the text. Problem 1 Consider

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective Vehicle routing problem 1 / 33 Cutting stock

More information

56:270 Final Exam - May

56:270  Final Exam - May @ @ 56:270 Linear Programming @ @ Final Exam - May 4, 1989 @ @ @ @ @ @ @ @ @ @ @ @ @ @ Select any 7 of the 9 problems below: (1.) ANALYSIS OF MPSX OUTPUT: Please refer to the attached materials on the

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form problems Graphical representation

More information

Lecture 14 Transportation Algorithm. October 9, 2009

Lecture 14 Transportation Algorithm. October 9, 2009 Transportation Algorithm October 9, 2009 Outline Lecture 14 Revisit the transportation problem Simplex algorithm for the balanced problem Basic feasible solutions Selection of the initial basic feasible

More information

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall.

Uncertainty Runs Rampant in the Universe C. Ebeling circa Markov Chains. A Stochastic Process. Into each life a little uncertainty must fall. Uncertainty Runs Rampant in the Universe C. Ebeling circa 2000 Markov Chains A Stochastic Process Into each life a little uncertainty must fall. Our Hero - Andrei Andreyevich Markov Born: 14 June 1856

More information

F 1 F 2 Daily Requirement Cost N N N

F 1 F 2 Daily Requirement Cost N N N Chapter 5 DUALITY 5. The Dual Problems Every linear programming problem has associated with it another linear programming problem and that the two problems have such a close relationship that whenever

More information

CSC Design and Analysis of Algorithms. LP Shader Electronics Example

CSC Design and Analysis of Algorithms. LP Shader Electronics Example CSC 80- Design and Analysis of Algorithms Lecture (LP) LP Shader Electronics Example The Shader Electronics Company produces two products:.eclipse, a portable touchscreen digital player; it takes hours

More information

Decision Mathematics D2 Advanced/Advanced Subsidiary. Monday 1 June 2009 Morning Time: 1 hour 30 minutes

Decision Mathematics D2 Advanced/Advanced Subsidiary. Monday 1 June 2009 Morning Time: 1 hour 30 minutes Paper Reference(s) 6690/01 Edexcel GCE Decision Mathematics D2 Advanced/Advanced Subsidiary Monday 1 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included with

More information

Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment

Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment Econ 172A, Fall 2012: Final Examination Solutions (I) 1. The entries in the table below describe the costs associated with an assignment problem. There are four people (1, 2, 3, 4) and four jobs (A, B,

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

SEN301 OPERATIONS RESEARCH I LECTURE NOTES

SEN301 OPERATIONS RESEARCH I LECTURE NOTES SEN30 OPERATIONS RESEARCH I LECTURE NOTES SECTION II (208-209) Y. İlker Topcu, Ph.D. & Özgür Kabak, Ph.D. Acknowledgements: We would like to acknowledge Prof. W.L. Winston's "Operations Research: Applications

More information

CMSC 451: Max-Flow Extensions

CMSC 451: Max-Flow Extensions CMSC 51: Max-Flow Extensions Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Section 7.7 of Algorithm Design by Kleinberg & Tardos. Circulations with

More information

Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment

Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment Econ 172A, Fall 2012: Final Examination Solutions (II) 1. The entries in the table below describe the costs associated with an assignment problem. There are four people (1, 2, 3, 4) and four jobs (A, B,

More information

Review Questions, Final Exam

Review Questions, Final Exam Review Questions, Final Exam A few general questions. What does the Representation Theorem say (in linear programming)? In words, the representation theorem says that any feasible point can be written

More information

Mathematics for Management Science Notes 05 prepared by Professor Jenny Baglivo

Mathematics for Management Science Notes 05 prepared by Professor Jenny Baglivo Mathematics for Management Science Notes 05 prepared by Professor Jenny Baglivo Jenny A. Baglivo 2002. All rights reserved. Transportation and assignment problems Transportation/assignment problems arise

More information

TRANSPORTATION & NETWORK PROBLEMS

TRANSPORTATION & NETWORK PROBLEMS TRANSPORTATION & NETWORK PROBLEMS Transportation Problems Problem: moving output from multiple sources to multiple destinations. The objective is to minimise costs (maximise profits). Network Representation

More information

Examples of linear systems and explanation of the term linear. is also a solution to this equation.

Examples of linear systems and explanation of the term linear. is also a solution to this equation. . Linear systems Examples of linear systems and explanation of the term linear. () ax b () a x + a x +... + a x b n n Illustration by another example: The equation x x + 5x 7 has one solution as x 4, x

More information

Dr. Maddah ENMG 500 Engineering Management I 10/21/07

Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Dr. Maddah ENMG 500 Engineering Management I 10/21/07 Computational Procedure of the Simplex Method The optimal solution of a general LP problem is obtained in the following steps: Step 1. Express the

More information

56:171 Operations Research Midterm Exam--15 October 2002

56:171 Operations Research Midterm Exam--15 October 2002 Name 56:171 Operations Research Midterm Exam--15 October 2002 Possible Score 1. True/False 25 _ 2. LP sensitivity analysis 25 _ 3. Transportation problem 15 _ 4. LP tableaux 15 _ Total 80 _ Part I: True(+)

