2. Network flows. Balance of flow: At each node, demand plus total shipments out must equal supply plus total shipments in. Reno. Denver.

Size: px
Start display at page:

Download "2. Network flows. Balance of flow: At each node, demand plus total shipments out must equal supply plus total shipments in. Reno. Denver."

Transcription

1 . Network flows A network consists of a collection of locations along with connections between them. The locations, called the nodes of the network, can correspond to places of various kinds such as factories, warehouses, stores or customers. The connections, known as arcs, tie together certain pairs of nodes; they may designate roads, cables or flight corridors. A network model is concerned with a flow of something packages, for example, or messages or electricity from node to node along the arcs. To be specific, for this case study we consider a network in which nodes are cities, arcs are highways, and flows are truckloads of manufactured goods. It is convenient to represent a network by a diagram in which the nodes are drawn as circles and the arcs as arrows connecting circles. Thus our cities are circles and our highways are arrows, as in this simple example: Reno Denver Los Angeles Dallas Phoenix Houston The dashed arrows pointing into cities represent amounts produced there and available for shipment out: truckloads at Los Angeles and at Reno. The dashed arrows pointing out of cities represent amounts sold there and hence needed as shipments in: truckloads at Houston and at Dallas. Solid arrows represent possible directions of shipments between cities. The network flow problem seeks seeks to ship all of the supply from Los Angeles and Reno so as to meet all of the demand at Houston and Dallas. A solution to the problem tells, for each city pair represented by an arrow, how many truckloads to ship between the cities in the direction of the arrow. Flow balance equations. The shipment amounts in a solution must satisfy certain linear equations to insure that all truckloads are accounted for. In general terms, these equations say that, at each city, the amount coming in must equal the amount going out. In our particular case, goods can come into a city by being produced there or by being shipped in from other cities; goods can go out from a city by being sold there or by being shipped out to other cities. Thus, in terms of the network, the equations can be stated as follows: Balance of flow: At each node, demand plus total shipments out must equal supply plus total shipments in. 8

2 In our example, supply is at Los Angeles and at Reno, while demand is at Houston and at Dallas. All other supply and demand amounts are. To turn this word description into equations that we can solve, we ll write x ij to represent the flow from node i to node j, where the numbering of nodes is as given in the diagram. Then at node, for example, shipments in are given by x and shipments out by x + x + x. Together with the supply of and demand of zero, this gives us the balance equation + x + x + x = + x. At node, the flow in is x + x and the flow out is x, while both supply and demand are zero, leading us to the balance equation + x = + x + x. Proceeding in this way, and dropping the zeroes, we arrive at the following balance equations for the sixnodes: x + x = x + x + x = + x x = x + x x + x = x + x = x + x + x = x + x The flows through the network are described by the values of nine variables (corresponding to the nine arcs) that must satisfy sixlinear equations (corresponding to the sixnodes). In order to characterize the possible solutions, we first put these equations into matrixform. We move variables to the left of the = sign and constants to the right, and give a coefficient of to each variable that does not appear explicitly. Then the balance of flow can be regarded as a 9 equation system: x x x x x x x x x where (x,x,x,x,x,x,x,x,x ). We have placed the name of each variable under its column of coefficients in the matrix; this list of names has no mathematical significance, but it makes the equations easier to interpret. When Gaussian elimination is applied to these equations, the result is the following equivalent system in echelon form: x x x x x x x x x, 9

3 The pivot (or basic ) variables, corresponding to the columns in which the echelon form steps down, are x, x, x, x and x. The free variables are the other four: x, x, x and x. There are only pivot variables for these equations. One equation at the bottom turns out to be all zeroes. Thus we can conclude that there must be infinitely many solutions. To get a general form for the solutions, we can substitute x = c, x = c, x = c, and x = c for the free variables; then the first five equations become an upper-triangular system in the pivot variables: x + x = x + x + x = c x + x = c x + x = c c x = c These equations are easily solved to give x = c x = c c + c x = + c c x = c + c x = + c c which together with x = c x = c x = c x = c gives a general solution to the network flow equation system. This solution may be rewritten in vector notation as x x x x x = + c + c + c + c. x x x x Several interesting properties of the network can be deduced from this representation. Cycles of flow. Consider first the solution obtained by setting c = c = c = c =. In this case the solution has positive flows only along the five arcs that correspond to the basic (pivot) variables. To depict this solution in a network diagram, we can thicken the basic arcs and show the amount of flow next to each one:

4 The basic arcs form a structure in the network known as a spanning tree: they reach every node (hence are spanning ) yet form no loops (hence are a tree ). It turns out that, for any network flow equations, every subset of basic variables corresponds to some spanning tree. Conversely, every spanning tree gives rise to a triangular system of equations, which has a unique solution when the flows on the other arcs are fixed. Now consider the term that contains c in the general-form solution above. It adds +c to x, c to x, and +c to x. Looking at the network diagram, you can see that x, x and x form a loop or cycle. In fact, exactly this one cycle is formed when nonbasic arc x is added to the spanning tree. If you go around this cycle forward through arc, you will then go backward and forward ; this observation corresponds to the fact that you add c to x, subtract it from x, and add it to x. In summary, you can think of the c term in the general solution as representing an adjustment of flow around a cycle. This adjustment leaves the equations satisfied at all nodes, but changes the solution on the cycle s arcs. The other three terms in the general solution correspond, in an analogous way, to cycles created when the other nonbasic arcs are added to the spanning tree. The addition of arc, for example, gives a cycle with, and. Suppose you start with the solution given by c = c = c = c =, but increase c to a positive value t. Then according to the general-form solution, the flow increases on x and x, while it decreases on x and x : t + t t t

5 Clearly all the flows remain nonnegative for t. At t =, the flow on falls to zero, and the remaining nonzero flows are x = 7, x =, x =, x =, and x =. These five variables make up another basic solution (which we might have arrived at had we ordered the variables differently when performing Gaussian elimination). You can also check that the arcs corresponding to these variables make up another, different spanning tree in the network. Thus, given a nonnegative basic solution to the network flow equations, we have a simple way of moving to another such solution. There are also an infinity of nonnegative solutions between these two, given by setting t to values between and. Minimum-cost solutions. Among all the solutions to the flow balance equations, which should be preferred? There s no good way to tell, from only the information given. Suppose however that we also know a cost per truckload for each arc, expressed as follows in hundreds of dollars: $ $ $ $9 $ $ $ $7 $ Then the cost of all shipments on a particular arc is given by the cost per truckload times the number of truckloads: x for shipments on, 9x for shipments on, and so forth. Ignoring the variables at zero, the total cost for all shipments in our original spanning-tree solution is $x + $x + $x + $9x + $x = $ + $ + $ + $9 + $ = $, while the total cost for the new spanning-tree solution that we derived by increasing the flow on x tois $x + $x + $x + $7x + $x = $ 7 + $ + $ + $7 + $ = $9. The second solution turns out to be the better one. We could have checked whether the second solution would be preferable, before going to the trouble of computing it. Recall that for each truckload added on that is, for each unit of increase in the our parameter t we must remove a truckload from, remove a truckload from, and add a truckload on. Thus each increase of t by one truckload incurs a cost of

6 $7 more on, $9 less on, $ less on, and $ more on for a total of $ less overall. It follows that, the higher you make t, the more you save. The best you can do is to increase t to, which is the highest it can go without forcing some flow to a negative value. At that point you have reached a different basic solution, whose total cost is $ = $ less. These observations suggest a way of finding the lowest possible shipping cost to meet the demands. You start with any basic solution that has nonnegative flows. Then you pick any one nonbasic variable such that the cost per unit of putting flow on the resulting cycle is negative. Finally you increase the flow around this cycle until some basic variable falls to zero, at which point you have found a lower-cost basic solution. You keep repeating this procedure until, eventually, you arrive at some basic solution where none of the associated cycles afford any reduction in cost. At that point, you can stop and declare that you have found the lowest-cost flow that satisfies the balance equations. This approach, with a few refinements, is known as the network simplex method. It really does find a minimum-cost flow for any network. The details of why it works, and how it can be made to run efficiently on large networks, are however beyond the scope of a linear algebra course. You may have noticed that we have not said anything about how a nonnegative basic solution can be found in the first place. When we applied Gaussian elimination, we happened to arrive at a solution that had all variables, but if the variables had been ordered differently we could well have determined a different solution in which some variables had values <. Gaussian elimination has no easy way of forcing the solution to be nonnegative, which is why nonnegativity is ignored in the development of elimination methods. In fact finding a nonnegative solution to an equation system is as hard as finding a minimum-cost solution, and requires the same advanced methods. Existence of solutions. To conclude, we consider the following question: Which other combinations of supplies and demands would allow the network equations to have a solution? Suppose that we represent our original equations,, x x x x x x x x x as A b, so that A stands for the matrixon the left, and b for the vector on the right. You can see that any supply at network node i appears as a positive value of b i, while any demand appears as a negative value. At a node i where there is no supply or demand, b i =. Our question thus amounts to determining the conditions on the vector b