More information

Chap6 Duality Theory and Sensitivity Analysis

Chap6 Duality Theory and Sensitivity Analysis Chap6 Duality Theory and Sensitivity Analysis The rationale of duality theory Max 4x 1 + x 2 + 5x 3 + 3x 4 S.T. x 1 x 2 x 3 + 3x 4 1 5x 1 + x 2 + 3x 3 + 8x 4 55 x 1 + 2x 2 + 3x 3 5x 4 3 x 1 ~x 4 0 If we

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) 1. Mathematical Programming Concept 2. LP Concept 3. Standard Form 4. Assumptions 5. Consequences of Assumptions 6. Solution Approach 7. Solution Methods 8. Typical

More information

56:171 Operations Research Fall 1998

56:171 Operations Research Fall 1998 56:171 Operations Research Fall 1998 Quiz Solutions D.L.Bricker Dept of Mechanical & Industrial Engineering University of Iowa 56:171 Operations Research Quiz

More information

To Obtain Initial Basic Feasible Solution Physical Distribution Problems

To Obtain Initial Basic Feasible Solution Physical Distribution Problems Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 4671-4676 Research India Publications http://www.ripublication.com To Obtain Initial Basic Feasible Solution

More information

Lecture 8: Column Generation

Lecture 8: Column Generation Lecture 8: Column Generation (3 units) Outline Cutting stock problem Classical IP formulation Set covering formulation Column generation A dual perspective 1 / 24 Cutting stock problem 2 / 24 Problem description

More information

UNIVERSITY OF KWA-ZULU NATAL

UNIVERSITY OF KWA-ZULU NATAL UNIVERSITY OF KWA-ZULU NATAL EXAMINATIONS: June 006 Solutions Subject, course and code: Mathematics 34 MATH34P Multiple Choice Answers. B. B 3. E 4. E 5. C 6. A 7. A 8. C 9. A 0. D. C. A 3. D 4. E 5. B

More information

MS-E2140. Lecture 1. (course book chapters )

MS-E2140. Lecture 1. (course book chapters ) Linear Programming MS-E2140 Motivations and background Lecture 1 (course book chapters 1.1-1.4) Linear programming problems and examples Problem manipulations and standard form Graphical representation

More information

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming Integer Programming, Goal Programming, and Nonlinear Programming CHAPTER 11 253 CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming TRUE/FALSE 11.1 If conditions require that all

More information

Chapter 4 The Simplex Algorithm Part I

Chapter 4 The Simplex Algorithm Part I Chapter 4 The Simplex Algorithm Part I Based on Introduction to Mathematical Programming: Operations Research, Volume 1 4th edition, by Wayne L. Winston and Munirpallam Venkataramanan Lewis Ntaimo 1 Modeling

More information

LINEAR PROGRAMMING MODULE Part 1 - Model Formulation INTRODUCTION

LINEAR PROGRAMMING MODULE Part 1 - Model Formulation INTRODUCTION Name: LINEAR PROGRAMMING MODULE Part 1 - Model Formulation INTRODUCTION In general, a mathematical model is either deterministic or probabilistic. For example, the models and algorithms shown in the Graph-Optimization

More information

Variants of transshipment problem

Variants of transshipment problem Eur. Transp. Res. Rev. (2015) 7: 11 DOI 10.1007/s12544-015-0154- ORIGINAL PAPER Variants of transshipment problem Archana Khurana Received: 22 April 2014 /Accepted: 22 January 2015 /Published online: 3

More information

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role

Introduction to LP. Types of Linear Programming. There are five common types of decisions in which LP may play a role Linear Programming RK Jana Lecture Outline Introduction to Linear Programming (LP) Historical Perspective Model Formulation Graphical Solution Method Simplex Method Introduction to LP Continued Today many

More information

Optimization - Examples Sheet 1

Optimization - Examples Sheet 1 Easter 0 YMS Optimization - Examples Sheet. Show how to solve the problem min n i= (a i + x i ) subject to where a i > 0, i =,..., n and b > 0. n x i = b, i= x i 0 (i =,...,n). Minimize each of the following

More information

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

CS 170 DISCUSSION 10 MAXIMUM FLOW. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17

CS 170 DISCUSSION 10 MAXIMUM FLOW. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17 7 IUION MXIMUM FLOW Raymond han raychan.github.io/cs7/fa7.html U erkeley Fall 7 MXIMUM FLOW Given a directed graph G = (V, E), send as many units of flow from source node s to sink node t. Edges have capacity

More information

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem

Math 210 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Math 2 Finite Mathematics Chapter 4.2 Linear Programming Problems Minimization - The Dual Problem Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Math 2 Website: http://math.niu.edu/courses/math2.

More information

A = Chapter 6. Linear Programming: The Simplex Method. + 21x 3 x x 2. C = 16x 1. + x x x 1. + x 3. 16,x 2.