7 such that a solution exists. One way to do this is to apply elimination to b b b b, b b with the result being b b + b b + b + b b + b + b + b. b + b + b + b + b b + b + b + b + b + b Clearly a solution will exist if and only if the constant term for the last equation becomes zero; that is, if and only if b i =. i= Since the supplies are positive b i values, and the demands are negative b i values, this just says that the total supply minus total demand must equal zero. In other words, when total supply equals total demand then there is always a solution to the network equations, while when supply and demand are unequal there is never a solution. This confirms exactly what you would expect. Another way to approach this same result is to observe that every column of A has two nonzeroes, one + and one. Thus the sum over each column of A is zero, or equivalently ea = where e = [] is a row vector of all ones. We can use this fact to reason that A b ea eb = b i. i= That is, if a solution exists, then supplies must equal demands in b, by the same reasoning as before. This approach can also be used to establish the converse, that if supplies minus demands in b are zero then a solution must exist, but somewhat more advanced reasoning is required in that direction.

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Linear Algebra Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.2 Echelon Forms Math 2331 Linear Algebra 1.2 Row Reduction and Echelon Forms Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ January 22, 2018 Shang-Huan

More information

2 Systems of Linear Equations

2 Systems of Linear Equations 2 Systems of Linear Equations A system of equations of the form or is called a system of linear equations. x + 2y = 7 2x y = 4 5p 6q + r = 4 2p + 3q 5r = 7 6p q + 4r = 2 Definition. An equation involving

More information

Volume in n Dimensions

Volume in n Dimensions Volume in n Dimensions MA 305 Kurt Bryan Introduction You ve seen that if we have two vectors v and w in two dimensions then the area spanned by these vectors can be computed as v w = v 1 w 2 v 2 w 1 (where

More information

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued

Lecture 3: Gaussian Elimination, continued. Lecture 3: Gaussian Elimination, continued Definition The process of solving a system of linear equations by converting the system to an augmented matrix is called Gaussian Elimination. The general strategy is as follows: Convert the system of

More information

Section 4.1 Solving Systems of Linear Inequalities

Section 4.1 Solving Systems of Linear Inequalities Section 4.1 Solving Systems of Linear Inequalities Question 1 How do you graph a linear inequality? Question 2 How do you graph a system of linear inequalities? Question 1 How do you graph a linear inequality?

More information

MTH 2032 Semester II

MTH 2032 Semester II MTH 232 Semester II 2-2 Linear Algebra Reference Notes Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2 ii Contents Table of Contents

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Row Reduction and Echelon Forms

Row Reduction and Echelon Forms Row Reduction and Echelon Forms 1 / 29 Key Concepts row echelon form, reduced row echelon form pivot position, pivot, pivot column basic variable, free variable general solution, parametric solution existence

More information

22A-2 SUMMER 2014 LECTURE 5

22A-2 SUMMER 2014 LECTURE 5 A- SUMMER 0 LECTURE 5 NATHANIEL GALLUP Agenda Elimination to the identity matrix Inverse matrices LU factorization Elimination to the identity matrix Previously, we have used elimination to get a system

More information

TRANSPORTATION PROBLEMS

TRANSPORTATION PROBLEMS Chapter 6 TRANSPORTATION PROBLEMS 61 Transportation Model Transportation models deal with the determination of a minimum-cost plan for transporting a commodity from a number of sources to a number of destinations

More information

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros.

0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 0.0.1 Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

Row Reduction

Row Reduction Row Reduction 1-12-2015 Row reduction (or Gaussian elimination) is the process of using row operations to reduce a matrix to row reduced echelon form This procedure is used to solve systems of linear equations,

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Section. Solution of Linear Systems by Gauss-Jordan Method A matrix is an ordered rectangular array of numbers, letters, symbols or algebraic expressions. A matrix with m rows and n columns has size or

More information

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.]

[Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty.] Math 43 Review Notes [Disclaimer: This is not a complete list of everything you need to know, just some of the topics that gave people difficulty Dot Product If v (v, v, v 3 and w (w, w, w 3, then the

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate it

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

Solution Set 3, Fall '12

Solution Set 3, Fall '12 Solution Set 3, 86 Fall '2 Do Problem 5 from 32 [ 3 5 Solution (a) A = Only one elimination step is needed to produce the 2 6 echelon form The pivot is the in row, column, and the entry to eliminate is

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

UNIT 4 TRANSPORTATION PROBLEM

UNIT 4 TRANSPORTATION PROBLEM UNIT 4 TRANSPORTATION PROLEM Structure 4.1 Introduction Objectives 4.2 Mathematical Formulation of the Transportation Problem 4.3 Methods of Finding Initial asic Feasible Solution North-West orner Rule

More information

Row Reducing Matrices

Row Reducing Matrices A Presentation on Procedures Used to Work with Matrices Prepared by David Morín MEnTe Program East Los Angeles College Topics Introduction Row Operations Row Echelon Form Reduced Row Echelon Form Check

More information

Section 1.2. Row Reduction and Echelon Forms

Section 1.2. Row Reduction and Echelon Forms Section 1.2 Row Reduction and Echelon Forms Row Echelon Form Let s come up with an algorithm for turning an arbitrary matrix into a solved matrix. What do we mean by solved? A matrix is in row echelon

More information

Linear Algebra Handout

Linear Algebra Handout Linear Algebra Handout References Some material and suggested problems are taken from Fundamentals of Matrix Algebra by Gregory Hartman, which can be found here: http://www.vmi.edu/content.aspx?id=779979.

More information

The simplex algorithm

The simplex algorithm The simplex algorithm The simplex algorithm is the classical method for solving linear programs. Its running time is not polynomial in the worst case. It does yield insight into linear programs, however,

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note Introduction to Linear Algebra the EECS Way EECS 16A Designing Information Devices and Systems I Spring 018 Lecture Notes Note 1 1.1 Introduction to Linear Algebra the EECS Way In this note, we will teach the basics of linear algebra and relate

More information

Linear Algebra Basics

Linear Algebra Basics Linear Algebra Basics For the next chapter, understanding matrices and how to do computations with them will be crucial. So, a good first place to start is perhaps What is a matrix? A matrix A is an array

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3 Math 0 Row Reduced Echelon Form Techniques for solving systems of linear equations lie at the heart of linear algebra. In high school we learn to solve systems with or variables using elimination and substitution

More information

Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS

Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS 22M:33 J. Simon page 1 of 7 22M:33 Summer 06 J. Simon Example 1. Handout 1 EXAMPLES OF SOLVING SYSTEMS OF LINEAR EQUATIONS 2x 1 + 3x 2 5x 3 = 10 3x 1 + 5x 2 + 6x 3 = 16 x 1 + 5x 2 x 3 = 10 Step 1. Write

More information

Lecture 1 Systems of Linear Equations and Matrices

Lecture 1 Systems of Linear Equations and Matrices Lecture 1 Systems of Linear Equations and Matrices Math 19620 Outline of Course Linear Equations and Matrices Linear Transformations, Inverses Bases, Linear Independence, Subspaces Abstract Vector Spaces

More information

Lesson 27 Linear Programming; The Simplex Method

Lesson 27 Linear Programming; The Simplex Method Lesson Linear Programming; The Simplex Method Math 0 April 9, 006 Setup A standard linear programming problem is to maximize the quantity c x + c x +... c n x n = c T x subject to constraints a x + a x