A = Chapter 6. Linear Programming: The Simplex Method. + 21x 3 x x 2. C = 16x 1. + x x x 1. + x 3. 16,x 2. Chapter 6 Linear rogramming: The Simple Method Section The Dual roblem: Minimization with roblem Constraints of the Form Learning Objectives for Section 6. Dual roblem: Minimization with roblem Constraints

More information

Stochastic Optimization

Stochastic Optimization Chapter 27 Page 1 Stochastic Optimization Operations research has been particularly successful in two areas of decision analysis: (i) optimization of problems involving many variables when the outcome

More information

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND

SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: TOTAL GRAND 1 56:270 LINEAR PROGRAMMING FINAL EXAMINATION - MAY 17, 1985 SELECT TWO PROBLEMS (OF A POSSIBLE FOUR) FROM PART ONE, AND FOUR PROBLEMS (OF A POSSIBLE FIVE) FROM PART TWO. PART ONE: 1 2 3 4 TOTAL GRAND

More information

THREE-DIMENS IONAL TRANSPORTATI ON PROBLEM WITH CAPACITY RESTRICTION *

THREE-DIMENS IONAL TRANSPORTATI ON PROBLEM WITH CAPACITY RESTRICTION * NZOR volume 9 number 1 January 1981 THREE-DIMENS IONAL TRANSPORTATI ON PROBLEM WITH CAPACITY RESTRICTION * S. MISRA AND C. DAS DEPARTMENT OF MATHEMATICS, REGIONAL ENGINEERING COLLEGE, ROURKELA - 769008,

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Linear Programming CHAPTER 11 BASIC CONCEPTS AND FORMULA. Basic Concepts 1. Linear Programming

Linear Programming CHAPTER 11 BASIC CONCEPTS AND FORMULA. Basic Concepts 1. Linear Programming CHAPTER 11 Linear Programming Basic Concepts 1. Linear Programming BASIC CONCEPTS AND FORMULA Linear programming is a mathematical technique for determining the optimal allocation of re- sources nd achieving

More information

Linear Programming and the Simplex method

Linear Programming and the Simplex method Linear Programming and the Simplex method Harald Enzinger, Michael Rath Signal Processing and Speech Communication Laboratory Jan 9, 2012 Harald Enzinger, Michael Rath Jan 9, 2012 page 1/37 Outline Introduction

More information

The Big M Method. Modify the LP

The Big M Method. Modify the LP The Big M Method Modify the LP 1. If any functional constraints have negative constants on the right side, multiply both sides by 1 to obtain a constraint with a positive constant. Big M Simplex: 1 The

More information

MATH 445/545 Homework 2: Due March 3rd, 2016

MATH 445/545 Homework 2: Due March 3rd, 2016 MATH 445/545 Homework 2: Due March 3rd, 216 Answer the following questions. Please include the question with the solution (write or type them out doing this will help you digest the problem). I do not

More information

TIM 206 Lecture 3: The Simplex Method

TIM 206 Lecture 3: The Simplex Method TIM 206 Lecture 3: The Simplex Method Kevin Ross. Scribe: Shane Brennan (2006) September 29, 2011 1 Basic Feasible Solutions Have equation Ax = b contain more columns (variables) than rows (constraints),

More information

MATH2070 Optimisation

MATH2070 Optimisation MATH2070 Optimisation Linear Programming Semester 2, 2012 Lecturer: I.W. Guo Lecture slides courtesy of J.R. Wishart Review The standard Linear Programming (LP) Problem Graphical method of solving LP problem

More information

CEE Computer Applications. Mathematical Programming (LP) and Excel Solver

CEE Computer Applications. Mathematical Programming (LP) and Excel Solver CEE 3804 - Computer Applications Mathematical Programming (LP) and Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University

More information

AM 121: Intro to Optimization

AM 121: Intro to Optimization AM 121: Intro to Optimization Models and Methods Lecture 6: Phase I, degeneracy, smallest subscript rule. Yiling Chen SEAS Lesson Plan Phase 1 (initialization) Degeneracy and cycling Smallest subscript

More information

FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2

FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2 THIS BOX IS FOR ILLUSTRATIVE PURPOSES ONLY 2016 Examination Package - Trial Examination 4 of 5 Figures STUDENT NUMBER Letter Words FURTHER MATHEMATICS Units 3 & 4 - Written Examination 2 (TSSM s 2014 trial

More information

Unit 7: Introduction to Functions

Unit 7: Introduction to Functions Section 7.1: Relations and Functions Section 7.2: Function Notation Section 7.3: Domain and Range Section 7.4: Practical Domain and Range Section 7.5: Applications KEY TERMS AND CONCEPTS Look for the following

More information

4.7 Sensitivity analysis in Linear Programming

4.7 Sensitivity analysis in Linear Programming 4.7 Sensitivity analysis in Linear Programming Evaluate the sensitivity of an optimal solution with respect to variations in the data (model parameters). Example: Production planning max n j n a j p j

More information

Welcome to CPSC 4850/ OR Algorithms

Welcome to CPSC 4850/ OR Algorithms Welcome to CPSC 4850/5850 - OR Algorithms 1 Course Outline 2 Operations Research definition 3 Modeling Problems Product mix Transportation 4 Using mathematical programming Course Outline Instructor: Robert

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information