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

1.2 Row Echelon Form EXAMPLE 1

1.2 Row Echelon Form EXAMPLE 1 .2 Row Echelon Form 7. The two systems 2x + x 2 = 4x + x 2 = 5 and 2x + x 2 = 4x + x 2 = have the same coefficient matrix but different righthand sides. Solve both systems simultaneously by eliminating

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Solving Systems of Equations Row Reduction

Solving Systems of Equations Row Reduction Solving Systems of Equations Row Reduction November 19, 2008 Though it has not been a primary topic of interest for us, the task of solving a system of linear equations has come up several times. For example,

More information

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur

Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Linear Programming and its Extensions Prof. Prabha Shrama Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture No. # 03 Moving from one basic feasible solution to another,

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

The Gauss-Jordan Elimination Algorithm

The Gauss-Jordan Elimination Algorithm The Gauss-Jordan Elimination Algorithm Solving Systems of Real Linear Equations A. Havens Department of Mathematics University of Massachusetts, Amherst January 24, 2018 Outline 1 Definitions Echelon Forms

More information

Gaussian elimination

Gaussian elimination Gaussian elimination October 14, 2013 Contents 1 Introduction 1 2 Some definitions and examples 2 3 Elementary row operations 7 4 Gaussian elimination 11 5 Rank and row reduction 16 6 Some computational

More information

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION

SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION 2.25 SECTION 2.3: LONG AND SYNTHETIC POLYNOMIAL DIVISION PART A: LONG DIVISION Ancient Example with Integers 2 4 9 8 1 In general: dividend, f divisor, d We can say: 9 4 = 2 + 1 4 By multiplying both sides

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

NUMERICAL MATHEMATICS & COMPUTING 7th Edition

NUMERICAL MATHEMATICS & COMPUTING 7th Edition NUMERICAL MATHEMATICS & COMPUTING 7th Edition Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole wwwengagecom wwwmautexasedu/cna/nmc6 October 16, 2011 Ward Cheney/David Kincaid

More information

Rectangular Systems and Echelon Forms

Rectangular Systems and Echelon Forms CHAPTER 2 Rectangular Systems and Echelon Forms 2.1 ROW ECHELON FORM AND RANK We are now ready to analyze more general linear systems consisting of m linear equations involving n unknowns a 11 x 1 + a

More information

All of my class notes can be found at

All of my class notes can be found at My name is Leon Hostetler I am currently a student at Florida State University majoring in physics as well as applied and computational mathematics Feel free to download, print, and use these class notes

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1 MATH24: Linear Algebra Review for exam # 6//25 Page No review sheet can cover everything that is potentially fair game for an exam, but I tried to hit on all of the topics with these questions, as well

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem

Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 20 Travelling Salesman Problem Optimization Prof. A. Goswami Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 20 Travelling Salesman Problem Today we are going to discuss the travelling salesman problem.

More information

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP)

is called an integer programming (IP) problem. model is called a mixed integer programming (MIP) INTEGER PROGRAMMING Integer Programming g In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS

9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS SECTION 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS 557 9.5 THE SIMPLEX METHOD: MIXED CONSTRAINTS In Sections 9. and 9., you looked at linear programming problems that occurred in standard form. The constraints

More information

Linear Programming The Simplex Algorithm: Part II Chapter 5

Linear Programming The Simplex Algorithm: Part II Chapter 5 1 Linear Programming The Simplex Algorithm: Part II Chapter 5 University of Chicago Booth School of Business Kipp Martin October 17, 2017 Outline List of Files Key Concepts Revised Simplex Revised Simplex

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 4 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods

ORF 307: Lecture 2. Linear Programming: Chapter 2 Simplex Methods ORF 307: Lecture 2 Linear Programming: Chapter 2 Simplex Methods Robert Vanderbei February 8, 2018 Slides last edited on February 8, 2018 http://www.princeton.edu/ rvdb Simplex Method for LP An Example.

More information

Linear Programming Redux

Linear Programming Redux Linear Programming Redux Jim Bremer May 12, 2008 The purpose of these notes is to review the basics of linear programming and the simplex method in a clear, concise, and comprehensive way. The book contains

More information

THE NULLSPACE OF A: SOLVING AX = 0 3.2

THE NULLSPACE OF A: SOLVING AX = 0 3.2 32 The Nullspace of A: Solving Ax = 0 11 THE NULLSPACE OF A: SOLVING AX = 0 32 This section is about the space of solutions to Ax = 0 The matrix A can be square or rectangular One immediate solution is

More information

Simplex tableau CE 377K. April 2, 2015

Simplex tableau CE 377K. April 2, 2015 CE 377K April 2, 2015 Review Reduced costs Basic and nonbasic variables OUTLINE Review by example: simplex method demonstration Outline Example You own a small firm producing construction materials for

More information

1.4 Gaussian Elimination Gaussian elimination: an algorithm for finding a (actually the ) reduced row echelon form of a matrix. A row echelon form

1.4 Gaussian Elimination Gaussian elimination: an algorithm for finding a (actually the ) reduced row echelon form of a matrix. A row echelon form 1. Gaussian Elimination Gaussian elimination: an algorithm for finding a (actually the ) reduced row echelon form of a matrix. Original augmented matrix A row echelon form 1 1 0 0 0 1!!!! The reduced row

More information

Ack: 1. LD Garcia, MTH 199, Sam Houston State University 2. Linear Algebra and Its Applications - Gilbert Strang

Ack: 1. LD Garcia, MTH 199, Sam Houston State University 2. Linear Algebra and Its Applications - Gilbert Strang Gaussian Elimination CS6015 : Linear Algebra Ack: 1. LD Garcia, MTH 199, Sam Houston State University 2. Linear Algebra and Its Applications - Gilbert Strang The Gaussian Elimination Method The Gaussian

More information

M.SC. MATHEMATICS - II YEAR

M.SC. MATHEMATICS - II YEAR MANONMANIAM SUNDARANAR UNIVERSITY DIRECTORATE OF DISTANCE & CONTINUING EDUCATION TIRUNELVELI 627012, TAMIL NADU M.SC. MATHEMATICS - II YEAR DKM24 - OPERATIONS RESEARCH (From the academic year 2016-17)

More information

Linear equations The first case of a linear equation you learn is in one variable, for instance:

Linear equations The first case of a linear equation you learn is in one variable, for instance: Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Linear equations The first case of a linear equation you learn is in one variable, for instance: 2x = 5. We learned in school that this

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16 60.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 0/3/6 6. Introduction We talked a lot the last lecture about greedy algorithms. While both Prim

More information

Lecture 2e Row Echelon Form (pages 73-74)

Lecture 2e Row Echelon Form (pages 73-74) Lecture 2e Row Echelon Form (pages 73-74) At the end of Lecture 2a I said that we would develop an algorithm for solving a system of linear equations, and now that we have our matrix notation, we can proceed

More information

CHAPTER 2. The Simplex Method

CHAPTER 2. The Simplex Method CHAPTER 2 The Simplex Method In this chapter we present the simplex method as it applies to linear programming problems in standard form. 1. An Example We first illustrate how the simplex method works

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Section 20: Arrow Diagrams on the Integers

Section 20: Arrow Diagrams on the Integers Section 0: Arrow Diagrams on the Integers Most of the material we have discussed so far concerns the idea and representations of functions. A function is a relationship between a set of inputs (the leave

More information

Linear programming. Debrecen, 2015/16, 1st semester. University of Debrecen, Faculty of Business Administration 1 / 46

Linear programming. Debrecen, 2015/16, 1st semester. University of Debrecen, Faculty of Business Administration 1 / 46 1 / 46 Linear programming László Losonczi University of Debrecen, Faculty of Business Administration Debrecen, 2015/16, 1st semester LP (linear programming) example 2 / 46 CMP is a cherry furniture manufacturer

More information

Row Reduced Echelon Form

Row Reduced Echelon Form Math 40 Row Reduced Echelon Form Solving systems of linear equations lies at the heart of linear algebra. In high school we learn to solve systems in or variables using elimination and substitution of

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

Vector Spaces, Orthogonality, and Linear Least Squares

Vector Spaces, Orthogonality, and Linear Least Squares Week Vector Spaces, Orthogonality, and Linear Least Squares. Opening Remarks.. Visualizing Planes, Lines, and Solutions Consider the following system of linear equations from the opener for Week 9: χ χ

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

The dual simplex method with bounds

The dual simplex method with bounds The dual simplex method with bounds Linear programming basis. Let a linear programming problem be given by min s.t. c T x Ax = b x R n, (P) where we assume A R m n to be full row rank (we will see in the

More information

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples February 24, 2011 Summary: We introduce the Nash Equilibrium: an outcome (action profile) which is stable in the sense that no player

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

Some Notes on Linear Algebra

Some Notes on Linear Algebra Some Notes on Linear Algebra prepared for a first course in differential equations Thomas L Scofield Department of Mathematics and Statistics Calvin College 1998 1 The purpose of these notes is to present

More information

In Chapters 3 and 4 we introduced linear programming

In Chapters 3 and 4 we introduced linear programming SUPPLEMENT The Simplex Method CD3 In Chapters 3 and 4 we introduced linear programming and showed how models with two variables can be solved graphically. We relied on computer programs (WINQSB, Excel,

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 5 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 5 1 / 12 Systems of linear equations Geometrically, we are quite used to the fact

More information

1 GSW Gaussian Elimination

1 GSW Gaussian Elimination Gaussian elimination is probabl the simplest technique for solving a set of simultaneous linear equations, such as: = A x + A x + A x +... + A x,,,, n n = A x + A x + A x +... + A x,,,, n n... m = Am,x

More information

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture

Vector Spaces. 9.1 Opening Remarks. Week Solvable or not solvable, that s the question. View at edx. Consider the picture Week9 Vector Spaces 9. Opening Remarks 9.. Solvable or not solvable, that s the question Consider the picture (,) (,) p(χ) = γ + γ χ + γ χ (, ) depicting three points in R and a quadratic polynomial (polynomial

More information

Chapter 1: Systems of Linear Equations and Matrices

Chapter 1: Systems of Linear Equations and Matrices : Systems of Linear Equations and Matrices Multiple Choice Questions. Which of the following equations is linear? (A) x + 3x 3 + 4x 4 3 = 5 (B) 3x x + x 3 = 5 (C) 5x + 5 x x 3 = x + cos (x ) + 4x 3 = 7.

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Application of linear systems Linear Algebra with Computer Science Application

Application of linear systems Linear Algebra with Computer Science Application Linear Algebra with Computer Science Application February 5, 208 Review. Review: Vectors We introduced vectors as ordered list of numbers [ ] [ ] 3 E.g., u = and v = are vectors in R 4 2 One can identify

More information

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS

Math 110 FOUNDATIONS OF THE REAL NUMBER SYSTEM FOR ELEMENTARY AND MIDDLE SCHOOL TEACHERS 4-1Divisibility Divisibility Divisibility Rules Divisibility An integer is if it has a remainder of 0 when divided by 2; it is otherwise. We say that 3 divides 18, written, because the remainder is 0 when

More information

II. Analysis of Linear Programming Solutions

II. Analysis of Linear Programming Solutions Optimization Methods Draft of August 26, 2005 II. Analysis of Linear Programming Solutions Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois

More information

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Linear equations We now switch gears to discuss the topic of solving linear equations, and more interestingly, systems

More information

Law of Trichotomy and Boundary Equations

Law of Trichotomy and Boundary Equations Law of Trichotomy and Boundary Equations Law of Trichotomy: For any two real numbers a and b, exactly one of the following is true. i. a < b ii. a = b iii. a > b The Law of Trichotomy is a formal statement

More information

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations

Chapter 1 Linear Equations. 1.1 Systems of Linear Equations Chapter Linear Equations. Systems of Linear Equations A linear equation in the n variables x, x 2,..., x n is one that can be expressed in the form a x + a 2 x 2 + + a n x n = b where a, a 2,..., a n and

More information